research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of bis­­(μ-2-methyl­benzene­thiol­ato-κ2S:S)bis­­[meth­yl(2-methyl­benzene­thiol­ato-κS)indium(III)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, Mount Allison University, 63C York Street, Sackville, NB, E4L 1G8, Canada, and bDepartment of Chemistry, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
*Correspondence e-mail: gbriand@mta.ca

Edited by A. J. Lough, University of Toronto, Canada (Received 17 February 2017; accepted 3 March 2017; online 10 March 2017)

The dinuclear title compound, [In2(CH3)2(C7H7S)4] or [Me(2-MeC6H4S)In-μ-(2-MeC6H4S)2InMe(2-MeC6H4S)], was prepared from the 1:2 reaction of Me3In and 2-MeC6H4SH in toluene. Its crystal structure exhibits a four-membered In2S2 ring core via bridging (2-MeC6H4S) groups. The dimeric units are further associated into a one-dimensional polymeric structure extending parallel to the a axis via inter­molecular In⋯S contacts. The In atoms are then in distorted trigonal–bipyramidal CS4 bonding environments.

1. Chemical context

Methyl­indium di­thiol­ates [MeIn(S2R)] have been shown to be useful compounds for the ring-opening polymerization (ROP) of cyclic esters to produce biodegradable polymers (Allan et al., 2013[Allan, L. E. N., Briand, G. G., Decken, A., Marks, J. D., Shaver, M. P. & Wareham, R. G. (2013). J. Organomet. Chem. 736, 55-62.]; Briand et al., 2016[Briand, G. G., Cairns, S. A., Decken, A., Dickie, C. M., Kostelnik, T. I. & Shaver, M. P. (2016). J. Organomet. Chem. 806, 22-32.]). These compounds are prepared from the stoichiometric reaction of InMe3 with polydentate amino/oxo-di­thiols. However, the 1:2 reaction of triorganyl­indium (R3In) with simple mono­thiols (R′SH) often results in isolation of the diorganylindium thiol­ate R2In(SR′) (Hoffmann, 1988[Hoffmann, G. G. (1988). J. Organomet. Chem. 338, 305-317.]; Nomura et al., 1989[Nomura, R., Inazawa, S., Kanaya, K. & Matsuda, H. (1989). Polyhedron, 8, 763-767.]). The favourable formation of the organylindium di­thiol­ate RIn(SR′)2 was reported to be determined by the steric bulk of the thiol­ate ligand and the R-In group, and the acidity of the thiol reactant. The 1:2 reaction of nBu3In or iBu3In and PhSH afforded the di­thiol­ate RIn(SPh)2 (R = nBu, iBu) as solids, although the compounds were poorly soluble in organic solvents, precluding crystallization. All compounds in these studies were primarily characterized by NMR. The only structurally characterized example of such a compound is [(Me3Si)3C](PhS)In-μ-(PhS)2In[C(Me3Si)3](SPh), which is prepared from the redox reaction of the indium(I) compound [(Me3Si)3CIn]4 and the di­sulfide (SPh)2 (Peppe et al., 2009[Peppe, C., Molinos de Andrade, F. & Uhl, W. (2009). J. Organomet. Chem. 694, 1918-1921.]). The 1:2 reaction of Me3In and 2-MeC6H4SH in toluene affords [Me(2-MeC6H4S)In-μ-(2-MeC6H4S)2InMe(2-MeC6H4S)], (I)[link], in high yield. The modest steric bulk afforded by the 2-MeC6H4 group moderates inter­molecular bonding and increases solubility in organic solvents without preventing formation of the RIn(SR′)2 species. The observation of only one signal for the MeIn and 2-MeC6H4S groups in the 1H NMR study suggests that the compound dissociates into MeIn(2-MeC6H4S)2 monomers in tetrahydrofuran solution.

[Scheme 1]

2. Structural commentary

The asymmetric unit comprises the dinuclear compound, [Me(2-MeC6H4S)In-μ-(2-MeC6H4S)2InMe(2-MeC6H4S)], (I)[link] (Fig. 1[link]). The two unique indium atoms are each bonded to a methyl carbon atom, and one terminal and one bridging (2-MeC6H4S) group, generating a nearly square-planar four-membered In2S2 ring core [S2—In1—S3 = 88.28 (6), In1—S2—In2 = 91.86 (6), S2—In2—S3 = 87.02 (6), In1—S3—In2 = 92.58 (7)°]. The In atoms are in distorted trigonal–pyramidal CS3 bonding environments [C1—In1—S1 = 127.3 (2), C1—In1—S2 = 113.1 (3), S1—In1—S2 = 114.66 (7), C1—In1—S3 = 105.7 (2), S1—In1—S3 = 96.94 (6), S2—In1—S3 = 88.28 (6), C2—In2—S3 = 118.2 (3), C2—In2—S4 = 124.1 (3), S3—In2—S4 = 115.00 (7), C2—In2—S2 = 102.4 (2), S2—In2—S3 = 87.02 (6), S2—In2—S4 = 95.87 (6)°]. Bond lengths and angles are similar at each indium atom.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

3. Supra­molecular features

The dimeric structures are further associated into one-dimensional polymers extending parallel to the a axis via inter­molecular In⋯S contacts [In1⋯S4(x − 1, y, z) = 3.091 (2), In2⋯S1(x + 1, y, z) = 2.920 (2) Å] (sum of metallic/van der Waals radii = 3.52 Å; Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) (Fig. 2[link]). Such contacts are common for indium and other heavy main group metal chalcogenolates due to their large metal radii and potential for high coordination numbers (Briand et al., 2010[Briand, G. G., Decken, A. & Hamilton, N. (2010). Dalton Trans. 39, 3833-3841.], 2011[Briand, G. G., Decken, A., Hunter, N. M., Wright, J. A. & Zhou, Y. (2011). Eur. J. Inorg. Chem. pp. 5430-5436.], 2012[Briand, G. G., Decken, A., Hunter, N. M., Lee, G. M., Melanson, J. A. & Owen, E. M. (2012). Polyhedron, 31, 796-800.]; Appleton et al., 2011[Appleton, S. E., Briand, G. G., Decken, A. & Smith, A. S. (2011). Acta Cryst. E67, m714.]). This leads to the formation of insoluble materials for iBuIn(SPh)2 (Nomura et al., 1989[Nomura, R., Inazawa, S., Kanaya, K. & Matsuda, H. (1989). Polyhedron, 8, 763-767.]). The steric bulk provided by the Me group of the (2-MeC6H4S) ligand is sufficient to moderate inter­molecular contacts and afford solubility in organic solvents (e.g. toluene and tetra­hydro­furan).

[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) −1 + x, y, z; (ii) 1 + x, y, z.]

4. Database survey

The dinuclear structure of (I)[link] is similar to that of [Me(MeO2CCH2CH2S)In-μ-(MeO2CCH2CH2S)2InMe(MeO2CCH2CH2S)] (Allan et al., 2013[Allan, L. E. N., Briand, G. G., Decken, A., Marks, J. D., Shaver, M. P. & Wareham, R. G. (2013). J. Organomet. Chem. 736, 55-62.]). However, the ester carbonyl oxygen atoms of the terminal MeO2CCH2CH2S groups occupy the coordination site trans to the axial bridging thiol­ate sulfur atom. This precludes inter­molecular In⋯S bonding and yields discrete dimeric units. The structure of (I)[link] is also similar to that of the structure of dimeric [(Me3Si)3C](PhS)In-μ-(PhS)2In[C(Me3Si)3](SPh) (Peppe et al., 2009[Peppe, C., Molinos de Andrade, F. & Uhl, W. (2009). J. Organomet. Chem. 694, 1918-1921.]). However, the steric bulk of the (Me3Si)3C precludes further inter­molecular In⋯S bonding and the indium atoms are restricted to a four-coordinate distorted tetra­hedral bonding environment. Other reported methyl­indium di­thiol­ates employ polydentate di­thiol­ate ligands, some of which possess dimeric and trimeric structures (Briand et al., 2016[Briand, G. G., Cairns, S. A., Decken, A., Dickie, C. M., Kostelnik, T. I. & Shaver, M. P. (2016). J. Organomet. Chem. 806, 22-32.]).

5. Synthesis and crystallization

2-Methyl­benzene­thiol (0.300 g, 2.42 mmol) in toluene (2 ml) was added dropwise to a stirred solution of InMe3 (0.193 g, 1.21 mmol) in toluene (5 ml). The solution was stirred for 18 h and concentrated in vacuo to 4 ml. After sitting at 296 K for 1 d, the solution was filtered to yield colourless, needle-like crystals of (I)[link]. Yield: 0.317 g (0.421 mmol, 70%). Analysis calculated for C30H34S4In2: C, 47.88; H, 4.55; N, 0.00. Found: C, 46.88; H, 4.55; N, <0.3. M.p 421–422 K.

FT—IR (cm−1): 672 s, 705 s, 741 s, 800 w, 846 w, 861 w, 939 w, 978 w, 1041 m, 1055 m, 1280 w, 1378 w, 1451 m, 1464 m, 1585 w, 2913 w, 3056 w. FT–Raman (cm−1): 121 vs, 158 s, 244 w, 322 m, 443 w, 508 s, 552 w, 675 w, 800 m, 1043 s, 1128 w, 1148 w, 1204 m, 1465 w, 1565 w, 1586 m, 2916 w, 3047 m. 1H NMR (200 MHz, thf-d8, p.p.m.): δ = 0.23 [s, 3H, MeIn], 2.60 [s, 6H, (S-2-MeC6H4)], 7.06–7.11 [m, 4H, (S-2-MeC6H4)] 7.23–7.28 [m, 2H, (S-2-MeC6H4)], 7.62–7.66 [m, 2H, (S-2-MeC6H4)]. 13C{1H} NMR (101 MHz, thf-d8, p.p.m.): δ = −5.1 (MeIn), 21.7 (S-2-MeC6H4), 124.1, 125.2, 129.4, 134.6, 138.4, 139.7 (S-2-MeC6H4)].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were included in calculated positions and refined using a riding model.

Table 1
Experimental details

Crystal data
Chemical formula [In2(CH3)2(C7H7S)4]
Mr 752.45
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 7.4441 (15), 14.625 (3), 14.074 (3)
β (°) 99.693 (3)
V3) 1510.4 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.82
Crystal size (mm) 0.45 × 0.08 × 0.03
 
Data collection
Diffractometer Bruker SMART1000/P4
Absorption correction Multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.495, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 10442, 5591, 4742
Rint 0.041
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.074, 1.04
No. of reflections 5591
No. of parameters 332
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −1.01
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2079 Friedel pairs
Absolute structure parameter 0.41 (3)
Computer programs: SMART (Bruker, 1999[Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Bis(µ-2-methylbenzenethiolato-κ2S:S)bis[methyl(2-methylbenzenethiolato-κS)indium(III)] top
Crystal data top
[In2(CH3)2(C7H7S)4]F(000) = 752
Mr = 752.45Dx = 1.655 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.4441 (15) ÅCell parameters from 5877 reflections
b = 14.625 (3) Åθ = 2.8–27.8°
c = 14.074 (3) ŵ = 1.82 mm1
β = 99.693 (3)°T = 173 K
V = 1510.4 (5) Å3Rod, colourless
Z = 20.45 × 0.08 × 0.03 mm
Data collection top
Bruker SMART1000/P4
diffractometer
5591 independent reflections
Radiation source: fine-focus sealed tube, K7604742 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 99
Tmin = 0.495, Tmax = 0.956k = 1819
10442 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0276P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5591 reflectionsΔρmax = 0.49 e Å3
332 parametersΔρmin = 1.01 e Å3
1 restraintAbsolute structure: Flack (1983), 2079 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.41 (3)
Special details top

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.60776 (7)0.80291 (3)0.26699 (4)0.02518 (14)
In21.05764 (7)0.69727 (3)0.23677 (4)0.02406 (14)
S10.4196 (2)0.70588 (16)0.35474 (14)0.0268 (4)
S20.7227 (3)0.72420 (11)0.12869 (14)0.0218 (4)
S30.9290 (3)0.76607 (13)0.37732 (15)0.0232 (4)
S41.2193 (2)0.80568 (17)0.14747 (13)0.0268 (4)
C10.5973 (11)0.9472 (6)0.2527 (7)0.036 (2)
H1A0.69580.97460.29880.054*
H1B0.47960.96940.26560.054*
H1C0.61150.96410.18700.054*
C21.0874 (11)0.5515 (5)0.2317 (7)0.034 (2)
H2A1.21040.53640.22060.051*
H2B0.99750.52650.17920.051*
H2C1.06780.52490.29310.051*
C30.4643 (10)0.7328 (5)0.4795 (6)0.0235 (17)
C40.4170 (10)0.6667 (5)0.5433 (6)0.0269 (18)
C50.4608 (11)0.6852 (6)0.6420 (6)0.0346 (19)
H50.43080.64130.68650.042*
C60.5449 (11)0.7639 (6)0.6763 (6)0.035 (2)
H60.57510.77360.74390.042*
C70.5863 (11)0.8296 (5)0.6137 (6)0.034 (2)
H70.64360.88500.63760.040*
C80.5435 (10)0.8145 (6)0.5147 (5)0.0297 (18)
H80.56870.86040.47110.036*
C90.3221 (13)0.5794 (6)0.5076 (6)0.041 (2)
H9A0.28480.54670.56180.061*
H9B0.40540.54100.47800.061*
H9C0.21430.59370.45970.061*
C100.6499 (9)0.6072 (5)0.1171 (5)0.0196 (16)
C110.6429 (10)0.5650 (5)0.0265 (6)0.0254 (17)
C120.6019 (10)0.4720 (5)0.0215 (6)0.0307 (19)
H120.59840.44140.03830.037*
C130.5667 (11)0.4229 (5)0.0989 (6)0.035 (2)
H130.53610.35990.09180.042*
C140.5755 (11)0.4651 (5)0.1872 (6)0.0305 (19)
H140.55400.43110.24170.037*
C150.6163 (11)0.5583 (5)0.1957 (6)0.0285 (18)
H150.62080.58810.25600.034*
C160.6849 (12)0.6168 (6)0.0591 (6)0.037 (2)
H16A0.81220.63720.04640.056*
H16B0.60450.67010.07080.056*
H16C0.66560.57700.11590.056*
C171.0334 (10)0.8758 (5)0.4071 (6)0.0281 (18)
C181.0799 (11)0.8983 (6)0.5038 (7)0.038 (2)
C191.1513 (12)0.9872 (7)0.5242 (8)0.050 (3)
H191.18261.00540.58970.060*
C201.1768 (12)1.0467 (7)0.4554 (9)0.058 (3)
H201.22591.10550.47270.070*
C211.1315 (12)1.0226 (6)0.3587 (8)0.049 (3)
H211.14981.06460.30970.059*
C221.0589 (11)0.9361 (5)0.3345 (7)0.037 (2)
H221.02720.91870.26880.044*
C231.0596 (12)0.8356 (7)0.5848 (6)0.045 (2)
H23A1.13870.78220.58310.068*
H23B0.93250.81540.57820.068*
H23C1.09410.86770.64620.068*
C241.1434 (10)0.7751 (5)0.0239 (6)0.0267 (18)
C251.0177 (10)0.8323 (5)0.0341 (5)0.0276 (18)
C260.9738 (11)0.8081 (7)0.1314 (6)0.042 (2)
H260.89010.84520.17300.050*
C271.0464 (13)0.7330 (6)0.1693 (6)0.045 (2)
H271.01440.71920.23600.054*
C281.1654 (12)0.6781 (6)0.1103 (7)0.044 (2)
H281.21440.62530.13590.053*
C291.2146 (10)0.6990 (6)0.0141 (6)0.0334 (17)
H291.29800.66080.02630.040*
C300.9353 (11)0.9151 (6)0.0057 (7)0.040 (2)
H30A1.03170.95930.02890.060*
H30B0.87450.89650.05930.060*
H30C0.84620.94320.04510.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.0262 (3)0.0223 (2)0.0294 (3)0.0009 (2)0.0116 (2)0.0015 (3)
In20.0220 (3)0.0244 (3)0.0273 (3)0.0018 (2)0.0085 (2)0.0032 (2)
S10.0209 (9)0.0376 (11)0.0221 (10)0.0070 (10)0.0047 (8)0.0036 (10)
S20.0205 (10)0.0232 (9)0.0225 (10)0.0030 (7)0.0057 (8)0.0025 (8)
S30.0218 (10)0.0283 (9)0.0203 (10)0.0009 (8)0.0062 (9)0.0015 (8)
S40.0204 (9)0.0356 (10)0.0244 (10)0.0058 (11)0.0039 (8)0.0023 (11)
C10.033 (5)0.031 (5)0.042 (5)0.004 (4)0.003 (4)0.006 (4)
C20.027 (5)0.021 (4)0.053 (6)0.006 (3)0.005 (4)0.004 (4)
C30.016 (4)0.026 (3)0.029 (4)0.007 (3)0.006 (3)0.000 (3)
C40.021 (4)0.033 (4)0.027 (4)0.005 (3)0.004 (3)0.002 (3)
C50.044 (5)0.033 (4)0.027 (4)0.005 (4)0.008 (4)0.005 (4)
C60.035 (5)0.044 (4)0.025 (5)0.001 (4)0.005 (4)0.002 (4)
C70.033 (5)0.032 (4)0.037 (5)0.008 (4)0.008 (4)0.014 (4)
C80.027 (4)0.032 (4)0.032 (4)0.001 (4)0.010 (3)0.002 (4)
C90.059 (6)0.039 (5)0.022 (5)0.011 (4)0.004 (4)0.002 (4)
C100.010 (4)0.024 (4)0.025 (4)0.002 (3)0.005 (3)0.002 (3)
C110.017 (4)0.031 (4)0.030 (4)0.006 (3)0.009 (3)0.003 (3)
C120.027 (4)0.029 (4)0.036 (5)0.003 (4)0.002 (4)0.012 (4)
C130.032 (5)0.021 (4)0.052 (6)0.009 (4)0.008 (4)0.000 (4)
C140.029 (5)0.026 (4)0.040 (5)0.000 (3)0.016 (4)0.001 (4)
C150.031 (5)0.030 (4)0.025 (4)0.004 (4)0.009 (4)0.001 (3)
C160.040 (5)0.041 (5)0.032 (5)0.001 (4)0.010 (4)0.000 (4)
C170.018 (4)0.029 (4)0.038 (5)0.002 (3)0.007 (4)0.008 (4)
C180.013 (4)0.046 (5)0.054 (6)0.008 (4)0.007 (4)0.022 (5)
C190.026 (5)0.066 (7)0.058 (7)0.005 (5)0.005 (5)0.037 (6)
C200.026 (5)0.054 (6)0.096 (10)0.011 (5)0.015 (6)0.036 (7)
C210.036 (5)0.035 (5)0.081 (8)0.008 (4)0.021 (5)0.012 (5)
C220.034 (5)0.029 (4)0.052 (6)0.007 (4)0.023 (4)0.009 (4)
C230.037 (5)0.071 (6)0.027 (5)0.012 (5)0.003 (4)0.007 (4)
C240.023 (4)0.035 (4)0.024 (4)0.007 (3)0.011 (3)0.003 (3)
C250.024 (4)0.033 (4)0.025 (4)0.010 (3)0.002 (3)0.005 (3)
C260.039 (5)0.049 (5)0.034 (5)0.013 (5)0.006 (4)0.015 (5)
C270.053 (6)0.061 (6)0.020 (5)0.028 (5)0.004 (4)0.002 (4)
C280.048 (6)0.044 (6)0.043 (6)0.011 (5)0.017 (5)0.017 (4)
C290.022 (4)0.042 (4)0.038 (5)0.003 (4)0.009 (3)0.000 (5)
C300.027 (5)0.035 (4)0.055 (6)0.004 (4)0.002 (4)0.015 (4)
Geometric parameters (Å, º) top
In1—C12.119 (9)C12—C131.366 (12)
In1—S12.466 (2)C12—H120.9500
In1—S22.531 (2)C13—C141.379 (11)
In1—S32.678 (2)C13—H130.9500
In1—S4i3.0910 (19)C14—C151.398 (10)
In2—C22.146 (8)C14—H140.9500
In2—S42.460 (2)C15—H150.9500
In2—S32.546 (2)C16—H16A0.9800
In2—S22.722 (2)C16—H16B0.9800
In2—S1ii2.9201 (19)C16—H16C0.9800
S1—C31.776 (8)C17—C221.386 (12)
S1—In2i2.9201 (19)C17—C181.386 (12)
S2—C101.794 (7)C18—C191.415 (12)
S3—C171.802 (8)C18—C231.491 (13)
S4—C241.792 (8)C19—C201.339 (15)
C1—H1A0.9800C19—H190.9500
C1—H1B0.9800C20—C211.391 (14)
C1—H1C0.9800C20—H200.9500
C2—H2A0.9800C21—C221.395 (11)
C2—H2B0.9800C21—H210.9500
C2—H2C0.9800C22—H220.9500
C3—C81.386 (10)C23—H23A0.9800
C3—C41.404 (10)C23—H23B0.9800
C4—C51.398 (11)C23—H23C0.9800
C4—C91.504 (11)C24—C291.379 (11)
C5—C61.361 (11)C24—C251.409 (10)
C5—H50.9500C25—C261.399 (11)
C6—C71.373 (11)C25—C301.508 (11)
C6—H60.9500C26—C271.371 (13)
C7—C81.393 (11)C26—H260.9500
C7—H70.9500C27—C281.368 (13)
C8—H80.9500C27—H270.9500
C9—H9A0.9800C28—C291.376 (11)
C9—H9B0.9800C28—H280.9500
C9—H9C0.9800C29—H290.9500
C10—C151.374 (10)C30—H30A0.9800
C10—C111.409 (10)C30—H30B0.9800
C11—C121.393 (10)C30—H30C0.9800
C11—C161.500 (11)
C1—In1—S1127.3 (2)C12—C11—C10116.6 (7)
C1—In1—S2113.1 (3)C12—C11—C16121.7 (8)
S1—In1—S2114.66 (7)C10—C11—C16121.6 (7)
C1—In1—S3105.7 (2)C13—C12—C11122.9 (8)
S1—In1—S396.94 (6)C13—C12—H12118.6
S2—In1—S388.28 (6)C11—C12—H12118.6
C1—In1—S4i85.4 (2)C12—C13—C14119.8 (7)
S1—In1—S4i73.86 (6)C12—C13—H13120.1
S2—In1—S4i89.64 (6)C14—C13—H13120.1
S3—In1—S4i168.67 (6)C13—C14—C15119.3 (8)
C2—In2—S4124.1 (3)C13—C14—H14120.4
C2—In2—S3118.2 (3)C15—C14—H14120.4
S4—In2—S3115.00 (7)C10—C15—C14120.4 (8)
C2—In2—S2102.4 (2)C10—C15—H15119.8
S4—In2—S295.87 (6)C14—C15—H15119.8
S3—In2—S287.02 (6)C11—C16—H16A109.5
C2—In2—S1ii88.3 (2)C11—C16—H16B109.5
S4—In2—S1ii77.21 (6)H16A—C16—H16B109.5
S3—In2—S1ii88.45 (6)C11—C16—H16C109.5
S2—In2—S1ii169.21 (6)H16A—C16—H16C109.5
C3—S1—In1109.9 (3)H16B—C16—H16C109.5
C3—S1—In2i125.0 (3)C22—C17—C18122.0 (8)
In1—S1—In2i106.71 (7)C22—C17—S3120.2 (6)
C10—S2—In1111.6 (2)C18—C17—S3117.8 (6)
C10—S2—In298.4 (2)C17—C18—C19116.1 (9)
In1—S2—In291.86 (6)C17—C18—C23124.3 (8)
C17—S3—In2109.2 (3)C19—C18—C23119.6 (8)
C17—S3—In1105.3 (3)C20—C19—C18123.0 (9)
In2—S3—In192.58 (7)C20—C19—H19118.5
C24—S4—In2103.5 (2)C18—C19—H19118.5
In1—C1—H1A109.5C19—C20—C21120.1 (9)
In1—C1—H1B109.5C19—C20—H20120.0
H1A—C1—H1B109.5C21—C20—H20120.0
In1—C1—H1C109.5C20—C21—C22119.2 (10)
H1A—C1—H1C109.5C20—C21—H21120.4
H1B—C1—H1C109.5C22—C21—H21120.4
In2—C2—H2A109.5C17—C22—C21119.5 (9)
In2—C2—H2B109.5C17—C22—H22120.2
H2A—C2—H2B109.5C21—C22—H22120.2
In2—C2—H2C109.5C18—C23—H23A109.5
H2A—C2—H2C109.5C18—C23—H23B109.5
H2B—C2—H2C109.5H23A—C23—H23B109.5
C8—C3—C4120.1 (7)C18—C23—H23C109.5
C8—C3—S1122.8 (6)H23A—C23—H23C109.5
C4—C3—S1117.0 (6)H23B—C23—H23C109.5
C5—C4—C3117.4 (7)C29—C24—C25121.0 (7)
C5—C4—C9120.9 (7)C29—C24—S4119.9 (6)
C3—C4—C9121.6 (7)C25—C24—S4119.0 (6)
C6—C5—C4122.2 (8)C26—C25—C24116.1 (8)
C6—C5—H5118.9C26—C25—C30121.7 (8)
C4—C5—H5118.9C24—C25—C30122.2 (7)
C5—C6—C7120.2 (8)C27—C26—C25122.8 (8)
C5—C6—H6119.9C27—C26—H26118.6
C7—C6—H6119.9C25—C26—H26118.6
C6—C7—C8119.5 (7)C28—C27—C26119.4 (8)
C6—C7—H7120.3C28—C27—H27120.3
C8—C7—H7120.3C26—C27—H27120.3
C3—C8—C7120.4 (7)C27—C28—C29120.3 (9)
C3—C8—H8119.8C27—C28—H28119.8
C7—C8—H8119.8C29—C28—H28119.8
C4—C9—H9A109.5C28—C29—C24120.3 (8)
C4—C9—H9B109.5C28—C29—H29119.8
H9A—C9—H9B109.5C24—C29—H29119.8
C4—C9—H9C109.5C25—C30—H30A109.5
H9A—C9—H9C109.5C25—C30—H30B109.5
H9B—C9—H9C109.5H30A—C30—H30B109.5
C15—C10—C11121.1 (7)C25—C30—H30C109.5
C15—C10—S2121.1 (6)H30A—C30—H30C109.5
C11—C10—S2117.7 (6)H30B—C30—H30C109.5
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Funding information

Funding for this research was provided by: Natural Sciences and Engineering Research Council of Canada; Canada Foundation for Innovation; New Brunswick Innovation Foundation; Mount Allison University.

References

First citationAllan, L. E. N., Briand, G. G., Decken, A., Marks, J. D., Shaver, M. P. & Wareham, R. G. (2013). J. Organomet. Chem. 736, 55–62.  Web of Science CSD CrossRef CAS Google Scholar
First citationAppleton, S. E., Briand, G. G., Decken, A. & Smith, A. S. (2011). Acta Cryst. E67, m714.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBriand, G. G., Cairns, S. A., Decken, A., Dickie, C. M., Kostelnik, T. I. & Shaver, M. P. (2016). J. Organomet. Chem. 806, 22–32.  Web of Science CSD CrossRef CAS Google Scholar
First citationBriand, G. G., Decken, A. & Hamilton, N. (2010). Dalton Trans. 39, 3833–3841.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBriand, G. G., Decken, A., Hunter, N. M., Lee, G. M., Melanson, J. A. & Owen, E. M. (2012). Polyhedron, 31, 796–800.  Web of Science CSD CrossRef CAS Google Scholar
First citationBriand, G. G., Decken, A., Hunter, N. M., Wright, J. A. & Zhou, Y. (2011). Eur. J. Inorg. Chem. pp. 5430–5436.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHoffmann, G. G. (1988). J. Organomet. Chem. 338, 305–317.  CrossRef CAS Web of Science Google Scholar
First citationNomura, R., Inazawa, S., Kanaya, K. & Matsuda, H. (1989). Polyhedron, 8, 763–767.  CrossRef CAS Web of Science Google Scholar
First citationPeppe, C., Molinos de Andrade, F. & Uhl, W. (2009). J. Organomet. Chem. 694, 1918–1921.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds