research communications
N-(2-benzoyl-5-ethynylphenyl)quinoline-2-carboxamide
ofaGrupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, A.A. 5997 Bogotá, Colombia, and bInstitute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
*Correspondence e-mail: cochoapu@unal.edu.co
In the title compound, C25H16N2O2, the quinoline ring system is essentially planar, with a maximum deviation of 0.030 (1) Å, and forms a dihedral angle of 20.9 (1)° with benzoyl benzene ring. The unsubstituted phenyl ring forms dihedral angles of 52.7 (1)° with the quinoline ring system and 54.1 (1)° with the ethynyl-substituted benzene ring. The molecule contains an intramolecular bifurcated N—H⋯(O,N) hydrogen bond, forming S(5) and S(6) rings, which may influence the conformation of the molecule. In the crystal, weak C—H⋯O hydrogen bonds link the molecules into a three-dimensional network. In addition, the three-dimensional structure contains π–π stacking interactions, with centroid–centroid distances of 3.695 (1) and 3.751 (1) Å.
Keywords: crystal structure; quinoline; benzoyl-5-ethynylphenyl; hydrogen bonding.
CCDC reference: 1539719
1. Chemical context
Benzophenones are intermediates for the synthesis of pharmaceutical and bioactive materials and are used extensively in the field of medicinal chemistry. The biological activity of these ligands can be attributed to distinct chemical and biochemical advantages: they are chemically more stable than diazo ). Several benzophenones are used in industry, cosmetics, medicine and agriculture (Sweetman et al., 2007), and their role as potential anticancer agents and antibiotics has also been examined. In addition, research has been performed on the use of benzophenones as modulators of GABAA receptors (Kopanitsa et al., 2002), COX-1/COX-2 inhibitors (Dannhardt et al., 2002) and EGFR/erbB2 dual inhibitors (Zhang et al., 2004).
aryl and diazirines, and can be manipulated in ambient light and can be activated at 350–360 nm, avoiding protein-damaging wavelengths. These properties produce highly efficient covalent modifications of macromolecules, frequently with remarkable specificity (Dormán & Prestwich, 19942. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The quinoline ring system (C1–C9/N1) is essentially planar, with a maximum deviation of 0.030 (1) for C8 and forms a dihedral angle of 20.9 (1)° with ethynyl-substituted benzene ring (C11–C16). The benzoyl ring (C20–C25) forms dihedral angles of 52.7 (1)° with the quinoline ring system and 54.1 (1)° with the ethynyl-substituted benzene ring. The molecule contains an intramolecular bifurcated N—H⋯(N,O) hydrogen bond (see Table 1), forming S(5) and S(6) rings, which may influence the conformation of the molecule.
3. Supramolecular features
In the crystal, weak C—H⋯O hydrogen bonds (Table 1, Fig. 2) link the molecules into a three-dimensional network. In addition, the three-dimensional structure contains π–π stacking interactions with centroid–centroid distances of 3.695 (1) Å for Cg1⋯Cg2(x, − y, − + z) and 3.751 (1) Å for Cg3⋯Cg3(1 − x, 1 − y, −z) where Cg1, Cg2 and Cg3 are the centroids of the C11–C16, C20–C25 and C1–C6 rings, respectively.
4. Database survey
A search of the Cambridge Structural Database (Groom et al., 2016; Version 1.18, April 2016) revealed 12 related structures. There are three reports for (4-ethynylphenyl)(phenyl)methanone derivatives with different substituents (Szafert et al. 2008, 2012; Khera et al. 2012). There are two reports where N-(2-benzoylphenyl)quinoline-2-carboxamide moieties are reported (Maurizot et al. 2004; Hu et al. 2009) and seven reports for 3-ethynylaniline derivatives (Li et al. 2012; Cummings et al. 2010; Khan et al. 2003; Dominguez et al. 2003; Wang et al. 2003; Yi et al. 2008; Armitt et al. 2008).
5. Synthesis and crystallization
The title compound was prepared using 3-bromoaniline (1, Fig. 3) as starting reagent in the presence of boron trichloride (1.1 equiv), AlCl3 (1.1 equiv) and benzonitrile (3 equiv) for 24 h at approximately 353 K. The solution was extracted with DCM, dried and concentrated to obtain (2-amino-4-bromophenyl)(phenyl)methanone (2) (petroleum ether:ethyl acetate 9:1, 0.52). Compound 2 (1.8 mmol) was dissolved in triethylamine, Pd(PPh3)2Cl2 (0.05 eq), trimethylsilylacetylene (1.5 eq) and copper iodine (0.1 eq) were added and the solution was heated to approximately 343 K overnight. The organic phase was separated and concentrated (petroleum ether:ethyl acetate 7:1, 0.70) and the fraction containing the product (75%) was collected and used for the next step. A solution of compound 3 (0.4 mol, 1 eq) in tetrahydrofurane was stirred and cooled in an ice bath, tetra-n-butylammonium fluoride (1.5 eq) was added and the reaction was stirred for two hours. The organic layer was separated and dried over magnesium sulfate to obtain compound 4 (petroleum ether:ethyl acetate 7:1, 0.60). The title compound (I) (Fig. 3) was prepared by refluxing a mixture of quinaldic acid, triethylamine, p-toluenesulfonyl chloride and compound 4 for 24 h in dichloromethane. After evaporation of the CH2Cl2, the compound was purified by silica (petroleum ether:ethyl acetate 7:1, 0.36). Single colourless block-shaped crystals of (I) were obtained by slow evaporation in dichloromethane in a closed flask with petroleum ether.
N-(2-benzoyl-5-ethynylphenyl)quinoline-2-carboxamide (I): Colourless solid (0.323 g, 95%, PE:EA 7:1, Rf = 0.36). 1H NMR (400 MHz, CDCl3): δ 9.11 (d, 3J = 1.4 Hz, 1H), 8.41 (m, 3H), 7.89 (d, 3J = 8.2 Hz, 1H), 7.84 (m, 3H), 7.67 (m, 1H), 7.60 (m, 2H), 7.50 (dd, 3J = 10.4, 3J = 4.6 Hz, 2H), 7.28 (m, 1H), 3.27 (s, 1H, CCH). 13C NMR (100 MHz, CDCl3): δ 198.0 (Cquat), 163.7 (Cquat), 149.6 (Cquat), 146.6 (Cquat), 139.7 (Cquat), 138.6 (Cquat), 137.6 (Cquat), 133.1 (+), 132.5 (+), 130.5 (+), 130.2 (+), 129.9 (+), 129.4 (+), 128.3 (+), 127.6 (+), 125.8 (+), 124.8 (+), 118.4 (+), 82.8 (Cquat), 80.3 (+).
6. Refinement
Crystal data, data collection and structure . All non-hydrogen atoms were refined anisotropically. Hydrogen-atom positions were calculated geometrically and refined using the riding model: N—H = 0.86 Å and C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C,N).
details are summarized in Table 2Supporting information
CCDC reference: 1539719
https://doi.org/10.1107/S2056989017004601/lh5838sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017004601/lh5838Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017004601/lh5838Isup3.cml
Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C25H16N2O2 | F(000) = 784 |
Mr = 376.40 | Dx = 1.354 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 20.2686 (3) Å | Cell parameters from 8847 reflections |
b = 7.58016 (11) Å | θ = 4.6–70.5° |
c = 12.6109 (2) Å | µ = 0.70 mm−1 |
β = 107.6002 (17)° | T = 123 K |
V = 1846.84 (5) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.12 × 0.08 mm |
Rigaku Oxfor Diffraction SuperNova, Single source at offset, Atlas diffractometer | 3484 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 3170 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.020 |
Detector resolution: 5.1773 pixels mm-1 | θmax = 70.6°, θmin = 4.6° |
ω scans | h = −24→24 |
Absorption correction: analytical (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | k = −9→8 |
Tmin = 0.923, Tmax = 0.964 | l = −15→15 |
14681 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0466P)2 + 0.6041P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3484 reflections | Δρmax = 0.21 e Å−3 |
262 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.80756 (4) | 0.44245 (12) | 0.17559 (6) | 0.0251 (2) | |
O2 | 0.71578 (4) | 0.59252 (12) | 0.48953 (6) | 0.0252 (2) | |
N2 | 0.77463 (5) | 0.50473 (13) | 0.33109 (7) | 0.0187 (2) | |
H2 | 0.7400 | 0.4943 | 0.3565 | 0.022* | |
N1 | 0.64362 (5) | 0.43688 (13) | 0.21772 (8) | 0.0204 (2) | |
C11 | 0.83488 (5) | 0.57608 (14) | 0.40482 (9) | 0.0176 (2) | |
C12 | 0.83608 (5) | 0.61666 (15) | 0.51504 (9) | 0.0185 (2) | |
C10 | 0.76382 (6) | 0.45000 (15) | 0.22485 (9) | 0.0192 (2) | |
C15 | 0.95056 (5) | 0.69688 (15) | 0.44286 (9) | 0.0196 (2) | |
C16 | 0.89330 (5) | 0.61127 (15) | 0.37169 (9) | 0.0188 (2) | |
H16 | 0.8940 | 0.5772 | 0.3012 | 0.023* | |
C20 | 0.78417 (6) | 0.55345 (15) | 0.67512 (9) | 0.0195 (2) | |
C9 | 0.69003 (6) | 0.39498 (15) | 0.16801 (9) | 0.0197 (2) | |
C19 | 0.77474 (6) | 0.58849 (15) | 0.55491 (9) | 0.0195 (2) | |
C6 | 0.57653 (6) | 0.38875 (15) | 0.16679 (9) | 0.0214 (2) | |
C13 | 0.89513 (6) | 0.69693 (16) | 0.58579 (9) | 0.0214 (2) | |
H13 | 0.8965 | 0.7225 | 0.6585 | 0.026* | |
C14 | 0.95156 (6) | 0.73953 (16) | 0.55107 (9) | 0.0224 (2) | |
H14 | 0.9897 | 0.7959 | 0.5991 | 0.027* | |
C25 | 0.73004 (6) | 0.59635 (16) | 0.71778 (10) | 0.0234 (3) | |
H25 | 0.6904 | 0.6510 | 0.6726 | 0.028* | |
C5 | 0.55645 (6) | 0.29271 (16) | 0.06529 (9) | 0.0244 (3) | |
C21 | 0.84242 (6) | 0.46767 (16) | 0.74319 (9) | 0.0231 (3) | |
H21 | 0.8786 | 0.4383 | 0.7154 | 0.028* | |
C1 | 0.52563 (6) | 0.43856 (17) | 0.21699 (10) | 0.0259 (3) | |
H1 | 0.5383 | 0.5024 | 0.2830 | 0.031* | |
C8 | 0.67500 (6) | 0.30330 (16) | 0.06614 (10) | 0.0244 (3) | |
H8 | 0.7096 | 0.2795 | 0.0338 | 0.029* | |
C23 | 0.79376 (6) | 0.47211 (18) | 0.89465 (10) | 0.0281 (3) | |
H23 | 0.7972 | 0.4462 | 0.9682 | 0.034* | |
C22 | 0.84671 (6) | 0.42576 (17) | 0.85222 (10) | 0.0268 (3) | |
H22 | 0.8853 | 0.3664 | 0.8968 | 0.032* | |
C4 | 0.48571 (6) | 0.24644 (17) | 0.01817 (11) | 0.0302 (3) | |
H4 | 0.4719 | 0.1823 | −0.0477 | 0.036* | |
C24 | 0.73547 (6) | 0.55729 (18) | 0.82745 (10) | 0.0276 (3) | |
H24 | 0.6999 | 0.5883 | 0.8562 | 0.033* | |
C7 | 0.60855 (6) | 0.25045 (17) | 0.01627 (10) | 0.0274 (3) | |
H7 | 0.5976 | 0.1868 | −0.0498 | 0.033* | |
C2 | 0.45806 (6) | 0.39319 (19) | 0.16885 (11) | 0.0319 (3) | |
H2A | 0.4250 | 0.4271 | 0.2023 | 0.038* | |
C3 | 0.43768 (6) | 0.29527 (19) | 0.06876 (11) | 0.0337 (3) | |
H3 | 0.3915 | 0.2641 | 0.0373 | 0.040* | |
C17 | 1.00703 (6) | 0.75029 (16) | 0.40188 (9) | 0.0220 (2) | |
C18 | 1.05212 (6) | 0.80433 (17) | 0.37023 (10) | 0.0274 (3) | |
H18 | 1.0878 | 0.8471 | 0.3452 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0219 (4) | 0.0344 (5) | 0.0207 (4) | −0.0005 (3) | 0.0087 (3) | −0.0044 (3) |
O2 | 0.0171 (4) | 0.0381 (5) | 0.0206 (4) | 0.0014 (3) | 0.0060 (3) | 0.0014 (3) |
N2 | 0.0165 (4) | 0.0236 (5) | 0.0170 (4) | −0.0014 (4) | 0.0064 (3) | −0.0008 (4) |
N1 | 0.0194 (5) | 0.0217 (5) | 0.0190 (5) | −0.0017 (4) | 0.0041 (4) | 0.0008 (4) |
C11 | 0.0170 (5) | 0.0171 (5) | 0.0179 (5) | 0.0015 (4) | 0.0041 (4) | 0.0014 (4) |
C12 | 0.0178 (5) | 0.0205 (6) | 0.0179 (5) | 0.0017 (4) | 0.0063 (4) | 0.0016 (4) |
C10 | 0.0202 (5) | 0.0186 (5) | 0.0186 (5) | 0.0011 (4) | 0.0055 (4) | 0.0005 (4) |
C15 | 0.0172 (5) | 0.0210 (6) | 0.0217 (5) | 0.0014 (4) | 0.0075 (4) | 0.0018 (4) |
C16 | 0.0194 (5) | 0.0210 (6) | 0.0165 (5) | 0.0011 (4) | 0.0063 (4) | 0.0010 (4) |
C20 | 0.0199 (5) | 0.0208 (6) | 0.0191 (5) | −0.0039 (4) | 0.0077 (4) | −0.0033 (4) |
C9 | 0.0208 (5) | 0.0187 (5) | 0.0186 (5) | 0.0006 (4) | 0.0043 (4) | 0.0015 (4) |
C19 | 0.0189 (5) | 0.0199 (6) | 0.0202 (5) | 0.0004 (4) | 0.0067 (4) | −0.0018 (4) |
C6 | 0.0201 (5) | 0.0208 (6) | 0.0211 (5) | −0.0016 (4) | 0.0029 (4) | 0.0042 (4) |
C13 | 0.0214 (5) | 0.0263 (6) | 0.0167 (5) | −0.0004 (4) | 0.0061 (4) | −0.0024 (4) |
C14 | 0.0184 (5) | 0.0260 (6) | 0.0215 (5) | −0.0028 (4) | 0.0042 (4) | −0.0028 (5) |
C25 | 0.0199 (5) | 0.0284 (6) | 0.0226 (6) | −0.0028 (5) | 0.0077 (4) | −0.0042 (5) |
C5 | 0.0252 (6) | 0.0218 (6) | 0.0219 (6) | −0.0031 (5) | 0.0008 (5) | 0.0028 (5) |
C21 | 0.0228 (5) | 0.0257 (6) | 0.0220 (6) | −0.0003 (5) | 0.0087 (4) | −0.0013 (5) |
C1 | 0.0232 (6) | 0.0305 (7) | 0.0229 (6) | −0.0013 (5) | 0.0053 (5) | 0.0036 (5) |
C8 | 0.0269 (6) | 0.0245 (6) | 0.0215 (6) | 0.0009 (5) | 0.0071 (5) | −0.0022 (5) |
C23 | 0.0329 (6) | 0.0345 (7) | 0.0179 (5) | −0.0118 (5) | 0.0093 (5) | −0.0020 (5) |
C22 | 0.0281 (6) | 0.0292 (6) | 0.0211 (6) | −0.0022 (5) | 0.0042 (5) | 0.0020 (5) |
C4 | 0.0283 (6) | 0.0300 (7) | 0.0255 (6) | −0.0077 (5) | −0.0020 (5) | 0.0010 (5) |
C24 | 0.0250 (6) | 0.0376 (7) | 0.0247 (6) | −0.0076 (5) | 0.0144 (5) | −0.0079 (5) |
C7 | 0.0321 (6) | 0.0253 (6) | 0.0210 (6) | −0.0031 (5) | 0.0025 (5) | −0.0049 (5) |
C2 | 0.0206 (6) | 0.0410 (8) | 0.0335 (7) | −0.0012 (5) | 0.0073 (5) | 0.0082 (6) |
C3 | 0.0212 (6) | 0.0391 (8) | 0.0341 (7) | −0.0080 (5) | −0.0017 (5) | 0.0083 (6) |
C17 | 0.0203 (5) | 0.0231 (6) | 0.0206 (5) | −0.0006 (4) | 0.0034 (4) | −0.0037 (4) |
C18 | 0.0260 (6) | 0.0315 (7) | 0.0282 (6) | −0.0048 (5) | 0.0134 (5) | −0.0042 (5) |
O1—C10 | 1.2282 (14) | C14—H14 | 0.9300 |
O2—C19 | 1.2301 (14) | C25—H25 | 0.9300 |
N2—H2 | 0.8600 | C25—C24 | 1.3858 (17) |
N2—C11 | 1.4006 (14) | C5—C4 | 1.4200 (16) |
N2—C10 | 1.3555 (14) | C5—C7 | 1.4124 (17) |
N1—C9 | 1.3174 (15) | C21—H21 | 0.9300 |
N1—C6 | 1.3661 (14) | C21—C22 | 1.3881 (16) |
C11—C12 | 1.4167 (15) | C1—H1 | 0.9300 |
C11—C16 | 1.3952 (15) | C1—C2 | 1.3637 (17) |
C12—C19 | 1.4907 (15) | C8—H8 | 0.9300 |
C12—C13 | 1.3975 (16) | C8—C7 | 1.3630 (17) |
C10—C9 | 1.5087 (15) | C23—H23 | 0.9300 |
C15—C16 | 1.3942 (15) | C23—C22 | 1.3816 (18) |
C15—C14 | 1.3965 (16) | C23—C24 | 1.3876 (18) |
C15—C17 | 1.4487 (15) | C22—H22 | 0.9300 |
C16—H16 | 0.9300 | C4—H4 | 0.9300 |
C20—C19 | 1.4932 (15) | C4—C3 | 1.367 (2) |
C20—C25 | 1.3984 (15) | C24—H24 | 0.9300 |
C20—C21 | 1.3932 (16) | C7—H7 | 0.9300 |
C9—C8 | 1.4104 (16) | C2—H2A | 0.9300 |
C6—C5 | 1.4209 (17) | C2—C3 | 1.414 (2) |
C6—C1 | 1.4152 (17) | C3—H3 | 0.9300 |
C13—H13 | 0.9300 | C17—C18 | 1.1759 (17) |
C13—C14 | 1.3810 (16) | C18—H18 | 0.9300 |
C11—N2—H2 | 115.8 | C24—C25—C20 | 119.96 (11) |
C10—N2—H2 | 115.8 | C24—C25—H25 | 120.0 |
C10—N2—C11 | 128.49 (9) | C4—C5—C6 | 118.79 (11) |
C9—N1—C6 | 117.66 (10) | C7—C5—C6 | 117.52 (10) |
N2—C11—C12 | 119.21 (9) | C7—C5—C4 | 123.69 (11) |
C16—C11—N2 | 121.57 (10) | C20—C21—H21 | 119.8 |
C16—C11—C12 | 119.21 (10) | C22—C21—C20 | 120.31 (11) |
C11—C12—C19 | 122.09 (10) | C22—C21—H21 | 119.8 |
C13—C12—C11 | 118.56 (10) | C6—C1—H1 | 119.9 |
C13—C12—C19 | 119.19 (10) | C2—C1—C6 | 120.23 (12) |
O1—C10—N2 | 126.05 (10) | C2—C1—H1 | 119.9 |
O1—C10—C9 | 120.68 (10) | C9—C8—H8 | 120.8 |
N2—C10—C9 | 113.27 (9) | C7—C8—C9 | 118.44 (11) |
C16—C15—C14 | 120.01 (10) | C7—C8—H8 | 120.8 |
C16—C15—C17 | 119.61 (10) | C22—C23—H23 | 120.0 |
C14—C15—C17 | 120.28 (10) | C22—C23—C24 | 119.96 (11) |
C11—C16—H16 | 119.6 | C24—C23—H23 | 120.0 |
C15—C16—C11 | 120.85 (10) | C21—C22—H22 | 119.9 |
C15—C16—H16 | 119.6 | C23—C22—C21 | 120.14 (11) |
C25—C20—C19 | 118.34 (10) | C23—C22—H22 | 119.9 |
C21—C20—C19 | 122.21 (10) | C5—C4—H4 | 119.7 |
C21—C20—C25 | 119.26 (10) | C3—C4—C5 | 120.62 (12) |
N1—C9—C10 | 117.07 (10) | C3—C4—H4 | 119.7 |
N1—C9—C8 | 124.31 (10) | C25—C24—C23 | 120.33 (11) |
C8—C9—C10 | 118.62 (10) | C25—C24—H24 | 119.8 |
O2—C19—C12 | 120.71 (10) | C23—C24—H24 | 119.8 |
O2—C19—C20 | 119.02 (10) | C5—C7—H7 | 120.1 |
C12—C19—C20 | 120.27 (9) | C8—C7—C5 | 119.78 (11) |
N1—C6—C5 | 122.26 (11) | C8—C7—H7 | 120.1 |
N1—C6—C1 | 118.36 (10) | C1—C2—H2A | 119.6 |
C1—C6—C5 | 119.38 (10) | C1—C2—C3 | 120.85 (12) |
C12—C13—H13 | 119.0 | C3—C2—H2A | 119.6 |
C14—C13—C12 | 122.08 (10) | C4—C3—C2 | 120.12 (11) |
C14—C13—H13 | 119.0 | C4—C3—H3 | 119.9 |
C15—C14—H14 | 120.4 | C2—C3—H3 | 119.9 |
C13—C14—C15 | 119.14 (10) | C18—C17—C15 | 175.81 (13) |
C13—C14—H14 | 120.4 | C17—C18—H18 | 180.0 |
C20—C25—H25 | 120.0 | ||
O1—C10—C9—N1 | −167.73 (11) | C19—C12—C13—C14 | −174.75 (11) |
O1—C10—C9—C8 | 12.16 (17) | C19—C20—C25—C24 | 176.64 (11) |
N2—C11—C12—C19 | −0.98 (16) | C19—C20—C21—C22 | −175.07 (11) |
N2—C11—C12—C13 | −176.45 (10) | C6—N1—C9—C10 | 179.62 (9) |
N2—C11—C16—C15 | 174.15 (10) | C6—N1—C9—C8 | −0.27 (17) |
N2—C10—C9—N1 | 12.51 (15) | C6—C5—C4—C3 | 0.81 (18) |
N2—C10—C9—C8 | −167.60 (10) | C6—C5—C7—C8 | −0.59 (18) |
N1—C9—C8—C7 | −1.52 (18) | C6—C1—C2—C3 | 0.3 (2) |
N1—C6—C5—C4 | 179.47 (11) | C13—C12—C19—O2 | 148.36 (11) |
N1—C6—C5—C7 | −1.25 (17) | C13—C12—C19—C20 | −32.13 (16) |
N1—C6—C1—C2 | 179.99 (11) | C14—C15—C16—C11 | 3.68 (17) |
C11—N2—C10—O1 | 5.23 (19) | C25—C20—C19—O2 | −25.56 (16) |
C11—N2—C10—C9 | −175.02 (10) | C25—C20—C19—C12 | 154.92 (11) |
C11—C12—C19—O2 | −27.08 (17) | C25—C20—C21—C22 | −0.18 (17) |
C11—C12—C19—C20 | 152.43 (11) | C5—C6—C1—C2 | 0.63 (18) |
C11—C12—C13—C14 | 0.85 (17) | C5—C4—C3—C2 | 0.2 (2) |
C12—C11—C16—C15 | −4.60 (16) | C21—C20—C19—O2 | 149.37 (11) |
C12—C13—C14—C15 | −1.80 (18) | C21—C20—C19—C12 | −30.15 (16) |
C10—N2—C11—C12 | −176.82 (11) | C21—C20—C25—C24 | 1.56 (17) |
C10—N2—C11—C16 | 4.43 (18) | C1—C6—C5—C4 | −1.20 (17) |
C10—C9—C8—C7 | 178.59 (11) | C1—C6—C5—C7 | 178.08 (11) |
C16—C11—C12—C19 | 177.81 (10) | C1—C2—C3—C4 | −0.7 (2) |
C16—C11—C12—C13 | 2.34 (16) | C22—C23—C24—C25 | −0.03 (19) |
C16—C15—C14—C13 | −0.46 (17) | C4—C5—C7—C8 | 178.64 (12) |
C20—C25—C24—C23 | −1.46 (19) | C24—C23—C22—C21 | 1.41 (19) |
C20—C21—C22—C23 | −1.30 (19) | C7—C5—C4—C3 | −178.42 (12) |
C9—N1—C6—C5 | 1.67 (16) | C17—C15—C16—C11 | −172.73 (10) |
C9—N1—C6—C1 | −177.67 (10) | C17—C15—C14—C13 | 175.94 (11) |
C9—C8—C7—C5 | 1.89 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2 | 0.86 | 2.03 | 2.701 (12) | 135 |
N2—H2···N1 | 0.86 | 2.24 | 2.658 (13) | 110 |
C3—H3···O2i | 0.93 | 2.47 | 3.346 (16) | 158 |
C18—H18···O1ii | 0.93 | 2.33 | 3.242 (15) | 167 |
C23—H23···O1iii | 0.93 | 2.56 | 3.476 (14) | 168 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) x, y, z+1. |
Acknowledgements
We are grateful to the University of Regensburg, Universidad Nacional de Colombia, DAAD and COLCIENCIAS (grant No. 49575) for financial support.
References
Armitt, D. J., Bruce, M. I., Skelton, B. W. & White, A. H. (2008). J. Organomet. Chem. 693, 3571–3581. CSD CrossRef CAS Google Scholar
Cummings, S. P., Cao, Z., Liskey, C. W., Geanes, A. R., Fanwick, P. E., Hassell, K. M. & Ren, T. (2010). Organometallics, 29, 2783–2788. CSD CrossRef CAS Google Scholar
Dannhardt, G., Fiebich, B. & Schweppenhäuser, J. (2002). Eur. J. Med. Chem. 37, 147–161. CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dominguez, Z., Khuong, T. V., Dang, H., Sanrame, C. N., Nuñez, J. E. & Garcia-Garibay, M. A. (2003). J. Am. Chem. Soc. 125, 8827–8837. CSD CrossRef PubMed CAS Google Scholar
Dormán, G. & Prestwich, G. D. (1994). Biochemistry, 33, 5661–5673. PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hu, H. Y., Xiang, J. F. & Chen, C. F. (2009). Org. Biomol. Chem. 7, 2534–2539. CSD CrossRef PubMed CAS Google Scholar
Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Corcoran, T. C., Al-Mahrooqi, Y., Attfield, J. P., Feeder, N., David, W. I. F., Shankland, K., Friend, R. H., Köhler, A., Marseglia, E. A., Tedesco, E., Tang, C. C., Raithby, P. R., Collings, J. C., Roscoe, K. P., Batsanov, A. S., Stimson, L. M. & Marder, T. B. (2003). New J. Chem. 27, 140–149. Web of Science CSD CrossRef CAS Google Scholar
Khera, R., Nawaz, M., Feist, H., Villinger, A. & Langer, P. (2012). Synthesis, pp. 219–234. Google Scholar
Kopanitsa, M. V., Yakubovska, L. M., Rudenko, O. P. & Krishtal, O. A. (2002). Neuropharmacology, 43, 764–777. Web of Science CrossRef PubMed CAS Google Scholar
Li, Y., Xu, L., Yang, W., Liu, H., Lai, S., Che, C. & Li, Y. (2012). Chem. Eur. J. 18, 4782–4790. CSD CrossRef CAS PubMed Google Scholar
Maurizot, V., Dolain, C., Leydet, Y., Léger, J.-M., Guionneau, P. & Huc, I. (2004). J. Am. Chem. Soc. 126, 10049–10052. CSD CrossRef PubMed CAS Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sweetman, S. C. (2007). J. Med. Libr. Assoc. 100, 75–76. Google Scholar
Szafert, S., Gulia, N., Osowska, K., Pigulski, B., Lis, T. & Galewski, Z. (2012). Eur. J. Med. Chem. 25, 4819–4830. Google Scholar
Szafert, S. & Osowska, K. (2008). Eur. J. Med. Chem. 27, 4598–4606. Google Scholar
Wang, C., Batsanov, A. S., Bryce, M. R. & Sage, I. (2003). Synthesis, pp. 2089–2095. Google Scholar
Yi, C., Blum, C., Liu, S. X., Frei, S., Neels, A., Renaud, P., Leutwyler, S. & Decurtins, S. (2008). J. Org. Chem. 73, 3596–3599. CSD CrossRef PubMed CAS Google Scholar
Zhang, Y. M., Cockerill, S., Guntrip, S. B., Rusnak, D., Smith, K., Vanderwall, D., Wood, E. & Lackey, K. (2004). Bioorg. Med. Chem. Lett. 14, 111–114. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.