research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-(4-chloro­phen­yl)-2-{[5-(4-chloro­phen­yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}ethanone

CROSSMARK_Color_square_no_text.svg

aH. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan, bKarakoram International University, Gilgit, Pakistan, and cPCSIR Laboratories Complex, Karachi, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 2 March 2017; accepted 11 March 2017; online 17 March 2017)

In the title compound, C16H10Cl2N2O2S, the dihedral angles formed by the chloro-substituted benzene rings with the central oxa­diazole ring are 6.54 (9) and 6.94 (8)°. In the crystal, C—H⋯N hydrogen bonding links the mol­ecules into undulating ribbons running parallel to the b axis. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H⋯C (18%), H⋯H (17%), H⋯Cl (16.6%), H⋯O (10.4%), H⋯N (8.9%) and H⋯S (5.9%) inter­actions.

1. Chemical context

Heterocyclic compounds are well known for their applications in agriculture (Jakobi et al., 1999[Jakobi, H., Ort, O., Schaper, W., Braun, R., Krautstrunk, G., Markl, M. & Bonin, W. (1999). US Patent No. 5925644.]) and for the synthesis of pharmaceuticals (Vitaku et al., 2014[Vitaku, E., Smith, D. T. & Njardarson, J. T. (2014). J. Med. Chem. 57, 10257-10274.]). The broad range of biological activities of heterocyclic compounds has always fascinated chemists and the literature reveals many approaches to synthesize and derivatize libraries of heterocyclic compounds (Khan et al., 2011[Khan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Zaheer-ul-Haq, Mesaik, M. A. & Iqbal Choudhary, M. (2011). Bioorg. Med. Chem. 19, 4286-4294.]; Chohan et al., 2006[Chohan, Z. H., Pervez, H., Rauf, A., Khan, K. M. & Supuran, C. T. (2006). J. Enzyme Inhib. Med. Chem. 21, 193-201.]; Khan et al., 2005[Khan, M. T. H., Choudhary, M. I., Khan, K. M., Rani, M. & Atta-ur-Rahman (2005). Bioorg. Med. Chem. 13, 3385-3395.]). The wide range of applications and biological activities of this class of compounds is due to the presence of heteroatoms (N, O, S) in the mol­ecule (Kashtoh et al., 2014[Kashtoh, H., Hussain, S., Khan, A., Saad, S. M., Khan, J. A., Khan, K. M., Perveen, S. & Choudhary, M. I. (2014). Bioorg. Med. Chem. 22, 5454-5465.]). Oxa­diazo­les are among the most widely studied moieties of organic chemistry due to their many important chemical and biological properties including anti­mycobacterial (Jha et al., 2009[Jha, K. K., Samad, A., Kumar, Y., Shaharyar, M., Khosa, R., Jaim, J. & Bansal, S. (2009). Iran. J. Pharm. Res. 8, 163-167.]), anti­oxidant (Fadda et al., 2011[Fadda, A., Abdel-Rahman, A.-H., El-Sayed, W., Zidan, T. & Badria, F. (2011). Chem. Heterocycl. Compd, 47, 856-864.]), anti­cancer (Zhang et al., 2011[Zhang, X.-M., Qiu, M., Sun, J., Zhang, Y.-B., Yang, Y.-S., Wang, X.-L., Tang, J.-F. & Zhu, H.-L. (2011). Bioorg. Med. Chem. 19, 6518-6524.]), anti­tumor (Loetchutinat et al., 2003[Loetchutinat, C., Chau, F. & Mankhetkorn, S. (2003). Chem. Pharm. Bull. 51, 728-730.]), anti­microbial (Şahin et al., 2002[Şahin, G., Palaska, E., Ekizoğlu, M. & Özalp, M. (2002). Farmaco, 57, 539-542.]), anti­fungal (Zou et al., 2002[Zou, X., Zhang, Z. & Jin, G. (2002). J. Chem. Res. (S), pp. 228-230.]), anti-inflammatory (Palaska et al., 2002[Palaska, E., Şahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101-107.]) and hypotensive (Tyagi & Kumar, 2002[Tyagi, M. & Kumar, A. (2002). Orient. J. Chem. 18, 125-130.]) activities.

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) is an oxa­diazole derivative containing two chloro­phenyl substituents attached to a central oxa­diazole thio­ethanone unit. The C1–C6 and C11–C16 phenyl rings form dihedral angles of 6.54 (9) and 6.94 (8)°, respectively, with the oxa­diazole ring. The dihedral angle between the oxa­diazole ring and the mean plane through the S1/O1/C7–C8 fragment is 10.75 (8)°. Bond lengths and angles are not unusual.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are connected by C—H⋯N hydrogen inter­actions, forming undulating ribbons parallel to the b axis (Table 1[link], Fig. 2[link]). The importance of these inter­actions in stabilizing the crystal structure may be determined by comparison with those found in similar related compounds. For instance, in the crystal structure of 2-{5-[(1H-1,2,4-triazol-1-yl)meth­yl]-1,3,4-oxa­diazol-2-yl­thio}-1-(2,4-di­chloro­phen­yl)ethanone (Xu et al., 2005[Xu, L.-Z., Yu, G.-P., Yin, S.-M., Zhou, K. & Yang, S.-H. (2005). Acta Cryst. E61, o3375-o3376.]) mol­ecules are linked into chains via C—H⋯N hydrogen bonds having H⋯N separations of 2.48 Å. and C—H⋯C inter­actions having H⋯N distances of 2.41 Å. Similarly, in the crystal structure of 1,3-bis{[5-(pyridin-2-yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}propan-2-one (Xia et al., 2011[Xia, C.-H., Mao, C.-B. & Wu, B.-L. (2011). Acta Cryst. E67, o413.]), two oxa­diazole rings are present and form inter­molecular hydrogen bonds of the type C—H⋯N with distances of 2.51 and 2.54 Å, respectively. Moreover, in the structure of the latter compound, further stabilization of the crystal structure is provided by ππ inter­actions involving the pyridyl and oxa­diazole rings with centroid-to-centroid distances of 3.883 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯N1i 0.93 2.48 3.353 (3) 157
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Partial crystal packing of the title compound showing the formation of a undulating ribbon parallel to the b axis through C—H⋯N hydrogen bonds (dashed lines).

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the crystal structure suggests that the contribution to the crystal packing of the H⋯N inter­action is 8.9% (Fig. 3[link]). Other important inter­actions based upon the percentages are H⋯H (17%), H⋯O (10.4%), H⋯C (18%), H⋯S (5.9%) and H⋯Cl (16.6%). These inter­actions, however, were not found to be involved in hydrogen bonding, as observed for the H⋯N contribution (Fig. 4[link]). The Hirshfeld surface diagram shows the location of atoms with the potential to form hydrogen bonds. These inter­actions are represented in two-dimensional fingerprint plots (Fig. 4[link]), in which the cyan dots indicate the percentage of the inter­action over the total Hirshfeld surface.

[Figure 3]
Figure 3
dnorm mapped on the Hirshfeld surface, visualizing the inter­molecular contacts of the title compound. Dotted lines indicate hydrogen bonds.
[Figure 4]
Figure 4
Hirshfeld surface two-dimensional fingerprint plot for the title compound (a) showing the: (b) H⋯C, (c) H⋯H, (d) H⋯Cl, (e) H⋯S, (f) H⋯N and (g) H⋯O inter­actions. The outline of the full fingerprint plots is shown in gray. di (x axis) and de (y axis) are the closest inter­nal and external distance (values in Å) from a given point on the Hirshfeld surface contacts.

5. Synthesis and crystallization

The title compound was synthesized by the procdure reported by Kashtoh et al. (2014[Kashtoh, H., Hussain, S., Khan, A., Saad, S. M., Khan, J. A., Khan, K. M., Perveen, S. & Choudhary, M. I. (2014). Bioorg. Med. Chem. 22, 5454-5465.]). 4-Chloro-1,3,4-oxa­diazole-2-thiol (212 mg,1 mmol) and triethyl amine (0.1 mL) were taken in ethanol (10 mL) and stirred for 10 min. 2-Bromo-4′-chloro­aceto­phenone (232 mg, 1 mmol) was then added slowly into the mixture and refluxed, while progress of the reaction was monitored by TLC. After completion of the reaction, the precipitate was filtered and washed with ethanol. The precipitate was crystallized from methanol to give the title compound in 344 mg, 94% yield.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in (Table 2[link]). H atoms were located in a difference-Fourier map, but were positioned with idealized geometry and refined with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C16H10Cl2N2O2S
Mr 365.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 273
a, b, c (Å) 19.1513 (7), 11.1589 (4), 7.5071 (3)
β (°) 92.088 (1)
V3) 1603.26 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.55
Crystal size (mm) 0.47 × 0.39 × 0.11
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.784, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 11526, 3762, 3058
Rint 0.022
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.132, 1.12
No. of reflections 3762
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.26
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

1-(4-Chlorophenyl)-2-{[5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}ethanone top
Crystal data top
C16H10Cl2N2O2SF(000) = 744
Mr = 365.22Dx = 1.513 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.1513 (7) ÅCell parameters from 3559 reflections
b = 11.1589 (4) Åθ = 3.2–27.7°
c = 7.5071 (3) ŵ = 0.55 mm1
β = 92.088 (1)°T = 273 K
V = 1603.26 (10) Å3Block, colorless
Z = 40.47 × 0.39 × 0.11 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3762 independent reflections
Radiation source: fine-focus sealed tube3058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scanθmax = 28.3°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2525
Tmin = 0.784, Tmax = 0.945k = 1314
11526 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.069P)2 + 0.2639P]
where P = (Fo2 + 2Fc2)/3
3762 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.31166 (3)0.71345 (7)0.43607 (10)0.0711 (2)
Cl20.54160 (4)0.62796 (12)0.30547 (16)0.1258 (4)
S10.09911 (2)0.52100 (4)0.14177 (7)0.04411 (16)
O10.01151 (8)0.43467 (13)0.3026 (2)0.0556 (4)
O20.21861 (7)0.57741 (12)0.00900 (19)0.0427 (3)
N10.14210 (9)0.72473 (14)0.0287 (2)0.0457 (4)
N20.20649 (9)0.75906 (16)0.1028 (3)0.0508 (4)
C10.14356 (11)0.50990 (18)0.3877 (3)0.0448 (5)
H1B0.13030.43130.41300.054*
C20.20957 (11)0.54753 (19)0.4258 (3)0.0494 (5)
H2B0.24100.49530.47660.059*
C30.22851 (10)0.6646 (2)0.3873 (3)0.0463 (5)
C40.18228 (10)0.74359 (19)0.3131 (3)0.0471 (5)
H4A0.19580.82220.28890.057*
C50.11620 (10)0.70548 (17)0.2752 (3)0.0428 (4)
H5A0.08490.75830.22500.051*
C60.09600 (9)0.58753 (16)0.3118 (3)0.0375 (4)
C70.02636 (10)0.53891 (16)0.2705 (3)0.0394 (4)
C80.02691 (9)0.61879 (16)0.1858 (3)0.0410 (4)
H8A0.04150.68280.26630.049*
H8B0.00790.65370.07610.049*
C90.15279 (9)0.61954 (16)0.0337 (3)0.0385 (4)
C100.24856 (10)0.67088 (18)0.0775 (3)0.0419 (4)
C110.32086 (10)0.6589 (2)0.1300 (3)0.0466 (5)
C120.35671 (13)0.7597 (2)0.1857 (3)0.0611 (6)
H12A0.33470.83400.18760.073*
C130.42443 (14)0.7499 (3)0.2380 (4)0.0743 (8)
H13A0.44850.81740.27470.089*
C140.45624 (12)0.6400 (3)0.2356 (4)0.0760 (8)
C150.42210 (13)0.5394 (3)0.1805 (5)0.0819 (9)
H15A0.44440.46540.17930.098*
C160.35398 (12)0.5494 (2)0.1265 (4)0.0643 (7)
H16A0.33050.48180.08770.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0415 (3)0.0839 (5)0.0889 (5)0.0064 (3)0.0182 (3)0.0073 (3)
Cl20.0440 (4)0.1827 (11)0.1531 (10)0.0066 (5)0.0351 (5)0.0047 (8)
S10.0393 (3)0.0369 (3)0.0567 (4)0.00321 (18)0.0088 (2)0.0004 (2)
O10.0519 (8)0.0395 (8)0.0761 (11)0.0055 (6)0.0118 (7)0.0083 (7)
O20.0347 (6)0.0408 (7)0.0531 (9)0.0030 (5)0.0068 (6)0.0007 (6)
N10.0402 (8)0.0399 (9)0.0575 (11)0.0064 (7)0.0061 (7)0.0015 (7)
N20.0464 (9)0.0448 (9)0.0615 (12)0.0013 (8)0.0073 (8)0.0058 (8)
C10.0474 (11)0.0396 (10)0.0477 (12)0.0031 (8)0.0055 (9)0.0040 (8)
C20.0458 (11)0.0505 (12)0.0527 (13)0.0098 (9)0.0122 (9)0.0030 (9)
C30.0349 (9)0.0569 (12)0.0472 (12)0.0011 (8)0.0050 (8)0.0066 (9)
C40.0446 (11)0.0421 (10)0.0550 (13)0.0043 (8)0.0053 (9)0.0002 (9)
C50.0415 (10)0.0385 (10)0.0488 (12)0.0034 (7)0.0067 (8)0.0025 (8)
C60.0376 (9)0.0369 (9)0.0380 (11)0.0020 (7)0.0025 (7)0.0035 (7)
C70.0407 (9)0.0384 (10)0.0393 (11)0.0018 (7)0.0024 (8)0.0039 (7)
C80.0349 (9)0.0374 (10)0.0511 (12)0.0001 (7)0.0062 (8)0.0050 (8)
C90.0341 (9)0.0387 (9)0.0428 (11)0.0023 (7)0.0020 (7)0.0067 (8)
C100.0387 (9)0.0428 (10)0.0441 (12)0.0009 (8)0.0022 (8)0.0023 (8)
C110.0380 (10)0.0553 (12)0.0466 (12)0.0055 (8)0.0017 (8)0.0023 (9)
C120.0542 (13)0.0643 (14)0.0652 (16)0.0073 (11)0.0064 (11)0.0097 (12)
C130.0563 (15)0.094 (2)0.0731 (19)0.0240 (15)0.0099 (12)0.0140 (15)
C140.0358 (11)0.115 (2)0.0776 (19)0.0088 (13)0.0123 (11)0.0057 (16)
C150.0443 (13)0.0813 (19)0.121 (3)0.0050 (12)0.0181 (14)0.0089 (17)
C160.0429 (11)0.0570 (13)0.0939 (19)0.0010 (10)0.0144 (12)0.0044 (13)
Geometric parameters (Å, º) top
Cl1—C31.735 (2)C5—C61.396 (3)
Cl2—C141.740 (2)C5—H5A0.9300
S1—C91.7279 (19)C6—C71.483 (2)
S1—C81.8014 (18)C7—C81.512 (2)
O1—C71.219 (2)C8—H8A0.9700
O2—C91.364 (2)C8—H8B0.9700
O2—C101.366 (2)C10—C111.459 (3)
N1—C91.277 (2)C11—C161.376 (3)
N1—N21.424 (2)C11—C121.390 (3)
N2—C101.281 (3)C12—C131.373 (3)
C1—C21.372 (3)C12—H12A0.9300
C1—C61.394 (3)C13—C141.369 (4)
C1—H1B0.9300C13—H13A0.9300
C2—C31.384 (3)C14—C151.370 (4)
C2—H2B0.9300C15—C161.385 (3)
C3—C41.381 (3)C15—H15A0.9300
C4—C51.375 (3)C16—H16A0.9300
C4—H4A0.9300
C9—S1—C8100.05 (9)C7—C8—H8B110.8
C9—O2—C10101.97 (14)S1—C8—H8B110.8
C9—N1—N2105.12 (15)H8A—C8—H8B108.9
C10—N2—N1106.51 (16)N1—C9—O2113.80 (16)
C2—C1—C6121.04 (18)N1—C9—S1131.81 (14)
C2—C1—H1B119.5O2—C9—S1114.39 (13)
C6—C1—H1B119.5N2—C10—O2112.59 (17)
C1—C2—C3118.81 (18)N2—C10—C11128.91 (19)
C1—C2—H2B120.6O2—C10—C11118.50 (17)
C3—C2—H2B120.6C16—C11—C12119.5 (2)
C4—C3—C2121.32 (18)C16—C11—C10121.17 (19)
C4—C3—Cl1119.47 (17)C12—C11—C10119.4 (2)
C2—C3—Cl1119.20 (16)C13—C12—C11120.2 (3)
C5—C4—C3119.66 (19)C13—C12—H12A119.9
C5—C4—H4A120.2C11—C12—H12A119.9
C3—C4—H4A120.2C14—C13—C12119.5 (2)
C4—C5—C6120.09 (18)C14—C13—H13A120.3
C4—C5—H5A120.0C12—C13—H13A120.3
C6—C5—H5A120.0C13—C14—C15121.4 (2)
C1—C6—C5119.08 (17)C13—C14—Cl2119.2 (2)
C1—C6—C7117.65 (17)C15—C14—Cl2119.4 (2)
C5—C6—C7123.26 (17)C14—C15—C16119.2 (3)
O1—C7—C6120.85 (17)C14—C15—H15A120.4
O1—C7—C8119.29 (17)C16—C15—H15A120.4
C6—C7—C8119.85 (16)C11—C16—C15120.3 (2)
C7—C8—S1104.72 (12)C11—C16—H16A119.9
C7—C8—H8A110.8C15—C16—H16A119.9
S1—C8—H8A110.8
C9—N1—N2—C100.2 (2)C10—O2—C9—S1179.80 (13)
C6—C1—C2—C30.1 (3)C8—S1—C9—N111.3 (2)
C1—C2—C3—C40.5 (3)C8—S1—C9—O2169.15 (14)
C1—C2—C3—Cl1179.61 (17)N1—N2—C10—O20.1 (2)
C2—C3—C4—C50.5 (3)N1—N2—C10—C11179.0 (2)
Cl1—C3—C4—C5179.62 (16)C9—O2—C10—N20.0 (2)
C3—C4—C5—C60.1 (3)C9—O2—C10—C11179.28 (17)
C2—C1—C6—C50.3 (3)N2—C10—C11—C16166.0 (2)
C2—C1—C6—C7178.44 (19)O2—C10—C11—C1613.1 (3)
C4—C5—C6—C10.3 (3)N2—C10—C11—C1213.5 (4)
C4—C5—C6—C7178.38 (18)O2—C10—C11—C12167.4 (2)
C1—C6—C7—O10.2 (3)C16—C11—C12—C130.5 (4)
C5—C6—C7—O1178.9 (2)C10—C11—C12—C13179.1 (2)
C1—C6—C7—C8179.18 (17)C11—C12—C13—C140.3 (4)
C5—C6—C7—C80.5 (3)C12—C13—C14—C150.6 (5)
O1—C7—C8—S14.4 (2)C12—C13—C14—Cl2179.0 (2)
C6—C7—C8—S1174.98 (14)C13—C14—C15—C160.1 (5)
C9—S1—C8—C7176.28 (13)Cl2—C14—C15—C16179.4 (2)
N2—N1—C9—O20.2 (2)C12—C11—C16—C150.9 (4)
N2—N1—C9—S1179.78 (16)C10—C11—C16—C15178.6 (2)
C10—O2—C9—N10.2 (2)C14—C15—C16—C110.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N1i0.932.483.353 (3)157
Symmetry code: (i) x, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Higher Education Commission, Pakistan (award Nos. 20–1910, 20–2830).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Pervez, H., Rauf, A., Khan, K. M. & Supuran, C. T. (2006). J. Enzyme Inhib. Med. Chem. 21, 193–201.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFadda, A., Abdel-Rahman, A.-H., El-Sayed, W., Zidan, T. & Badria, F. (2011). Chem. Heterocycl. Compd, 47, 856–864.  CrossRef CAS Google Scholar
First citationJakobi, H., Ort, O., Schaper, W., Braun, R., Krautstrunk, G., Markl, M. & Bonin, W. (1999). US Patent No. 5925644.  Google Scholar
First citationJha, K. K., Samad, A., Kumar, Y., Shaharyar, M., Khosa, R., Jaim, J. & Bansal, S. (2009). Iran. J. Pharm. Res. 8, 163–167.  CAS Google Scholar
First citationKashtoh, H., Hussain, S., Khan, A., Saad, S. M., Khan, J. A., Khan, K. M., Perveen, S. & Choudhary, M. I. (2014). Bioorg. Med. Chem. 22, 5454–5465.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhan, M. T. H., Choudhary, M. I., Khan, K. M., Rani, M. & Atta-ur-Rahman (2005). Bioorg. Med. Chem. 13, 3385–3395.  Google Scholar
First citationKhan, K. M., Rahim, F., Halim, S. A., Taha, M., Khan, M., Perveen, S., Zaheer-ul-Haq, Mesaik, M. A. & Iqbal Choudhary, M. (2011). Bioorg. Med. Chem. 19, 4286–4294.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLoetchutinat, C., Chau, F. & Mankhetkorn, S. (2003). Chem. Pharm. Bull. 51, 728–730.  CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPalaska, E., Şahin, G., Kelicen, P., Durlu, N. T. & Altinok, G. (2002). Farmaco, 57, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationŞahin, G., Palaska, E., Ekizoğlu, M. & Özalp, M. (2002). Farmaco, 57, 539–542.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTyagi, M. & Kumar, A. (2002). Orient. J. Chem. 18, 125–130.  CAS Google Scholar
First citationVitaku, E., Smith, D. T. & Njardarson, J. T. (2014). J. Med. Chem. 57, 10257–10274.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXia, C.-H., Mao, C.-B. & Wu, B.-L. (2011). Acta Cryst. E67, o413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, L.-Z., Yu, G.-P., Yin, S.-M., Zhou, K. & Yang, S.-H. (2005). Acta Cryst. E61, o3375–o3376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-M., Qiu, M., Sun, J., Zhang, Y.-B., Yang, Y.-S., Wang, X.-L., Tang, J.-F. & Zhu, H.-L. (2011). Bioorg. Med. Chem. 19, 6518–6524.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZou, X., Zhang, Z. & Jin, G. (2002). J. Chem. Res. (S), pp. 228–230.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds