research communications
4)2 {tmpen is N,N,N′,N′-tetrakis[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine}
of [Cu(tmpen)](BFaScience and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621908, People's Republic of China, and bInstitute of Materials, China Academy of Engineering Physics, Jiangyou 621908, People's Republic of China
*Correspondence e-mail: chenlin101101@aliyun.com
The mononuclear copper title complex {N,N,N′,N′-tetrakis[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine-κ6N}copper(II) bis(tetrafluoridoborate), [Cu(C30H36N6)](BF4)2, is conveniently prepared from the reaction of Cu(BF4)2·6H2O with N,N,N′,N′-tetrakis[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine (tmpen) in acetonitrile at room temperature in air. The complex shows a distorted octahedral environment around the CuII cation (site symmetry 2) and adopts the centrosymmetric C2/c. The presence of the 6-methyl substituent hinders the approach of the pyridine group to the CuII core. The bond lengths about the CuII atom are significantly longer than those of analogues without the 6-methyl substituents.
Keywords: crystal structure; copper; catalysis; CO2 reduction; electrochemistry.
CCDC reference: 1440025
1. Chemical context
Copper complexes with polypyridine ligands are of great interest in catalytic reactions. For example, the copper-based complex CuBr[N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine] (TPEN) is reported as a versatile and highly active catalyst for acrylic, methacrylic and styrenic monomers (Tang et al., 2006). Copper(II) N-benzyl-N,N′,N′-tris(pyridin-2-ylmethyl)ethylenediamine (bztpen) displays high for electrochemical proton reduction in acidic aqueous solutions, with a calculated hydrogen-generation (kobs) of over 10000 s−1 (Zhang et al., 2014). [Cu2(m-xpt)2(NO3)2](PF6)2 [m-xpt = m-xylylenebis(pyridyltriazole)] can selectively capture CO2 from air and reduce it to oxalate, in the form of an oxalate-bridged complex (Pokharel et al., 2014). Generally, the reduction of a metal complex is accompanied by ligand dissociation (reductive dissociation), which is able to give the appearance of an open site for catalytic reaction. Herein, we describe the structure of the title complex, 1.
2. Structural commentary
In the title complex (Fig. 1), the coordination sphere of the copper(II) atom is distorted octahedral, presumably as a result of the introduction of the 6-methyl substituent. Two pyridine nitrogen atoms (N1, N1′) and two amino nitrogen atoms (N2, N2′) form the equatorial planar coordination, while the apical positions are occupied by the other two pyridine nitrogen atoms (N3, N3′). The CuII ion lies almost in the equatorial plane. The Cu—N bond lengths for the two axial pyridine-nitrogen atoms [Cu—N3 = 2.5742 (13) Å] are significantly longer than those for the other four nitrogen atoms [Cu—N1 = 2.0571 (13), Cu—N2 = 2.0311 (13) Å]. The long Cu—N3 distance indicates a weak connection between copper and pyridine, which is apt to dissociate under reductive conditions (Tang et al., 2006). As a result of from the methyl group, the N3—Cu1—N3′ bond angle is not linear but rather 164.94 (5)°. The pyridine rings in the equatorial plane (N1/C2–C6 and N1′/C2′–C6′) subtend a dihedral angle of 35.03 (9)°.
The distortion about the CuII atom is in favour of the reductive dissociation of one pyridine group. On a cathodic scan under Ar, complex 1 features one reversible couple based on copper at 0.26 V (vs Fc+/0), assigned to CuII/I (Fig. 2). The free ligand tmpen is electrochemically silent in the potential range (Fig. 3). The good reversibility of the couple indicates negligible change in the configuation of 1 under reductive conditions.
3. Supramolecular features
While there are no classical hydrogen bonds in the , Table 1).<
C—H⋯N and C—H⋯F interactions are observed (Fig. 44. Database survey
There are four published reports of polypyridine copper complexes (Kaur et al., 2015; Meyer et al., 2015; Bania & Deka, 2012; Yoon et al., 2005) , but to the best of our knowledge, the title compound has not been reported previously. Among the earliest reports, the copper complex with an N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) ligand is most similar to title complex in configuration. In the presence of ascorbic acid as a reducing agent, Cu2+(TPEN) displays high activity in atom-transfer radical addition (ATRA) reactions (Kaur et al., 2015). In contrast to Cu2+(TPEN), the title complex exhibits greater which results in an evident Jahn–Teller effect on the configuration. In the title complex, the axial Cu—N bonds to pyridyl nitrogen atoms [2.5742 (13) Å)] are significantly longer than in Cu2+(TPEN) [2.377 (3) and 2.308 (2) Å] while the differences in the equatorial Cu—N distances are negligible (Yoon et al., 2005). The other two reported polypyridine copper complexes show similar distorted octahedral coordination spheres around the Cu2+ cation, but the ligands are evidently different from the title complex.
5. Synthesis and crystallization
The tetrapyridinediamine ligand N,N,N′,N′-tetrakis[(6-methylpyridin-2-yl)methyl]ethane-1,2-diamine (tmpen) was prepared according to literature procedures (Mikata et al., 2005). 1H NMR (CDCl3, 600 MHz): δ 7.44 (d, 4H), 7.31 (m, 4H), 6.94 (d, 4H), 3.74 (s, 8H), 2.75 (s, 4H), 2.48 (s, 12H). ESI–MS: calculated for [M + H]+: m/z 481.65.19; found: 481.31.
For the preparation of [Cu(tmpen)](BF4)2 (1), Cu(BF4)2·H2O (0.16 g, 0.5 mmol) was added to an acetonitrile solution (5 ml) of tmpen (0.2 g, 0.5 mmol). The mixture was stirred at room temperature for 6 h. The blue solution was then transferred to tubes, which were placed in a flask containing ether. Block-shaped crystals were obtained in a yield of 85% (0.25 g). Analysis calculated for C30H36B2CuF8N6 (%): C, 50.52; H, 5.09; N, 11.78; found: 50.51; H, 5.08; N, 11.75; MS (TOF–ES): m/z =272.6641 {[M − 2(BF4)−]/2}+, 579.3025 [M − 2(BF4)−+Cl−]+.
6. Refinement
Crystal data, data collection and structure . All F atoms of the BF4 group were split into two groups and their ccupancies determined via a free variable All hydrogen atoms were refined in riding mode with C—H= 0.93–0.97 and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1440025
https://doi.org/10.1107/S2056989017004492/pj2042sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017004492/pj2042Isup2.hkl
Data collection: SMART (Bruker, 2013); cell
SMART (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C30H36N6)](BF4)2 | F(000) = 1476 |
Mr = 717.81 | Dx = 1.487 Mg m−3 Dm = 1.485 Mg m−3 Dm measured by none |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.670 (2) Å | Cell parameters from 5092 reflections |
b = 12.8309 (15) Å | θ = 2.3–27.5° |
c = 14.0146 (16) Å | µ = 0.76 mm−1 |
β = 107.193 (2)° | T = 296 K |
V = 3207.2 (6) Å3 | Block, purple |
Z = 4 | 0.30 × 0.20 × 0.10 mm |
Bruker APEXII CCD area detector diffractometer | 3334 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.023 |
phi and ω scans | θmax = 27.5°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | h = −12→24 |
Tmin = 0.833, Tmax = 0.927 | k = −16→16 |
10330 measured reflections | l = −18→16 |
3676 independent reflections |
Refinement on F2 | 40 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0549P)2 + 2.078P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.002 |
3676 reflections | Δρmax = 0.97 e Å−3 |
254 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.0000 | 0.23649 (2) | 0.2500 | 0.02731 (10) | |
N1 | 0.08743 (7) | 0.15031 (11) | 0.33863 (10) | 0.0289 (3) | |
N2 | 0.07204 (7) | 0.35197 (10) | 0.31608 (10) | 0.0286 (3) | |
N3 | 0.07474 (8) | 0.26278 (11) | 0.12413 (11) | 0.0333 (3) | |
C1 | 0.08575 (13) | 0.00170 (16) | 0.22917 (16) | 0.0537 (6) | |
H1A | 0.0358 | 0.0242 | 0.1945 | 0.081* | |
H1B | 0.0863 | −0.0726 | 0.2372 | 0.081* | |
H1C | 0.1190 | 0.0209 | 0.1914 | 0.081* | |
C2 | 0.11081 (9) | 0.05237 (13) | 0.32937 (13) | 0.0336 (4) | |
C3 | 0.16060 (10) | 0.00215 (15) | 0.40983 (15) | 0.0401 (4) | |
H3A | 0.1747 | −0.0665 | 0.4036 | 0.048* | |
C4 | 0.18899 (10) | 0.05447 (16) | 0.49875 (14) | 0.0429 (4) | |
H4A | 0.2195 | 0.0201 | 0.5544 | 0.052* | |
C5 | 0.17170 (10) | 0.15836 (16) | 0.50451 (13) | 0.0387 (4) | |
H5B | 0.1938 | 0.1967 | 0.5620 | 0.046* | |
C6 | 0.12094 (9) | 0.20416 (14) | 0.42312 (12) | 0.0302 (3) | |
C7 | 0.09995 (10) | 0.31833 (13) | 0.42177 (12) | 0.0325 (3) | |
H7A | 0.0613 | 0.3280 | 0.4545 | 0.039* | |
H7B | 0.1434 | 0.3593 | 0.4569 | 0.039* | |
C8 | 0.02775 (10) | 0.45062 (13) | 0.30188 (13) | 0.0359 (4) | |
H8A | 0.0611 | 0.5101 | 0.3096 | 0.043* | |
H8B | 0.0012 | 0.4556 | 0.3517 | 0.043* | |
C9 | 0.13719 (9) | 0.36030 (14) | 0.27541 (13) | 0.0351 (4) | |
H9A | 0.1751 | 0.3108 | 0.3107 | 0.042* | |
H9B | 0.1585 | 0.4295 | 0.2903 | 0.042* | |
C10 | 0.12107 (9) | 0.34140 (14) | 0.16498 (13) | 0.0328 (4) | |
C11 | 0.15943 (12) | 0.39957 (17) | 0.11282 (16) | 0.0485 (5) | |
H11A | 0.1896 | 0.4552 | 0.1429 | 0.058* | |
C12 | 0.15162 (15) | 0.3728 (2) | 0.01508 (17) | 0.0619 (6) | |
H12A | 0.1770 | 0.4098 | −0.0220 | 0.074* | |
C13 | 0.10602 (14) | 0.2910 (2) | −0.02692 (16) | 0.0550 (6) | |
H13A | 0.1008 | 0.2714 | −0.0925 | 0.066* | |
C14 | 0.06769 (11) | 0.23748 (15) | 0.02882 (15) | 0.0394 (4) | |
C15 | 0.01701 (13) | 0.14901 (19) | −0.01745 (17) | 0.0551 (6) | |
H15A | 0.0011 | 0.1136 | 0.0331 | 0.083* | |
H15B | 0.0435 | 0.1012 | −0.0475 | 0.083* | |
H15C | −0.0260 | 0.1755 | −0.0676 | 0.083* | |
B1 | 0.31688 (17) | 0.1726 (2) | 0.2629 (2) | 0.0555 (6) | |
F1 | 0.3874 (4) | 0.1486 (8) | 0.3288 (7) | 0.124 (2) | 0.639 (19) |
F2 | 0.3115 (7) | 0.2722 (5) | 0.2310 (10) | 0.101 (3) | 0.639 (19) |
F3 | 0.2668 (5) | 0.1626 (7) | 0.3154 (7) | 0.091 (2) | 0.639 (19) |
F4 | 0.3036 (5) | 0.1037 (4) | 0.1872 (4) | 0.0811 (16) | 0.639 (19) |
F1A | 0.3844 (7) | 0.1315 (12) | 0.2879 (15) | 0.122 (3) | 0.361 (19) |
F4A | 0.2738 (11) | 0.1220 (13) | 0.1767 (8) | 0.119 (4) | 0.361 (19) |
F3A | 0.2862 (10) | 0.1559 (10) | 0.3370 (10) | 0.083 (3) | 0.361 (19) |
F2A | 0.3273 (13) | 0.2753 (11) | 0.2471 (18) | 0.107 (4) | 0.361 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02415 (15) | 0.02360 (15) | 0.02934 (16) | 0.000 | 0.00043 (11) | 0.000 |
N1 | 0.0245 (6) | 0.0307 (7) | 0.0284 (6) | 0.0006 (5) | 0.0030 (5) | −0.0015 (5) |
N2 | 0.0284 (6) | 0.0289 (7) | 0.0272 (6) | −0.0029 (5) | 0.0063 (5) | −0.0041 (5) |
N3 | 0.0315 (7) | 0.0364 (8) | 0.0341 (7) | −0.0066 (6) | 0.0127 (6) | −0.0055 (6) |
C1 | 0.0595 (13) | 0.0401 (11) | 0.0500 (12) | 0.0127 (9) | −0.0017 (10) | −0.0144 (9) |
C2 | 0.0275 (8) | 0.0323 (8) | 0.0385 (9) | 0.0028 (6) | 0.0058 (7) | −0.0014 (7) |
C3 | 0.0311 (8) | 0.0348 (9) | 0.0503 (11) | 0.0071 (7) | 0.0061 (8) | 0.0059 (8) |
C4 | 0.0303 (9) | 0.0528 (11) | 0.0395 (9) | 0.0074 (8) | 0.0008 (7) | 0.0110 (8) |
C5 | 0.0310 (8) | 0.0518 (11) | 0.0294 (8) | 0.0013 (8) | 0.0031 (7) | −0.0006 (7) |
C6 | 0.0251 (7) | 0.0361 (8) | 0.0280 (8) | −0.0007 (6) | 0.0056 (6) | −0.0023 (6) |
C7 | 0.0340 (8) | 0.0359 (9) | 0.0255 (8) | −0.0018 (7) | 0.0054 (6) | −0.0055 (6) |
C8 | 0.0412 (9) | 0.0254 (8) | 0.0396 (9) | −0.0019 (7) | 0.0095 (8) | −0.0048 (7) |
C9 | 0.0292 (8) | 0.0410 (9) | 0.0343 (8) | −0.0108 (7) | 0.0083 (7) | −0.0063 (7) |
C10 | 0.0295 (8) | 0.0365 (9) | 0.0332 (8) | −0.0044 (6) | 0.0108 (7) | −0.0036 (7) |
C11 | 0.0513 (11) | 0.0490 (11) | 0.0486 (11) | −0.0181 (9) | 0.0199 (9) | −0.0020 (9) |
C12 | 0.0711 (15) | 0.0762 (16) | 0.0472 (12) | −0.0258 (13) | 0.0311 (11) | 0.0008 (11) |
C13 | 0.0630 (14) | 0.0714 (15) | 0.0368 (10) | −0.0142 (12) | 0.0243 (10) | −0.0099 (10) |
C14 | 0.0370 (9) | 0.0468 (10) | 0.0359 (9) | −0.0035 (7) | 0.0134 (8) | −0.0100 (7) |
C15 | 0.0571 (13) | 0.0637 (14) | 0.0487 (12) | −0.0175 (11) | 0.0222 (10) | −0.0265 (10) |
B1 | 0.0770 (18) | 0.0415 (12) | 0.0585 (15) | −0.0006 (12) | 0.0363 (14) | −0.0085 (11) |
F1 | 0.090 (3) | 0.132 (5) | 0.130 (5) | 0.017 (3) | −0.001 (3) | −0.019 (3) |
F2 | 0.130 (5) | 0.043 (2) | 0.123 (6) | −0.001 (3) | 0.026 (4) | 0.012 (3) |
F3 | 0.086 (3) | 0.109 (4) | 0.105 (5) | −0.009 (2) | 0.067 (3) | −0.023 (3) |
F4 | 0.143 (4) | 0.0526 (17) | 0.0577 (18) | 0.016 (2) | 0.045 (2) | −0.0101 (15) |
F1A | 0.089 (5) | 0.102 (5) | 0.193 (10) | 0.023 (4) | 0.068 (6) | −0.033 (7) |
F4A | 0.169 (9) | 0.102 (6) | 0.085 (5) | −0.024 (6) | 0.036 (5) | −0.057 (4) |
F3A | 0.146 (9) | 0.059 (4) | 0.061 (4) | −0.017 (5) | 0.056 (5) | −0.011 (3) |
F2A | 0.166 (9) | 0.057 (5) | 0.097 (6) | −0.053 (5) | 0.034 (7) | 0.000 (4) |
Cu1—N2i | 2.0311 (13) | C7—H7B | 0.9700 |
Cu1—N2 | 2.0312 (13) | C8—C8i | 1.516 (3) |
Cu1—N1 | 2.0571 (13) | C8—H8A | 0.9700 |
Cu1—N1i | 2.0571 (13) | C8—H8B | 0.9700 |
Cu1—N3 | 2.5742 (13) | C9—C10 | 1.506 (2) |
Cu1—N3i | 2.5742 (13) | C9—H9A | 0.9700 |
N1—C2 | 1.349 (2) | C9—H9B | 0.9700 |
N1—C6 | 1.354 (2) | C10—C11 | 1.384 (3) |
N2—C7 | 1.482 (2) | C11—C12 | 1.378 (3) |
N2—C9 | 1.492 (2) | C11—H11A | 0.9300 |
N2—C8 | 1.493 (2) | C12—C13 | 1.370 (3) |
N3—C10 | 1.342 (2) | C12—H12A | 0.9300 |
N3—C14 | 1.343 (2) | C13—C14 | 1.387 (3) |
C1—C2 | 1.492 (3) | C13—H13A | 0.9300 |
C1—H1A | 0.9600 | C14—C15 | 1.497 (3) |
C1—H1B | 0.9600 | C15—H15A | 0.9600 |
C1—H1C | 0.9600 | C15—H15B | 0.9600 |
C2—C3 | 1.390 (2) | C15—H15C | 0.9600 |
C3—C4 | 1.376 (3) | B1—F1A | 1.315 (11) |
C3—H3A | 0.9300 | B1—F3A | 1.343 (10) |
C4—C5 | 1.379 (3) | B1—F4 | 1.347 (6) |
C4—H4A | 0.9300 | B1—F2 | 1.347 (7) |
C5—C6 | 1.380 (2) | B1—F3 | 1.356 (6) |
C5—H5B | 0.9300 | B1—F2A | 1.360 (12) |
C6—C7 | 1.515 (2) | B1—F4A | 1.398 (10) |
C7—H7A | 0.9700 | B1—F1 | 1.401 (6) |
N2i—Cu1—N2 | 86.31 (8) | H7A—C7—H7B | 108.4 |
N2i—Cu1—N1 | 165.41 (5) | N2—C8—C8i | 108.82 (11) |
N2—Cu1—N1 | 79.43 (6) | N2—C8—H8A | 109.9 |
N2i—Cu1—N1i | 79.43 (6) | C8i—C8—H8A | 109.9 |
N2—Cu1—N1i | 165.41 (5) | N2—C8—H8B | 109.9 |
N1—Cu1—N1i | 114.97 (8) | C8i—C8—H8B | 109.9 |
N1—Cu1—N3 | 89.43 (5) | H8A—C8—H8B | 108.3 |
N1—Cu1—N3i | 98.67 (5) | N2—C9—C10 | 116.30 (13) |
N2—Cu1—N3 | 78.28 (5) | N2—C9—H9A | 108.2 |
N2—Cu1—N3i | 90.69 (5) | C10—C9—H9A | 108.2 |
N3—Cu1—N3i | 164.94 (5) | N2—C9—H9B | 108.2 |
C2—N1—C6 | 118.72 (14) | C10—C9—H9B | 108.2 |
C2—N1—Cu1 | 131.62 (11) | H9A—C9—H9B | 107.4 |
C6—N1—Cu1 | 109.44 (11) | N3—C10—C11 | 123.31 (16) |
C7—N2—C9 | 108.49 (13) | N3—C10—C9 | 117.86 (15) |
C7—N2—C8 | 113.42 (13) | C11—C10—C9 | 118.59 (16) |
C9—N2—C8 | 111.74 (13) | C12—C11—C10 | 118.13 (19) |
C7—N2—Cu1 | 103.48 (10) | C12—C11—H11A | 120.9 |
C9—N2—Cu1 | 112.51 (10) | C10—C11—H11A | 120.9 |
C8—N2—Cu1 | 106.97 (10) | C13—C12—C11 | 119.23 (19) |
C10—N3—C14 | 117.87 (15) | C13—C12—H12A | 120.4 |
C2—C1—H1A | 109.5 | C11—C12—H12A | 120.4 |
C2—C1—H1B | 109.5 | C12—C13—C14 | 119.71 (19) |
H1A—C1—H1B | 109.5 | C12—C13—H13A | 120.1 |
C2—C1—H1C | 109.5 | C14—C13—H13A | 120.1 |
H1A—C1—H1C | 109.5 | N3—C14—C13 | 121.70 (18) |
H1B—C1—H1C | 109.5 | N3—C14—C15 | 118.54 (17) |
N1—C2—C3 | 120.78 (16) | C13—C14—C15 | 119.76 (18) |
N1—C2—C1 | 118.43 (15) | C14—C15—H15A | 109.5 |
C3—C2—C1 | 120.68 (17) | C14—C15—H15B | 109.5 |
C4—C3—C2 | 119.65 (17) | H15A—C15—H15B | 109.5 |
C4—C3—H3A | 120.2 | C14—C15—H15C | 109.5 |
C2—C3—H3A | 120.2 | H15A—C15—H15C | 109.5 |
C3—C4—C5 | 119.35 (17) | H15B—C15—H15C | 109.5 |
C3—C4—H4A | 120.3 | F1A—B1—F3A | 108.9 (10) |
C5—C4—H4A | 120.3 | F4—B1—F2 | 112.5 (7) |
C4—C5—C6 | 118.58 (17) | F4—B1—F3 | 111.6 (5) |
C4—C5—H5B | 120.7 | F2—B1—F3 | 105.9 (6) |
C6—C5—H5B | 120.7 | F1A—B1—F2A | 105.1 (10) |
N1—C6—C5 | 122.16 (16) | F3A—B1—F2A | 113.3 (10) |
N1—C6—C7 | 115.57 (13) | F1A—B1—F4A | 107.8 (6) |
C5—C6—C7 | 122.26 (15) | F3A—B1—F4A | 109.0 (8) |
N2—C7—C6 | 107.90 (12) | F2A—B1—F4A | 112.5 (12) |
N2—C7—H7A | 110.1 | F4—B1—F1 | 107.0 (4) |
C6—C7—H7A | 110.1 | F2—B1—F1 | 113.0 (7) |
N2—C7—H7B | 110.1 | F3—B1—F1 | 106.6 (5) |
C6—C7—H7B | 110.1 | ||
C6—N1—C2—C3 | 9.0 (2) | C7—N2—C8—C8i | −152.37 (17) |
Cu1—N1—C2—C3 | −165.01 (13) | C9—N2—C8—C8i | 84.61 (19) |
C6—N1—C2—C1 | −167.28 (18) | Cu1—N2—C8—C8i | −38.93 (19) |
Cu1—N1—C2—C1 | 18.7 (3) | C7—N2—C9—C10 | 151.06 (15) |
N1—C2—C3—C4 | −2.9 (3) | C8—N2—C9—C10 | −83.17 (18) |
C1—C2—C3—C4 | 173.28 (19) | Cu1—N2—C9—C10 | 37.18 (18) |
C2—C3—C4—C5 | −4.6 (3) | C14—N3—C10—C11 | 2.4 (3) |
C3—C4—C5—C6 | 5.7 (3) | C14—N3—C10—C9 | −171.80 (17) |
C2—N1—C6—C5 | −7.8 (2) | N2—C9—C10—N3 | −41.5 (2) |
Cu1—N1—C6—C5 | 167.40 (14) | N2—C9—C10—C11 | 143.95 (18) |
C2—N1—C6—C7 | 171.25 (15) | N3—C10—C11—C12 | −2.4 (3) |
Cu1—N1—C6—C7 | −13.52 (17) | C9—C10—C11—C12 | 171.8 (2) |
C4—C5—C6—N1 | 0.5 (3) | C10—C11—C12—C13 | 0.6 (4) |
C4—C5—C6—C7 | −178.54 (16) | C11—C12—C13—C14 | 0.9 (4) |
C9—N2—C7—C6 | −73.22 (16) | C10—N3—C14—C13 | −0.7 (3) |
C8—N2—C7—C6 | 162.00 (13) | C10—N3—C14—C15 | 179.19 (19) |
Cu1—N2—C7—C6 | 46.47 (14) | C12—C13—C14—N3 | −0.9 (4) |
N1—C6—C7—N2 | −22.45 (19) | C12—C13—C14—C15 | 179.2 (2) |
C5—C6—C7—N2 | 156.64 (16) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1B···F2Aii | 0.96 | 2.50 | 3.296 (17) | 140 |
C4—H4A···F4Aiii | 0.93 | 2.50 | 3.394 (15) | 161 |
C5—H5B···F3iv | 0.93 | 2.45 | 3.355 (9) | 164 |
C5—H5B···F3Aiv | 0.93 | 2.33 | 3.194 (13) | 155 |
C7—H7A···N3i | 0.97 | 2.59 | 3.212 (2) | 122 |
C8—H8A···F1Av | 0.97 | 2.48 | 3.298 (16) | 142 |
C9—H9A···F3 | 0.97 | 2.55 | 3.436 (10) | 152 |
C9—H9B···F4v | 0.97 | 2.34 | 3.303 (6) | 173 |
C12—H12A···F4vi | 0.93 | 2.45 | 3.198 (7) | 137 |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, −y, z+1/2; (iv) −x+1/2, −y+1/2, −z+1; (v) −x+1/2, y+1/2, −z+1/2; (vi) −x+1/2, −y+1/2, −z. |
Funding information
Funding for this research was provided by: China Postdoctoral Science Foundation (award No. 2015M582573); Chinese National Natural Science Foundation (award Nos. 21601164, 21573200, 21573223).
References
Bania, K. K. & Deka, R. C. (2012). J. Phys. Chem. C, 116, 14295–14310. CrossRef CAS Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kaur, A., Gorse, E. E., Ribelli, T. G., Jerman, C. C. & Pintauer, T. (2015). Polymer, 72, 246–252. CrossRef CAS Google Scholar
Meyer, A., Schnakenburg, G., Glaum, R. & Schiemann, O. (2015). Inorg. Chem. 54, 8456–8464. CrossRef CAS PubMed Google Scholar
Mikata, Y.-J., Wakamatsu, M. & Yano, S. (2005). Dalton Trans. pp. 545–550. CrossRef Google Scholar
Pokharel, U. R., Fronczek, F. R. & Maverick, A. W. (2014). Nature Comm. 5, 5883–5887. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tang, H., Arulsamy, N., Radosz, M., Shen, Y.-Q., Tsarevsky, N. V., Braunecker, W. A., Tang, W. & Matyjaszewski, K. (2006). J. Am. Chem. Soc. 128, 16277–16285. CrossRef PubMed CAS Google Scholar
Yoon, D. C., Lee, U., Lee, D. J. & Oh, C. E. (2005). Bull. Korean Chem. Soc. 26, 1097–1100. CAS Google Scholar
Zhang, P.-L., Wang, M., Yang, Y., Yao, T.-Y. & Sun, L.-C. (2014). Angew. Chem. Int. Ed. 53, 13803–13807. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.