research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the Schiff base derivatives (E)-N′-[(1H-indol-3-yl)methyl­­idene]isonicotino­hydrazide ethanol monosolvate and (E)-N-methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethyl­­idene]hydrazinecarbo­thio­amide

CROSSMARK_Color_square_no_text.svg

aDepartment of Biotechnology, Dr. M.G.R. Educational and Research Institute University, Maduravoyal, Chennai 600 095, India, bDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India, cDepartment of Chemistry, Texas A & M University, College Station, TX 77842, USA, and dCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: drdgayathri@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 18 December 2016; accepted 14 March 2017; online 24 March 2017)

The crystal structures of two title Schiff base derivatives, C15H12N4O·C2H6O (1·EtOH) and C13H13N3O2S (2), were determined at 110 and 100 K, respectively. In the crystal of compound 1·EtOH, the (E)-N′-[(1H-indol-3-yl)methyl­idene]isonicotinohydrazide and ethanol mol­ecules are linked by O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds, forming a tape structure running along the b-axis direction. The tapes are weakly linked via a C—H⋯N inter­action. In the crystal of compound 2, (E)-N-methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethyl­idene]hydrazinecarbo­thio­amide mol­ecules are linked via N—H⋯O and C—H⋯O hydrogen bonds, forming a helical chain along the b-axis direction. The chains are further linked into a layer expanding parallel to (102) through C—H⋯S inter­actions.

1. Chemical context

Schiff base derivatives are a biologically versatile class of compounds possessing diverse activities, such as anti-oxidant (Haribabu, Subhashree et al., 2015[Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2015). J. Mol. Struct. 1094, 281-291.], 2016[Haribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2016). J. Mol. Struct. 1110, 185-195.]), anti-inflammatory (Alam et al., 2012[Alam, M. S., Choi, J. & Lee, D. (2012). Bioorg. Med. Chem. 20, 4103-4108.]), anti-cancer (Creaven et al., 2010[Creaven, B. S., Duff, B., Egan, D. A., Kavanagh, K., Rosair, G., Thangella, V. R. & Walsh, M. (2010). Inorg. Chim. Acta, 363, 4048-4058.]; Haribabu, Jeyalakshmi et al., 2015[Haribabu, J., Jeyalakshmi, K., Arun, Y., Bhuvanesh, N. S. P., Perumal, P. T. & Karvembu, R. (2015). RSC Adv. 5, 46031-46049.], 2016[Haribabu, J., Jeyalakshmi, K., Arun, Y., Bhuvanesh, N. S. P., Perumal, P. T. & Karvembu, R. (2016). J. Biol. Inorg. Chem. doi: 10.1007/s00775-016-1424-1.]), anti-bacterial (Sondhi et al., 2006[Sondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758-3765.]), anti-fungal (Jarrahpour et al., 2007[Jarrahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720-1730.]), anti-convulsant (Bhat & Al-Omar, 2011[Bhat, M. A. & Al-Omar, M. A. (2011). Acta Pol. Pharm. 68, 375-380.]). Schiff bases have gained special attention in pharmacophore research and in the development of several bioactive lead mol­ecules. They are widely used as catalysts, corrosion inhibitors and inter­mediates in organic synthesis, and also play a potential role in the development of coordination chemistry (Muralisankar et al., 2016[Muralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82-95.]). As part of our studies in this area, we have synthesized the title Schiff base compounds, 1·EtOH and 2, and determined their crystal structures.

2. Structural commentary

The mol­ecular structures ((Figs. 1[link] and 2[link]) of both 1 and 2 are non-planar, as evidenced by the torsion angles N3—C10—C11—C12 [42.5 (3)°] in 1 and C1—C2—C10—N1 [−152.0 (2)°] in 2. The mean plane of the central chain C9/N2/N3/C10/O1 in 1 makes dihedral angles of 6.91 (12) and 42.71 (13)°, respectively, with the C1–C8/N1 ring system and the pyridine C11–C15/N4 ring. In mol­ecule 2, the dihedral angle between the C1–C9/O1 ring system and the mean plane of the C10/N1/N2/C12/N3/C13 chain is 30.36 (9)°.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound 1·EtOH, with the atom labelling. Displacement ellipsoids of non-H atoms are drawn at 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound 2, with the atom labelling. Displacement ellipsoids of non-H atoms are drawn at 30% probability level.

3. Supra­molecular features

The crystal packing of 1·EtOH features O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds (Table 1[link]), which link the mol­ecules into a tape structure running along the b-axis direction (Fig. 3[link]). The tapes are weakly linked via a C—H⋯N inter­action (Table 1[link]). In the N—H⋯O and N—H⋯N hydrogen bonds, atoms N1 and N3 act as donors to atoms O1 and N4, respectively, generating C(9) and C(7) chain motifs. The C—H⋯N inter­action generates a C(8) chain. Atom O1S of the ethanol mol­ecule acts as a donor in forming the O—H⋯O hydrogen bond with atom O1, which acts as a double acceptor.

Table 1
Hydrogen-bond geometry (Å, °) for 1·EtOH[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.05 2.871 (3) 156
N3—H3⋯N4ii 0.88 2.14 2.979 (3) 159
C5—H5⋯N2iii 0.95 2.62 3.236 (3) 123
O1S—H1S⋯O1 0.84 1.90 2.742 (3) 177
Symmetry codes: (i) x, y-1, z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
A packing diagram of compound 1·EtOH, viewed along the a axis, showing the O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯N inter­actions (dashed lines). For clarity, H atoms not involved in these inter­actions have been omitted.

In 2, the crystal packing features N—H⋯O, C—H⋯O and C—H⋯S inter­actions (Table 2[link]). The mol­ecules are linked via N—H⋯O and C—H⋯O hydrogen bonds, forming a helical chain along the b-axis direction (Fig. 4[link]). The chains are further linked via C—H⋯S inter­actions, forming a layer expanding parallel to (102). Atoms N2 and C11 act as donors to the double acceptor O2, generating C(7) and C(6) chains, respectively. As a result of these two hydrogen bonds, an R21(7) ring motif is generated. In the C—H⋯S inter­actions, atoms C7 and C11 act as donors to the double acceptor S1, generating C(11) and C(7) chains, respectively.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.88 2.39 3.269 (3) 175
C11—H11A⋯O2i 0.98 2.47 3.109 (3) 123
C7—H7⋯S1ii 0.95 2.85 3.711 (3) 151
C11—H11B⋯S1iii 0.98 2.87 3.728 (3) 146
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
A crystal packing view of 2 along the a axis, showing the inter­molecular hydrogen-bonded network formed by N—H⋯O, C—H⋯O and C—H⋯S inter­actions (dashed lines). For clarity, H atoms not involved in these inter­actions have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the substructures 1 and 2 revealed several related Schiff base derivatives, including those with refcodes ADEKAW, ACIPIN, ADEZAL02 and APAQEP reported by Qiu et al. (2006[Qiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685-o2686.]), Lobana et al. (2012[Lobana, T. S., Sharma, R., Hundal, G., Castineiras, A. & Butcher, R. J. (2012). Polyhedron, 47, 134-142.]), Ilies et al. (2013[Ilies, D.-C., Pahontu, E., Shova, S., Gulea, A. & Rosu, T. (2013). Polyhedron, 51, 307-315.]) and Chainok et al. (2016[Chainok, K., Makmuang, S. & Kielar, F. (2016). Acta Cryst. E72, 980-983.]), respectively.

5. Synthesis and crystallization

Compound 1 was synthesized by condensing equimolar amounts of 1H-indole-3-carbaldehyde (145 mg, 1 mmol) with nicotinic acid hydrazide (137 mg, 1 mmol) in ethanol. The reaction mixture was then refluxed on a water bath for 5 h and poured into crushed ice. The corresponding solid Schiff base that formed was filtered, washed several times with distilled water and dried under vacuum. The compound was recrystallized from an ethanol–chloro­form (1:3) solvent mixture, yielding the ethanol solvate compound, 1·EtOH. Similarly, compound 2 was synthesized from equimolar amounts of 3-acetyl-2H-chromen-2-one (188 mg, 1 mmol) with N-methyl­hydrazine­carbo­thio­amide (105 mg, 1 mmol) in ethanol. Compound 2 was also recrystallized from an ethanol–chloro­form (1:3) solvent mixture.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were refined as riding with N—H = 0.88, C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5Ueq(parent atom). For 1·EtOH, the methyl­ene H atoms of the ethanol solvent mol­ecule were refined independently under strong bond-length and angle restraints using DFIX to avoid a large residual electron-density peak near the methyl­ene C atom caused by the usual riding treatment of the H atoms. In 2, TWINABS was employed to correct the data for absorption effects, as well as to separate hkl files for the domains with major and minor components; the twin ratio was observed to be 91:9. In the refinement, only the data of the major domain were used.

Table 3
Experimental details

  1·EtOH 2
Crystal data
Chemical formula C15H12N4O·C2H6O C13H13N3O2S
Mr 310.35 275.32
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21/c
Temperature (K) 110 100
a, b, c (Å) 9.4692 (18), 9.9821 (19), 16.682 (3) 9.289 (4), 9.616 (4), 14.474 (6)
α, β, γ (°) 90, 90, 90 90, 90.825 (4), 90
V3) 1576.9 (5) 1292.8 (9)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.25
Crystal size (mm) 0.50 × 0.37 × 0.13 0.49 × 0.46 × 0.31
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Bruker, 2012[Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.618, 0.681 0.534, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39878, 3616, 3527 5480, 2902, 2285
Rint 0.054 0.044
(sin θ/λ)max−1) 0.651 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 0.98 0.048, 0.116, 1.10
No. of reflections 3616 2902
No. of parameters 216 174
No. of restraints 3 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.50, −0.36 0.30, −0.35
Absolute structure Flack x determined using 1491 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.2 (3)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 and SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 and SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013). Program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008) for 1.EtOH; SHELXS2013 (Sheldrick, 2008) for (2). Program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015) for 1.EtOH; SHELXL2013 (Sheldrick, 2008) for (2). For both compounds, molecular graphics: PLATON (Spek, 2015). Software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015) and PLATON (Spek, 2015) for 1.EtOH; SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2015) for (2).

(1.EtOH) (E)-N'-[(1H-Indol-3-yl)methylidene]isonicotinohydrazide ethanol monosolvate top
Crystal data top
C15H12N4O·C2H6ODx = 1.307 Mg m3
Mr = 310.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9846 reflections
a = 9.4692 (18) Åθ = 2.4–27.5°
b = 9.9821 (19) ŵ = 0.09 mm1
c = 16.682 (3) ÅT = 110 K
V = 1576.9 (5) Å3Block, colorless
Z = 40.50 × 0.37 × 0.13 mm
F(000) = 656
Data collection top
Bruker APEXII CCD
diffractometer
3527 reflections with I > 2σ(I)
φ and ω scansRint = 0.054
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 27.6°, θmin = 2.4°
Tmin = 0.618, Tmax = 0.681h = 1212
39878 measured reflectionsk = 1212
3616 independent reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.077P)2 + 0.9574P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max = 0.004
S = 0.98Δρmax = 1.50 e Å3
3616 reflectionsΔρmin = 0.36 e Å3
216 parametersAbsolute structure: Flack x determined using 1491 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.2 (3)
Special details top

Experimental. SADABS-2014/3 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.1205 before and 0.0824 after correction. The Ratio of minimum to maximum transmission is 0.9082. The λ/2 correction factor is not present.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso; at 1.2 times of: all C(H) groups, all N(H) groups and at 1.5 times of: C2S(H2SA, H2SB, H2SC) and O(H) groups 2. a. Aromatic/amide H refined with riding coordinates: N1(H1), N3(H3), C3(H3A), C4(H4), C5(H5), C6(H6), C7(H7), C9(H9), C12(H12), C13(H13), C14(H14), C15(H15) b. Idealised Me refined as rotating group: C11(H11A, H11B, H11C) 3. Strong restraints with DFIX were employed for methylene hydrogen atoms of the ethanol solvent molecule.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41425 (19)0.67417 (16)0.63518 (11)0.0184 (4)
N10.4971 (2)0.05011 (19)0.64904 (12)0.0157 (4)
H10.4928570.1376980.6545080.019*
N20.3980 (2)0.40446 (18)0.66721 (11)0.0140 (4)
N30.2999 (2)0.49844 (19)0.69437 (12)0.0137 (4)
H30.2286940.4729470.7246350.016*
N40.0322 (2)0.8812 (2)0.74337 (13)0.0195 (4)
C10.5943 (2)0.0185 (2)0.60295 (13)0.0143 (4)
C20.5644 (2)0.1570 (2)0.60882 (13)0.0135 (4)
C30.6449 (3)0.2483 (2)0.56436 (14)0.0166 (5)
H3A0.6252280.3415610.5661380.020*
C40.7543 (3)0.1987 (3)0.51768 (15)0.0201 (5)
H40.8096730.2592180.4869640.024*
C50.7852 (3)0.0605 (3)0.51472 (15)0.0204 (5)
H50.8627920.0302500.4834800.024*
C60.7048 (3)0.0316 (2)0.55637 (14)0.0185 (5)
H60.7238610.1249590.5534560.022*
C70.4091 (2)0.0393 (2)0.68452 (14)0.0156 (4)
H70.3334520.0164910.7193680.019*
C80.4453 (2)0.1688 (2)0.66264 (13)0.0140 (4)
C90.3669 (2)0.2839 (2)0.68918 (13)0.0142 (4)
H90.2891650.2707470.7242870.017*
C100.3146 (2)0.6275 (2)0.67420 (13)0.0133 (4)
C110.1947 (2)0.7155 (2)0.70049 (14)0.0139 (4)
C120.1325 (2)0.7050 (2)0.77589 (14)0.0156 (4)
H120.1655900.6413160.8137860.019*
C130.0204 (2)0.7902 (2)0.79444 (14)0.0185 (5)
H130.0210800.7833770.8461430.022*
C140.0301 (3)0.8902 (2)0.67103 (15)0.0196 (5)
H140.0057250.9541490.6341040.023*
C150.1435 (2)0.8117 (2)0.64711 (15)0.0168 (5)
H150.1852330.8231220.5957710.020*
O1S0.6541 (2)0.6025 (2)0.55370 (12)0.0279 (4)
H1S0.5822930.6236230.5803870.042*
C1S0.7704 (3)0.5902 (2)0.60520 (14)0.0246 (5)
H1SA0.757 (3)0.4957 (4)0.6166 (9)0.037*
H1SB0.776 (4)0.6301 (9)0.6581 (2)0.037*
C2S0.9016 (3)0.5715 (3)0.5560 (2)0.0314 (6)
H2SA0.8896300.4941860.5204870.047*
H2SB0.9822420.5561240.5916600.047*
H2SC0.9185110.6520490.5238410.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0179 (8)0.0109 (7)0.0262 (8)0.0002 (6)0.0061 (7)0.0001 (6)
N10.0189 (9)0.0099 (8)0.0183 (9)0.0004 (7)0.0013 (7)0.0009 (7)
N20.0137 (8)0.0113 (8)0.0169 (9)0.0022 (7)0.0002 (7)0.0012 (7)
N30.0120 (8)0.0116 (8)0.0177 (9)0.0004 (7)0.0025 (7)0.0003 (7)
N40.0150 (9)0.0153 (9)0.0282 (10)0.0019 (8)0.0009 (8)0.0020 (8)
C10.0156 (10)0.0125 (10)0.0147 (9)0.0009 (8)0.0034 (8)0.0008 (8)
C20.0138 (10)0.0122 (10)0.0143 (9)0.0011 (7)0.0018 (8)0.0001 (8)
C30.0182 (11)0.0137 (10)0.0178 (10)0.0015 (8)0.0003 (9)0.0003 (8)
C40.0207 (11)0.0219 (12)0.0177 (10)0.0021 (10)0.0046 (9)0.0005 (9)
C50.0181 (11)0.0250 (13)0.0180 (10)0.0025 (9)0.0018 (9)0.0022 (9)
C60.0213 (11)0.0158 (10)0.0184 (11)0.0043 (9)0.0012 (9)0.0016 (9)
C70.0168 (10)0.0130 (10)0.0171 (10)0.0004 (8)0.0004 (8)0.0005 (8)
C80.0139 (10)0.0129 (10)0.0153 (9)0.0004 (8)0.0011 (8)0.0005 (8)
C90.0133 (9)0.0135 (10)0.0157 (10)0.0000 (8)0.0002 (8)0.0003 (8)
C100.0138 (10)0.0118 (9)0.0143 (10)0.0014 (8)0.0011 (8)0.0020 (8)
C110.0126 (9)0.0110 (9)0.0181 (10)0.0012 (8)0.0006 (8)0.0029 (8)
C120.0151 (10)0.0134 (10)0.0183 (10)0.0001 (8)0.0004 (8)0.0007 (8)
C130.0165 (10)0.0186 (10)0.0204 (11)0.0007 (9)0.0032 (9)0.0021 (9)
C140.0180 (10)0.0144 (10)0.0263 (11)0.0018 (9)0.0003 (9)0.0028 (9)
C150.0162 (10)0.0132 (10)0.0212 (11)0.0007 (8)0.0006 (9)0.0011 (8)
O1S0.0224 (9)0.0324 (10)0.0288 (10)0.0047 (8)0.0065 (7)0.0004 (8)
C1S0.0269 (13)0.0223 (12)0.0246 (12)0.0020 (10)0.0061 (10)0.0072 (10)
C2S0.0208 (12)0.0312 (14)0.0423 (16)0.0029 (11)0.0077 (12)0.0042 (12)
Geometric parameters (Å, º) top
O1—C101.238 (3)C7—C81.386 (3)
N1—C71.357 (3)C7—H70.9500
N1—C11.381 (3)C8—C91.437 (3)
N1—H10.8800C9—H90.9500
N2—C91.292 (3)C10—C111.501 (3)
N2—N31.396 (3)C11—C121.393 (3)
N3—C101.339 (3)C11—C151.396 (3)
N3—H30.8800C12—C131.395 (3)
N4—C131.341 (3)C12—H120.9500
N4—C141.346 (3)C13—H130.9500
C1—C61.397 (3)C14—C151.388 (3)
C1—C21.414 (3)C14—H140.9500
C2—C31.401 (3)C15—H150.9500
C2—C81.446 (3)O1S—C1S1.402 (3)
C3—C41.387 (3)O1S—H1S0.8400
C3—H3A0.9500C1S—C2S1.500 (4)
C4—C51.411 (4)C1S—H1SA0.9700 (2)
C4—H40.9500C1S—H1SB0.9700 (2)
C5—C61.381 (3)C2S—H2SA0.9800
C5—H50.9500C2S—H2SB0.9800
C6—H60.9500C2S—H2SC0.9800
C7—N1—C1109.00 (18)N2—C9—H9118.7
C7—N1—H1125.5C8—C9—H9118.7
C1—N1—H1125.5O1—C10—N3125.0 (2)
C9—N2—N3112.49 (18)O1—C10—C11120.7 (2)
C10—N3—N2119.74 (19)N3—C10—C11114.30 (19)
C10—N3—H3120.1C12—C11—C15118.7 (2)
N2—N3—H3120.1C12—C11—C10122.7 (2)
C13—N4—C14116.9 (2)C15—C11—C10118.6 (2)
N1—C1—C6129.1 (2)C11—C12—C13118.5 (2)
N1—C1—C2108.2 (2)C11—C12—H12120.8
C6—C1—C2122.6 (2)C13—C12—H12120.8
C3—C2—C1119.3 (2)N4—C13—C12123.6 (2)
C3—C2—C8134.4 (2)N4—C13—H13118.2
C1—C2—C8106.20 (19)C12—C13—H13118.2
C4—C3—C2118.1 (2)N4—C14—C15124.0 (2)
C4—C3—H3A120.9N4—C14—H14118.0
C2—C3—H3A120.9C15—C14—H14118.0
C3—C4—C5121.6 (2)C14—C15—C11118.3 (2)
C3—C4—H4119.2C14—C15—H15120.9
C5—C4—H4119.2C11—C15—H15120.9
C6—C5—C4121.3 (2)C1S—O1S—H1S109.5
C6—C5—H5119.4O1S—C1S—C2S109.0 (2)
C4—C5—H5119.4O1S—C1S—H1SA96.0 (14)
C5—C6—C1117.0 (2)C2S—C1S—H1SA95.2 (13)
C5—C6—H6121.5O1S—C1S—H1SB124.6 (19)
C1—C6—H6121.5C2S—C1S—H1SB120 (2)
N1—C7—C8110.3 (2)H1SA—C1S—H1SB103.2 (9)
N1—C7—H7124.9C1S—C2S—H2SA109.5
C8—C7—H7124.9C1S—C2S—H2SB109.5
C7—C8—C9122.4 (2)H2SA—C2S—H2SB109.5
C7—C8—C2106.3 (2)C1S—C2S—H2SC109.5
C9—C8—C2131.2 (2)H2SA—C2S—H2SC109.5
N2—C9—C8122.6 (2)H2SB—C2S—H2SC109.5
C9—N2—N3—C10177.7 (2)C3—C2—C8—C90.1 (4)
C7—N1—C1—C6179.6 (2)C1—C2—C8—C9178.0 (2)
C7—N1—C1—C21.0 (3)N3—N2—C9—C8174.45 (19)
N1—C1—C2—C3177.2 (2)C7—C8—C9—N2178.1 (2)
C6—C1—C2—C32.2 (3)C2—C8—C9—N21.6 (4)
N1—C1—C2—C81.3 (2)N2—N3—C10—O13.5 (3)
C6—C1—C2—C8179.3 (2)N2—N3—C10—C11174.32 (18)
C1—C2—C3—C41.8 (3)O1—C10—C11—C12139.5 (2)
C8—C2—C3—C4179.8 (2)N3—C10—C11—C1242.5 (3)
C2—C3—C4—C50.3 (4)O1—C10—C11—C1540.6 (3)
C3—C4—C5—C62.0 (4)N3—C10—C11—C15137.4 (2)
C4—C5—C6—C11.6 (4)C15—C11—C12—C130.7 (3)
N1—C1—C6—C5178.8 (2)C10—C11—C12—C13179.2 (2)
C2—C1—C6—C50.5 (3)C14—N4—C13—C121.1 (3)
C1—N1—C7—C80.2 (3)C11—C12—C13—N40.7 (4)
N1—C7—C8—C9177.8 (2)C13—N4—C14—C150.0 (4)
N1—C7—C8—C20.6 (3)N4—C14—C15—C111.4 (4)
C3—C2—C8—C7177.1 (2)C12—C11—C15—C141.7 (3)
C1—C2—C8—C71.1 (2)C10—C11—C15—C14178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.052.871 (3)156
N3—H3···N4ii0.882.142.979 (3)159
C5—H5···N2iii0.952.623.236 (3)123
O1S—H1S···O10.841.902.742 (3)177
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1.
(2) (E)-N'-Methyl-2-[1-(2-oxo-2H-chromen-3-yl)ethylidene]hydrazinecarbothioamide top
Crystal data top
C13H13N3O2SF(000) = 576
Mr = 275.32Dx = 1.415 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.289 (4) ÅCell parameters from 4293 reflections
b = 9.616 (4) Åθ = 2.2–27.3°
c = 14.474 (6) ŵ = 0.25 mm1
β = 90.825 (4)°T = 100 K
V = 1292.8 (9) Å3Block, yellow
Z = 40.49 × 0.46 × 0.31 mm
Data collection top
Bruker APEXII CCD
diffractometer
2285 reflections with I > 2σ(I)
φ and ω scansRint = 0.044
Absorption correction: multi-scan
(TWINABS; Bruker, 2012)
θmax = 27.6°, θmin = 2.2°
Tmin = 0.534, Tmax = 0.746h = 1212
5480 measured reflectionsk = 1212
2902 independent reflectionsl = 018
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.711P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2902 reflectionsΔρmax = 0.30 e Å3
174 parametersΔρmin = 0.35 e Å3
Special details top

Experimental. For component 1: wR2(int) was 0.1337 before and 0.0605 after correction. The ratio of minimum to maximum transmission is 0.72. The λ/2 correction factor is not present

Final HKLF 4 output contains 20988 reflections, Rint = 0.0871 (9738 with I > 3sig(I), Rint = 0.0747)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The absorption correction program TWINABS2 was employed to correct the data for absorption effects, as well as to separate hkl files for the domains with major component, which was used for further analysis.

1. Fixed Uiso; at 1.2 times of: All C(H) groups, all N(H) groups at 1.5 times of: all C(H, H, H) groups 2. a. Aromatic/amide H refined with riding coordinates: N2(H2), N3(H3), C3(H3A), C6(H6), C7(H7), C8(H8), C9(H9) b. Idealised Me refined as rotating group: C11(H11A, H11B, H11C), C13(H13A, H13B, H13C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.80937 (6)1.04558 (5)0.39682 (4)0.02114 (16)
O10.21617 (15)0.36330 (14)0.44249 (10)0.0215 (3)
O20.37162 (18)0.38370 (16)0.33164 (11)0.0314 (4)
N10.52878 (17)0.75100 (17)0.43518 (11)0.0160 (4)
N20.61381 (18)0.84670 (17)0.39257 (11)0.0173 (4)
H20.61710.85100.33190.021*
N30.67181 (19)0.92800 (18)0.53607 (11)0.0197 (4)
H30.60070.87550.55540.024*
C10.3192 (2)0.4382 (2)0.39822 (14)0.0200 (4)
C20.3575 (2)0.5745 (2)0.43650 (13)0.0158 (4)
C30.3017 (2)0.6138 (2)0.51797 (13)0.0164 (4)
H3A0.32960.70050.54410.020*
C40.2019 (2)0.5287 (2)0.56577 (13)0.0182 (4)
C50.1581 (2)0.4043 (2)0.52496 (14)0.0193 (4)
C60.1375 (2)0.5677 (2)0.64904 (14)0.0256 (5)
H60.16410.65280.67800.031*
C70.0363 (2)0.4834 (3)0.68876 (15)0.0311 (6)
H70.00710.50990.74520.037*
C80.0026 (2)0.3591 (3)0.64601 (16)0.0310 (6)
H80.07200.30100.67430.037*
C90.0567 (2)0.3179 (2)0.56388 (15)0.0256 (5)
H90.02890.23320.53490.031*
C100.4546 (2)0.6670 (2)0.38477 (13)0.0164 (4)
C110.4552 (3)0.6675 (3)0.28152 (14)0.0309 (6)
H11A0.44310.76300.25900.046*
H11B0.37600.60970.25790.046*
H11C0.54700.63020.25990.046*
C120.6937 (2)0.9357 (2)0.44612 (13)0.0159 (4)
C130.7581 (2)1.0010 (2)0.60437 (14)0.0273 (5)
H13A0.86030.98250.59380.041*
H13B0.73260.96890.66630.041*
H13C0.73991.10110.59940.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0185 (3)0.0218 (3)0.0231 (3)0.0043 (2)0.0011 (2)0.0012 (2)
O10.0192 (8)0.0158 (7)0.0295 (8)0.0012 (6)0.0026 (6)0.0015 (6)
O20.0320 (9)0.0280 (9)0.0343 (9)0.0001 (7)0.0055 (7)0.0140 (7)
N10.0141 (8)0.0183 (9)0.0155 (8)0.0000 (7)0.0004 (6)0.0013 (6)
N20.0162 (8)0.0225 (9)0.0130 (8)0.0038 (7)0.0018 (6)0.0010 (7)
N30.0206 (9)0.0219 (9)0.0164 (9)0.0043 (7)0.0021 (7)0.0015 (7)
C10.0168 (10)0.0206 (11)0.0226 (11)0.0015 (9)0.0033 (8)0.0010 (9)
C20.0133 (9)0.0178 (10)0.0161 (10)0.0009 (8)0.0036 (7)0.0009 (8)
C30.0138 (10)0.0181 (10)0.0173 (10)0.0009 (8)0.0036 (7)0.0001 (8)
C40.0138 (10)0.0235 (11)0.0171 (10)0.0018 (8)0.0053 (7)0.0054 (8)
C50.0140 (10)0.0200 (10)0.0237 (11)0.0045 (8)0.0051 (8)0.0066 (8)
C60.0212 (11)0.0361 (13)0.0195 (11)0.0010 (10)0.0027 (8)0.0017 (9)
C70.0218 (12)0.0522 (16)0.0193 (11)0.0009 (11)0.0017 (9)0.0119 (10)
C80.0171 (11)0.0420 (14)0.0339 (13)0.0039 (10)0.0045 (9)0.0221 (11)
C90.0172 (11)0.0237 (11)0.0356 (13)0.0026 (9)0.0070 (9)0.0114 (9)
C100.0149 (10)0.0193 (10)0.0151 (10)0.0015 (8)0.0009 (7)0.0019 (8)
C110.0347 (14)0.0419 (14)0.0162 (11)0.0165 (11)0.0014 (9)0.0042 (10)
C120.0131 (9)0.0162 (10)0.0184 (10)0.0035 (8)0.0027 (7)0.0008 (8)
C130.0269 (12)0.0347 (13)0.0202 (11)0.0033 (11)0.0069 (9)0.0041 (9)
Geometric parameters (Å, º) top
S1—C121.674 (2)C4—C61.404 (3)
O1—C11.365 (2)C5—C91.382 (3)
O1—C51.375 (3)C6—C71.374 (3)
O2—C11.206 (2)C6—H60.9500
N1—C101.282 (3)C7—C81.392 (4)
N1—N21.366 (2)C7—H70.9500
N2—C121.367 (3)C8—C91.375 (3)
N2—H20.8800C8—H80.9500
N3—C121.323 (3)C9—H90.9500
N3—C131.446 (3)C10—C111.494 (3)
N3—H30.8800C11—H11A0.9800
C1—C21.464 (3)C11—H11B0.9800
C2—C31.349 (3)C11—H11C0.9800
C2—C101.479 (3)C13—H13A0.9800
C3—C41.423 (3)C13—H13B0.9800
C3—H3A0.9500C13—H13C0.9800
C4—C51.392 (3)
C1—O1—C5122.86 (16)C6—C7—H7120.1
C10—N1—N2118.48 (16)C8—C7—H7120.1
N1—N2—C12118.61 (16)C9—C8—C7121.8 (2)
N1—N2—H2120.7C9—C8—H8119.1
C12—N2—H2120.7C7—C8—H8119.1
C12—N3—C13123.65 (18)C8—C9—C5117.6 (2)
C12—N3—H3118.2C8—C9—H9121.2
C13—N3—H3118.2C5—C9—H9121.2
O2—C1—O1116.07 (18)N1—C10—C2114.68 (17)
O2—C1—C2126.37 (19)N1—C10—C11123.86 (18)
O1—C1—C2117.55 (17)C2—C10—C11121.29 (17)
C3—C2—C1119.16 (18)C10—C11—H11A109.5
C3—C2—C10121.28 (18)C10—C11—H11B109.5
C1—C2—C10119.56 (17)H11A—C11—H11B109.5
C2—C3—C4121.67 (18)C10—C11—H11C109.5
C2—C3—H3A119.2H11A—C11—H11C109.5
C4—C3—H3A119.2H11B—C11—H11C109.5
C5—C4—C6117.92 (19)N3—C12—N2115.66 (17)
C5—C4—C3118.43 (18)N3—C12—S1124.32 (15)
C6—C4—C3123.51 (19)N2—C12—S1120.02 (15)
O1—C5—C9117.38 (19)N3—C13—H13A109.5
O1—C5—C4119.94 (18)N3—C13—H13B109.5
C9—C5—C4122.7 (2)H13A—C13—H13B109.5
C7—C6—C4120.3 (2)N3—C13—H13C109.5
C7—C6—H6119.9H13A—C13—H13C109.5
C4—C6—H6119.9H13B—C13—H13C109.5
C6—C7—C8119.7 (2)
C10—N1—N2—C12179.56 (18)C5—C4—C6—C71.0 (3)
C5—O1—C1—O2172.55 (18)C3—C4—C6—C7176.49 (19)
C5—O1—C1—C26.3 (3)C4—C6—C7—C80.1 (3)
O2—C1—C2—C3171.9 (2)C6—C7—C8—C90.7 (3)
O1—C1—C2—C36.9 (3)C7—C8—C9—C50.5 (3)
O2—C1—C2—C108.9 (3)O1—C5—C9—C8179.46 (18)
O1—C1—C2—C10172.34 (17)C4—C5—C9—C80.4 (3)
C1—C2—C3—C42.7 (3)N2—N1—C10—C2175.51 (16)
C10—C2—C3—C4176.51 (17)N2—N1—C10—C110.1 (3)
C2—C3—C4—C52.2 (3)C3—C2—C10—N128.8 (3)
C2—C3—C4—C6177.73 (19)C1—C2—C10—N1152.03 (18)
C1—O1—C5—C9178.67 (18)C3—C2—C10—C11146.7 (2)
C1—O1—C5—C41.5 (3)C1—C2—C10—C1132.4 (3)
C6—C4—C5—O1178.71 (18)C13—N3—C12—N2172.14 (19)
C3—C4—C5—O13.0 (3)C13—N3—C12—S18.2 (3)
C6—C4—C5—C91.1 (3)N1—N2—C12—N35.4 (3)
C3—C4—C5—C9176.87 (18)N1—N2—C12—S1174.97 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.882.393.269 (3)175
C11—H11A···O2i0.982.473.109 (3)123
C7—H7···S1ii0.952.853.711 (3)151
C11—H11B···S1iii0.982.873.728 (3)146
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

GD thanks the UGC–SAP and DST–FIST for funding to Centre of Advanced Study in Crystallography and Biophysics, University of Madras.

References

First citationAlam, M. S., Choi, J. & Lee, D. (2012). Bioorg. Med. Chem. 20, 4103–4108.  CrossRef CAS PubMed Google Scholar
First citationBhat, M. A. & Al-Omar, M. A. (2011). Acta Pol. Pharm. 68, 375–380.  CAS PubMed Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChainok, K., Makmuang, S. & Kielar, F. (2016). Acta Cryst. E72, 980–983.  CSD CrossRef IUCr Journals Google Scholar
First citationCreaven, B. S., Duff, B., Egan, D. A., Kavanagh, K., Rosair, G., Thangella, V. R. & Walsh, M. (2010). Inorg. Chim. Acta, 363, 4048–4058.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaribabu, J., Jeyalakshmi, K., Arun, Y., Bhuvanesh, N. S. P., Perumal, P. T. & Karvembu, R. (2015). RSC Adv. 5, 46031–46049.  CSD CrossRef CAS Google Scholar
First citationHaribabu, J., Jeyalakshmi, K., Arun, Y., Bhuvanesh, N. S. P., Perumal, P. T. & Karvembu, R. (2016). J. Biol. Inorg. Chem. doi: 10.1007/s00775-016-1424-1.  Google Scholar
First citationHaribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2015). J. Mol. Struct. 1094, 281–291.  CSD CrossRef CAS Google Scholar
First citationHaribabu, J., Subhashree, G. R., Saranya, S., Gomathi, K., Karvembu, R. & Gayathri, D. (2016). J. Mol. Struct. 1110, 185–195.  CSD CrossRef CAS Google Scholar
First citationIlies, D.-C., Pahontu, E., Shova, S., Gulea, A. & Rosu, T. (2013). Polyhedron, 51, 307–315.  CSD CrossRef CAS Google Scholar
First citationJarrahpour, A., Khalili, D., De Clercq, E., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLobana, T. S., Sharma, R., Hundal, G., Castineiras, A. & Butcher, R. J. (2012). Polyhedron, 47, 134–142.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuralisankar, M., Haribabu, J., Bhuvanesh, N. S. P., Karvembu, R. & Sreekanth, A. (2016). Inorg. Chim. Acta, 449, 82–95.  CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQiu, X.-Y., Fang, X.-N., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, o2685–o2686.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSondhi, S. M., Singh, N., Kumar, A., Lozach, O. & Meijer, L. (2006). Bioorg. Med. Chem. 14, 3758–3765.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds