research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(2-benzoyl-5-ethynylphen­yl)quinoline-2-carboxamide

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, A.A. 5997 Bogotá, Colombia, and bInstitute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
*Correspondence e-mail: cochoapu@unal.edu.co

Edited by A. J. Lough, University of Toronto, Canada (Received 28 February 2017; accepted 23 March 2017; online 28 March 2017)

In the title compound, C25H16N2O2, the quinoline ring system is essentially planar, with a maximum deviation of 0.030 (1) Å, and forms a dihedral angle of 20.9 (1)° with benzoyl benzene ring. The unsubstituted phenyl ring forms dihedral angles of 52.7 (1)° with the quinoline ring system and 54.1 (1)° with the ethynyl-substituted benzene ring. The mol­ecule contains an intra­molecular bifurcated N—H⋯(O,N) hydrogen bond, forming S(5) and S(6) rings, which may influence the conformation of the mol­ecule. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. In addition, the three-dimensional structure contains ππ stacking inter­actions, with centroid–centroid distances of 3.695 (1) and 3.751 (1) Å.

1. Chemical context

Benzo­phenones are inter­mediates for the synthesis of pharmaceutical and bioactive materials and are used extensively in the field of medicinal chemistry. The biological activity of these ligands can be attributed to distinct chemical and biochemical advantages: they are chemically more stable than diazo esters, aryl azides and diazirines, and can be manipulated in ambient light and can be activated at 350–360 nm, avoiding protein-damaging wavelengths. These properties produce highly efficient covalent modifications of macromolecules, frequently with remarkable specificity (Dormán & Prestwich, 1994[Dormán, G. & Prestwich, G. D. (1994). Biochemistry, 33, 5661-5673.]). Several benzo­phenones are used in industry, cosmetics, medicine and agriculture (Sweetman et al., 2007[Sweetman, S. C. (2007). J. Med. Libr. Assoc. 100, 75-76.]), and their role as potential anti­cancer agents and anti­biotics has also been examined. In addition, research has been performed on the use of benzo­phenones as modulators of GABAA receptors (Kopanitsa et al., 2002[Kopanitsa, M. V., Yakubovska, L. M., Rudenko, O. P. & Krishtal, O. A. (2002). Neuropharmacology, 43, 764-777.]), COX-1/COX-2 inhibitors (Dannhardt et al., 2002[Dannhardt, G., Fiebich, B. & Schweppenhäuser, J. (2002). Eur. J. Med. Chem. 37, 147-161.]) and EGFR/erbB2 dual inhibitors (Zhang et al., 2004[Zhang, Y. M., Cockerill, S., Guntrip, S. B., Rusnak, D., Smith, K., Vanderwall, D., Wood, E. & Lackey, K. (2004). Bioorg. Med. Chem. Lett. 14, 111-114.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The quinoline ring system (C1–C9/N1) is essentially planar, with a maximum deviation of 0.030 (1) for C8 and forms a dihedral angle of 20.9 (1)° with ethynyl-substituted benzene ring (C11–C16). The benzoyl ring (C20–C25) forms dihedral angles of 52.7 (1)° with the quinoline ring system and 54.1 (1)° with the ethynyl-substituted benzene ring. The mol­ecule contains an intra­molecular bifurcated N—H⋯(N,O) hydrogen bond (see Table 1[link]), forming S(5) and S(6) rings, which may influence the conformation of the mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 2.03 2.701 (12) 135
N2—H2⋯N1 0.86 2.24 2.658 (13) 110
C3—H3⋯O2i 0.93 2.47 3.346 (16) 158
C18—H18⋯O1ii 0.93 2.33 3.242 (15) 167
C23—H23⋯O1iii 0.93 2.56 3.476 (14) 168
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dotted lines.

3. Supra­molecular features

In the crystal, weak C—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]) link the mol­ecules into a three-dimensional network. In addition, the three-dimensional structure contains ππ stacking inter­actions with centroid–centroid distances of 3.695 (1) Å for Cg1⋯Cg2(x, [{3\over 2}] − y, −[{1\over 2}] + z) and 3.751 (1) Å for Cg3⋯Cg3(1 − x, 1 − y, −z) where Cg1, Cg2 and Cg3 are the centroids of the C11–C16, C20–C25 and C1–C6 rings, respectively.

[Figure 2]
Figure 2
A partial packing diagram of the title compound, viewed approximately along the b axis, with inter­molecular hydrogen bonds shown as black dotted lines and intra­molecular hydrogen bonds shown as green dotted lines.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Version 1.18, April 2016) revealed 12 related structures. There are three reports for (4-ethynylphen­yl)(phen­yl)methanone derivatives with different substituents (Szafert et al. 2008[Szafert, S. & Osowska, K. (2008). Eur. J. Med. Chem. 27, 4598-4606.], 2012[Szafert, S., Gulia, N., Osowska, K., Pigulski, B., Lis, T. & Galewski, Z. (2012). Eur. J. Med. Chem. 25, 4819-4830.]; Khera et al. 2012[Khera, R., Nawaz, M., Feist, H., Villinger, A. & Langer, P. (2012). Synthesis, pp. 219-234.]). There are two reports where N-(2-benzoyl­phen­yl)quinoline-2-carboxamide moieties are reported (Maurizot et al. 2004[Maurizot, V., Dolain, C., Leydet, Y., Léger, J.-M., Guionneau, P. & Huc, I. (2004). J. Am. Chem. Soc. 126, 10049-10052.]; Hu et al. 2009[Hu, H. Y., Xiang, J. F. & Chen, C. F. (2009). Org. Biomol. Chem. 7, 2534-2539.]) and seven reports for 3-ethynylaniline derivatives (Li et al. 2012[Li, Y., Xu, L., Yang, W., Liu, H., Lai, S., Che, C. & Li, Y. (2012). Chem. Eur. J. 18, 4782-4790.]; Cummings et al. 2010[Cummings, S. P., Cao, Z., Liskey, C. W., Geanes, A. R., Fanwick, P. E., Hassell, K. M. & Ren, T. (2010). Organometallics, 29, 2783-2788.]; Khan et al. 2003[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Corcoran, T. C., Al-Mahrooqi, Y., Attfield, J. P., Feeder, N., David, W. I. F., Shankland, K., Friend, R. H., Köhler, A., Marseglia, E. A., Tedesco, E., Tang, C. C., Raithby, P. R., Collings, J. C., Roscoe, K. P., Batsanov, A. S., Stimson, L. M. & Marder, T. B. (2003). New J. Chem. 27, 140-149.]; Dominguez et al. 2003[Dominguez, Z., Khuong, T. V., Dang, H., Sanrame, C. N., Nuñez, J. E. & Garcia-Garibay, M. A. (2003). J. Am. Chem. Soc. 125, 8827-8837.]; Wang et al. 2003[Wang, C., Batsanov, A. S., Bryce, M. R. & Sage, I. (2003). Synthesis, pp. 2089-2095.]; Yi et al. 2008[Yi, C., Blum, C., Liu, S. X., Frei, S., Neels, A., Renaud, P., Leutwyler, S. & Decurtins, S. (2008). J. Org. Chem. 73, 3596-3599.]; Armitt et al. 2008[Armitt, D. J., Bruce, M. I., Skelton, B. W. & White, A. H. (2008). J. Organomet. Chem. 693, 3571-3581.]).

5. Synthesis and crystallization

The title compound was prepared using 3-bromo­aniline (1, Fig. 3[link]) as starting reagent in the presence of boron trichloride (1.1 equiv), AlCl3 (1.1 equiv) and benzo­nitrile (3 equiv) for 24 h at approximately 353 K. The solution was extracted with DCM, dried and concentrated to obtain (2-amino-4-bromo­phen­yl)(phen­yl)methanone (2) (petroleum ether:ethyl acetate 9:1, 0.52). Compound 2 (1.8 mmol) was dissolved in tri­ethyl­amine, Pd(PPh3)2Cl2 (0.05 eq), tri­methyl­silyl­acetyl­ene (1.5 eq) and copper iodine (0.1 eq) were added and the solution was heated to approximately 343 K overnight. The organic phase was separated and concentrated (petroleum ether:ethyl acetate 7:1, 0.70) and the fraction containing the product (75%) was collected and used for the next step. A solution of compound 3 (0.4 mol, 1 eq) in tetra­hydro­furane was stirred and cooled in an ice bath, tetra-n-butyl­ammonium fluoride (1.5 eq) was added and the reaction was stirred for two hours. The organic layer was separated and dried over magnesium sulfate to obtain compound 4 (petroleum ether:ethyl acetate 7:1, 0.60). The title compound (I)[link] (Fig. 3[link]) was prepared by refluxing a mixture of quinaldic acid, tri­ethyl­amine, p-toluene­sulfonyl chloride and compound 4 for 24 h in di­chloro­methane. After evaporation of the CH2Cl2, the compound was purified by silica column chromatography (petroleum ether:ethyl acetate 7:1, 0.36). Single colourless block-shaped crystals of (I)[link] were obtained by slow evaporation in di­chloro­methane in a closed flask with petroleum ether.

[Figure 3]
Figure 3
The reaction scheme for the synthesis of the title compound.

N-(2-benzoyl-5-ethynylphen­yl)quinoline-2-carboxamide (I)[link]: Colourless solid (0.323 g, 95%, PE:EA 7:1, Rf = 0.36). 1H NMR (400 MHz, CDCl3): δ 9.11 (d, 3J = 1.4 Hz, 1H), 8.41 (m, 3H), 7.89 (d, 3J = 8.2 Hz, 1H), 7.84 (m, 3H), 7.67 (m, 1H), 7.60 (m, 2H), 7.50 (dd, 3J = 10.4, 3J = 4.6 Hz, 2H), 7.28 (m, 1H), 3.27 (s, 1H, CCH). 13C NMR (100 MHz, CDCl3): δ 198.0 (Cquat), 163.7 (Cquat), 149.6 (Cquat), 146.6 (Cquat), 139.7 (Cquat), 138.6 (Cquat), 137.6 (Cquat), 133.1 (+), 132.5 (+), 130.5 (+), 130.2 (+), 129.9 (+), 129.4 (+), 128.3 (+), 127.6 (+), 125.8 (+), 124.8 (+), 118.4 (+), 82.8 (Cquat), 80.3 (+).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. Hydrogen-atom positions were calculated geometrically and refined using the riding model: N—H = 0.86 Å and C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula C25H16N2O2
Mr 376.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 20.2686 (3), 7.58016 (11), 12.6109 (2)
β (°) 107.6002 (17)
V3) 1846.84 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.70
Crystal size (mm) 0.20 × 0.12 × 0.08
 
Data collection
Diffractometer Rigaku Oxfor Diffraction SuperNova, Single source at offset, Atlas
Absorption correction Analytical (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.923, 0.964
No. of measured, independent and observed [I > 2σ(I)] reflections 14681, 3484, 3170
Rint 0.020
(sin θ/λ)max−1) 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.05
No. of reflections 3484
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.25
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N-(2-Benzoyl-5-ethynylphenyl)quinoline-2-carboxamide top
Crystal data top
C25H16N2O2F(000) = 784
Mr = 376.40Dx = 1.354 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 20.2686 (3) ÅCell parameters from 8847 reflections
b = 7.58016 (11) Åθ = 4.6–70.5°
c = 12.6109 (2) ŵ = 0.70 mm1
β = 107.6002 (17)°T = 123 K
V = 1846.84 (5) Å3Block, colourless
Z = 40.20 × 0.12 × 0.08 mm
Data collection top
Rigaku Oxfor Diffraction SuperNova, Single source at offset, Atlas
diffractometer
3484 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3170 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 5.1773 pixels mm-1θmax = 70.6°, θmin = 4.6°
ω scansh = 2424
Absorption correction: analytical
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 98
Tmin = 0.923, Tmax = 0.964l = 1515
14681 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.6041P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3484 reflectionsΔρmax = 0.21 e Å3
262 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80756 (4)0.44245 (12)0.17559 (6)0.0251 (2)
O20.71578 (4)0.59252 (12)0.48953 (6)0.0252 (2)
N20.77463 (5)0.50473 (13)0.33109 (7)0.0187 (2)
H20.74000.49430.35650.022*
N10.64362 (5)0.43688 (13)0.21772 (8)0.0204 (2)
C110.83488 (5)0.57608 (14)0.40482 (9)0.0176 (2)
C120.83608 (5)0.61666 (15)0.51504 (9)0.0185 (2)
C100.76382 (6)0.45000 (15)0.22485 (9)0.0192 (2)
C150.95056 (5)0.69688 (15)0.44286 (9)0.0196 (2)
C160.89330 (5)0.61127 (15)0.37169 (9)0.0188 (2)
H160.89400.57720.30120.023*
C200.78417 (6)0.55345 (15)0.67512 (9)0.0195 (2)
C90.69003 (6)0.39498 (15)0.16801 (9)0.0197 (2)
C190.77474 (6)0.58849 (15)0.55491 (9)0.0195 (2)
C60.57653 (6)0.38875 (15)0.16679 (9)0.0214 (2)
C130.89513 (6)0.69693 (16)0.58579 (9)0.0214 (2)
H130.89650.72250.65850.026*
C140.95156 (6)0.73953 (16)0.55107 (9)0.0224 (2)
H140.98970.79590.59910.027*
C250.73004 (6)0.59635 (16)0.71778 (10)0.0234 (3)
H250.69040.65100.67260.028*
C50.55645 (6)0.29271 (16)0.06529 (9)0.0244 (3)
C210.84242 (6)0.46767 (16)0.74319 (9)0.0231 (3)
H210.87860.43830.71540.028*
C10.52563 (6)0.43856 (17)0.21699 (10)0.0259 (3)
H10.53830.50240.28300.031*
C80.67500 (6)0.30330 (16)0.06614 (10)0.0244 (3)
H80.70960.27950.03380.029*
C230.79376 (6)0.47211 (18)0.89465 (10)0.0281 (3)
H230.79720.44620.96820.034*
C220.84671 (6)0.42576 (17)0.85222 (10)0.0268 (3)
H220.88530.36640.89680.032*
C40.48571 (6)0.24644 (17)0.01817 (11)0.0302 (3)
H40.47190.18230.04770.036*
C240.73547 (6)0.55729 (18)0.82745 (10)0.0276 (3)
H240.69990.58830.85620.033*
C70.60855 (6)0.25045 (17)0.01627 (10)0.0274 (3)
H70.59760.18680.04980.033*
C20.45806 (6)0.39319 (19)0.16885 (11)0.0319 (3)
H2A0.42500.42710.20230.038*
C30.43768 (6)0.29527 (19)0.06876 (11)0.0337 (3)
H30.39150.26410.03730.040*
C171.00703 (6)0.75029 (16)0.40188 (9)0.0220 (2)
C181.05212 (6)0.80433 (17)0.37023 (10)0.0274 (3)
H181.08780.84710.34520.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (4)0.0344 (5)0.0207 (4)0.0005 (3)0.0087 (3)0.0044 (3)
O20.0171 (4)0.0381 (5)0.0206 (4)0.0014 (3)0.0060 (3)0.0014 (3)
N20.0165 (4)0.0236 (5)0.0170 (4)0.0014 (4)0.0064 (3)0.0008 (4)
N10.0194 (5)0.0217 (5)0.0190 (5)0.0017 (4)0.0041 (4)0.0008 (4)
C110.0170 (5)0.0171 (5)0.0179 (5)0.0015 (4)0.0041 (4)0.0014 (4)
C120.0178 (5)0.0205 (6)0.0179 (5)0.0017 (4)0.0063 (4)0.0016 (4)
C100.0202 (5)0.0186 (5)0.0186 (5)0.0011 (4)0.0055 (4)0.0005 (4)
C150.0172 (5)0.0210 (6)0.0217 (5)0.0014 (4)0.0075 (4)0.0018 (4)
C160.0194 (5)0.0210 (6)0.0165 (5)0.0011 (4)0.0063 (4)0.0010 (4)
C200.0199 (5)0.0208 (6)0.0191 (5)0.0039 (4)0.0077 (4)0.0033 (4)
C90.0208 (5)0.0187 (5)0.0186 (5)0.0006 (4)0.0043 (4)0.0015 (4)
C190.0189 (5)0.0199 (6)0.0202 (5)0.0004 (4)0.0067 (4)0.0018 (4)
C60.0201 (5)0.0208 (6)0.0211 (5)0.0016 (4)0.0029 (4)0.0042 (4)
C130.0214 (5)0.0263 (6)0.0167 (5)0.0004 (4)0.0061 (4)0.0024 (4)
C140.0184 (5)0.0260 (6)0.0215 (5)0.0028 (4)0.0042 (4)0.0028 (5)
C250.0199 (5)0.0284 (6)0.0226 (6)0.0028 (5)0.0077 (4)0.0042 (5)
C50.0252 (6)0.0218 (6)0.0219 (6)0.0031 (5)0.0008 (5)0.0028 (5)
C210.0228 (5)0.0257 (6)0.0220 (6)0.0003 (5)0.0087 (4)0.0013 (5)
C10.0232 (6)0.0305 (7)0.0229 (6)0.0013 (5)0.0053 (5)0.0036 (5)
C80.0269 (6)0.0245 (6)0.0215 (6)0.0009 (5)0.0071 (5)0.0022 (5)
C230.0329 (6)0.0345 (7)0.0179 (5)0.0118 (5)0.0093 (5)0.0020 (5)
C220.0281 (6)0.0292 (6)0.0211 (6)0.0022 (5)0.0042 (5)0.0020 (5)
C40.0283 (6)0.0300 (7)0.0255 (6)0.0077 (5)0.0020 (5)0.0010 (5)
C240.0250 (6)0.0376 (7)0.0247 (6)0.0076 (5)0.0144 (5)0.0079 (5)
C70.0321 (6)0.0253 (6)0.0210 (6)0.0031 (5)0.0025 (5)0.0049 (5)
C20.0206 (6)0.0410 (8)0.0335 (7)0.0012 (5)0.0073 (5)0.0082 (6)
C30.0212 (6)0.0391 (8)0.0341 (7)0.0080 (5)0.0017 (5)0.0083 (6)
C170.0203 (5)0.0231 (6)0.0206 (5)0.0006 (4)0.0034 (4)0.0037 (4)
C180.0260 (6)0.0315 (7)0.0282 (6)0.0048 (5)0.0134 (5)0.0042 (5)
Geometric parameters (Å, º) top
O1—C101.2282 (14)C14—H140.9300
O2—C191.2301 (14)C25—H250.9300
N2—H20.8600C25—C241.3858 (17)
N2—C111.4006 (14)C5—C41.4200 (16)
N2—C101.3555 (14)C5—C71.4124 (17)
N1—C91.3174 (15)C21—H210.9300
N1—C61.3661 (14)C21—C221.3881 (16)
C11—C121.4167 (15)C1—H10.9300
C11—C161.3952 (15)C1—C21.3637 (17)
C12—C191.4907 (15)C8—H80.9300
C12—C131.3975 (16)C8—C71.3630 (17)
C10—C91.5087 (15)C23—H230.9300
C15—C161.3942 (15)C23—C221.3816 (18)
C15—C141.3965 (16)C23—C241.3876 (18)
C15—C171.4487 (15)C22—H220.9300
C16—H160.9300C4—H40.9300
C20—C191.4932 (15)C4—C31.367 (2)
C20—C251.3984 (15)C24—H240.9300
C20—C211.3932 (16)C7—H70.9300
C9—C81.4104 (16)C2—H2A0.9300
C6—C51.4209 (17)C2—C31.414 (2)
C6—C11.4152 (17)C3—H30.9300
C13—H130.9300C17—C181.1759 (17)
C13—C141.3810 (16)C18—H180.9300
C11—N2—H2115.8C24—C25—C20119.96 (11)
C10—N2—H2115.8C24—C25—H25120.0
C10—N2—C11128.49 (9)C4—C5—C6118.79 (11)
C9—N1—C6117.66 (10)C7—C5—C6117.52 (10)
N2—C11—C12119.21 (9)C7—C5—C4123.69 (11)
C16—C11—N2121.57 (10)C20—C21—H21119.8
C16—C11—C12119.21 (10)C22—C21—C20120.31 (11)
C11—C12—C19122.09 (10)C22—C21—H21119.8
C13—C12—C11118.56 (10)C6—C1—H1119.9
C13—C12—C19119.19 (10)C2—C1—C6120.23 (12)
O1—C10—N2126.05 (10)C2—C1—H1119.9
O1—C10—C9120.68 (10)C9—C8—H8120.8
N2—C10—C9113.27 (9)C7—C8—C9118.44 (11)
C16—C15—C14120.01 (10)C7—C8—H8120.8
C16—C15—C17119.61 (10)C22—C23—H23120.0
C14—C15—C17120.28 (10)C22—C23—C24119.96 (11)
C11—C16—H16119.6C24—C23—H23120.0
C15—C16—C11120.85 (10)C21—C22—H22119.9
C15—C16—H16119.6C23—C22—C21120.14 (11)
C25—C20—C19118.34 (10)C23—C22—H22119.9
C21—C20—C19122.21 (10)C5—C4—H4119.7
C21—C20—C25119.26 (10)C3—C4—C5120.62 (12)
N1—C9—C10117.07 (10)C3—C4—H4119.7
N1—C9—C8124.31 (10)C25—C24—C23120.33 (11)
C8—C9—C10118.62 (10)C25—C24—H24119.8
O2—C19—C12120.71 (10)C23—C24—H24119.8
O2—C19—C20119.02 (10)C5—C7—H7120.1
C12—C19—C20120.27 (9)C8—C7—C5119.78 (11)
N1—C6—C5122.26 (11)C8—C7—H7120.1
N1—C6—C1118.36 (10)C1—C2—H2A119.6
C1—C6—C5119.38 (10)C1—C2—C3120.85 (12)
C12—C13—H13119.0C3—C2—H2A119.6
C14—C13—C12122.08 (10)C4—C3—C2120.12 (11)
C14—C13—H13119.0C4—C3—H3119.9
C15—C14—H14120.4C2—C3—H3119.9
C13—C14—C15119.14 (10)C18—C17—C15175.81 (13)
C13—C14—H14120.4C17—C18—H18180.0
C20—C25—H25120.0
O1—C10—C9—N1167.73 (11)C19—C12—C13—C14174.75 (11)
O1—C10—C9—C812.16 (17)C19—C20—C25—C24176.64 (11)
N2—C11—C12—C190.98 (16)C19—C20—C21—C22175.07 (11)
N2—C11—C12—C13176.45 (10)C6—N1—C9—C10179.62 (9)
N2—C11—C16—C15174.15 (10)C6—N1—C9—C80.27 (17)
N2—C10—C9—N112.51 (15)C6—C5—C4—C30.81 (18)
N2—C10—C9—C8167.60 (10)C6—C5—C7—C80.59 (18)
N1—C9—C8—C71.52 (18)C6—C1—C2—C30.3 (2)
N1—C6—C5—C4179.47 (11)C13—C12—C19—O2148.36 (11)
N1—C6—C5—C71.25 (17)C13—C12—C19—C2032.13 (16)
N1—C6—C1—C2179.99 (11)C14—C15—C16—C113.68 (17)
C11—N2—C10—O15.23 (19)C25—C20—C19—O225.56 (16)
C11—N2—C10—C9175.02 (10)C25—C20—C19—C12154.92 (11)
C11—C12—C19—O227.08 (17)C25—C20—C21—C220.18 (17)
C11—C12—C19—C20152.43 (11)C5—C6—C1—C20.63 (18)
C11—C12—C13—C140.85 (17)C5—C4—C3—C20.2 (2)
C12—C11—C16—C154.60 (16)C21—C20—C19—O2149.37 (11)
C12—C13—C14—C151.80 (18)C21—C20—C19—C1230.15 (16)
C10—N2—C11—C12176.82 (11)C21—C20—C25—C241.56 (17)
C10—N2—C11—C164.43 (18)C1—C6—C5—C41.20 (17)
C10—C9—C8—C7178.59 (11)C1—C6—C5—C7178.08 (11)
C16—C11—C12—C19177.81 (10)C1—C2—C3—C40.7 (2)
C16—C11—C12—C132.34 (16)C22—C23—C24—C250.03 (19)
C16—C15—C14—C130.46 (17)C4—C5—C7—C8178.64 (12)
C20—C25—C24—C231.46 (19)C24—C23—C22—C211.41 (19)
C20—C21—C22—C231.30 (19)C7—C5—C4—C3178.42 (12)
C9—N1—C6—C51.67 (16)C17—C15—C16—C11172.73 (10)
C9—N1—C6—C1177.67 (10)C17—C15—C14—C13175.94 (11)
C9—C8—C7—C51.89 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.032.701 (12)135
N2—H2···N10.862.242.658 (13)110
C3—H3···O2i0.932.473.346 (16)158
C18—H18···O1ii0.932.333.242 (15)167
C23—H23···O1iii0.932.563.476 (14)168
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y, z+1.
 

Acknowledgements

We are grateful to the University of Regensburg, Universidad Nacional de Colombia, DAAD and COLCIENCIAS (grant No. 49575) for financial support.

References

First citationArmitt, D. J., Bruce, M. I., Skelton, B. W. & White, A. H. (2008). J. Organomet. Chem. 693, 3571–3581.  CSD CrossRef CAS Google Scholar
First citationCummings, S. P., Cao, Z., Liskey, C. W., Geanes, A. R., Fanwick, P. E., Hassell, K. M. & Ren, T. (2010). Organometallics, 29, 2783–2788.  CSD CrossRef CAS Google Scholar
First citationDannhardt, G., Fiebich, B. & Schweppenhäuser, J. (2002). Eur. J. Med. Chem. 37, 147–161.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDominguez, Z., Khuong, T. V., Dang, H., Sanrame, C. N., Nuñez, J. E. & Garcia-Garibay, M. A. (2003). J. Am. Chem. Soc. 125, 8827–8837.  CSD CrossRef PubMed CAS Google Scholar
First citationDormán, G. & Prestwich, G. D. (1994). Biochemistry, 33, 5661–5673.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, H. Y., Xiang, J. F. & Chen, C. F. (2009). Org. Biomol. Chem. 7, 2534–2539.  CSD CrossRef PubMed CAS Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Corcoran, T. C., Al-Mahrooqi, Y., Attfield, J. P., Feeder, N., David, W. I. F., Shankland, K., Friend, R. H., Köhler, A., Marseglia, E. A., Tedesco, E., Tang, C. C., Raithby, P. R., Collings, J. C., Roscoe, K. P., Batsanov, A. S., Stimson, L. M. & Marder, T. B. (2003). New J. Chem. 27, 140–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhera, R., Nawaz, M., Feist, H., Villinger, A. & Langer, P. (2012). Synthesis, pp. 219–234.  Google Scholar
First citationKopanitsa, M. V., Yakubovska, L. M., Rudenko, O. P. & Krishtal, O. A. (2002). Neuropharmacology, 43, 764–777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Y., Xu, L., Yang, W., Liu, H., Lai, S., Che, C. & Li, Y. (2012). Chem. Eur. J. 18, 4782–4790.  CSD CrossRef CAS PubMed Google Scholar
First citationMaurizot, V., Dolain, C., Leydet, Y., Léger, J.-M., Guionneau, P. & Huc, I. (2004). J. Am. Chem. Soc. 126, 10049–10052.  CSD CrossRef PubMed CAS Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSweetman, S. C. (2007). J. Med. Libr. Assoc. 100, 75–76.  Google Scholar
First citationSzafert, S., Gulia, N., Osowska, K., Pigulski, B., Lis, T. & Galewski, Z. (2012). Eur. J. Med. Chem. 25, 4819–4830.  Google Scholar
First citationSzafert, S. & Osowska, K. (2008). Eur. J. Med. Chem. 27, 4598–4606.  Google Scholar
First citationWang, C., Batsanov, A. S., Bryce, M. R. & Sage, I. (2003). Synthesis, pp. 2089–2095.  Google Scholar
First citationYi, C., Blum, C., Liu, S. X., Frei, S., Neels, A., Renaud, P., Leutwyler, S. & Decurtins, S. (2008). J. Org. Chem. 73, 3596–3599.  CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Y. M., Cockerill, S., Guntrip, S. B., Rusnak, D., Smith, K., Vanderwall, D., Wood, E. & Lackey, K. (2004). Bioorg. Med. Chem. Lett. 14, 111–114.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds