research communications
Crystal structures of two platinum(II) complexes containing ethyl eugenoxyacetate and 2-aminopyridine
aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and bDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be
In the title complexes, trans-(2-aminopyridine-κN)dichlorido{4-ethoxycarbonylmethoxy-3-methoxy-1-[(2,3-η)-prop-2-en-1-yl]benzene}platinum(II), [PtCl2(C5H6N2)(C14H18O4)], (I), and (2-aminopyridine-κN)chlorido{5-ethoxycarbonylmethoxy-4-methoxy-1-[(2,3-η)-prop-2-en-1-yl]phenyl-κC1}platinum(II), [Pt(C14H17O4)Cl(C5H6N2)], (II), the central PtII metal atom displays a distorted square-planar coordination, with the PtII atom coordinated by the pyridine N atom, the C=C double bond of the eugenol ligand and two Cl atoms for (I) or one Cl atom and a C atom of the phenyl ring for (II). The allyl fragment in (I) is disordered, with population parameters 0.614 (14) and 0.386 (14) for the two positions of the central C atom. The least-squares planes through the two aromatic ring systems make a dihedral angle of 51.10 (13)° for (I) and 78.5 (2)° for (II). Intramolecular N—H⋯O and N—H⋯π interactions occur in (I). In (I), inversion dimers formed by C—H⋯Cl interactions are further linked into chains parallel to the b axis by C—H⋯O hydrogen bonds. Both aromatic rings are involved in π–π interactions, with centroid-to-centroid distances of 3.508 (3) and 3.791 (3) Å. In (II), inversion dimers form chains parallel to the b axis by C—H⋯O interactions.
Keywords: crystal structure; platinum(II) complexes; 2-aminopyridine; eugenol.
1. Chemical context
Since the discovery of the anticancer activity and subsequent clinical success of cisplatin {cis-[PtCl2(NH3)2]}, platinum-based compounds have been widely synthesized and studied as potential chemotherapeutic agents (Wong & Giandomenico, 1999). Despite the great success in treating certain kinds of cancer, there are several side effects, and both intrinsic and acquired resistance limit the organotropic profile of the drug (Chabner & Roberts, 2005; Kelland, 2007; Wilson & Lippard, 2014). Hence, there is continuing interest in the development of new platinum complexes that have high activities but low toxicity (Johnstone et al., 2014).
Several natural arylolefins, such as safrole (in sassafras oil), eugenol (in clove oil) and anethole (in anise and fennel oil), and their derivatives have been used as important intermediate materials to synthesize many compounds that have various applications in the flavouring, food and pharmaceutical industries (Jadhav et al., 2004). Recently, a number of PtII complexes containing natural arylolefins as ligands, i.e. safrole or derivatives of eugenol such as methyleugenol and alkyleugenoxyacetate, have been prepared (Da et al., 2010, 2012; Da, Chi et al., 2015; Da, Hai et al., 2015; Nguyen Thi Thanh et al., 2016; Le Thi Hong et al., 2016). The insertion of these natural arylolefins into the coordination with PtII and their transformations formed complexes with novel structures and high applicability. In particular, many of these organoplatinum(II) complexes exhibit significant inhibitory activities against human cancer cells (Da et al., 2012; Da, Chi et al., 2015; Da, Hai et al., 2015).
Herein, we report the syntheses and 3(Eteug)] and the binuclear platinum(II) complex [Pt2(Eteug-1H)2Cl2] (Eteug is ethyleugenoxylacetate).
determinations of organoplatinum(II) complexes formed by the complexation of 2-aminopyridine as ligand with the mononuclear platinum(II) complex K[PtCl2. Structural commentary
In both title complexes, the central PtII metal atom displays a distorted square-planar coordination (Fig. 1). In addition to the two Cl atoms in dichloride complex (I), the pyridine N atom and the C=C double bond of the eugenol ligand coordinate to the central PtII atom. In monochloride complex (II), one Cl atom is replaced by a C atom of the eugenol phenyl group. An overlay of the Pt–2-amino fragment present in both structures clearly shows the differences in coordination (Fig. 2). Where in (I) the Cl atoms are trans with respect to each other, this is the case for the two aromatic rings in (II). One Cl and the C=C coordinations in (I) are replaced by, respectively, C=C and a phenyl C atom in (II). In both cases, the 2-aminopyridine ligand only interacts via the ring N atom. In (I), the CH2—CH=CH2 fragment is disordered, with population parameters of 0.614 (14) and 0.386 (14) for the two positions of the central C atom. The dihedral angles between the planes through the two aromatic rings are 78.5 (2) and 51.10 (13)° for (I) and (II), respectively. In (I), the H atoms of the amino group are involved in a weak intramolecular N—H⋯O interaction (N8—H8B⋯O25, Table 1) and an N—H⋯π interaction (N8—H8A⋯Cg1, Table 1; Cg1 is the centroid of the C14–C19 ring). Similar interactions are not possible in (II) due to the different orientation of the ligands.
3. Supramolecular features
The complexes crystallize in different space groups, viz. P for dichloride complex (I) and P21/c for monochloride complex (II).
The crystal packing of (I) is dominated by hydrogen bonding and π–π interactions. Inversion dimers formed by C18—H18⋯Cl9i hydrogen bonds are further linked into chains parallel to the b axis by C7—H7⋯O26ii hydrogen bonds [Table 1 and Fig. 3; symmetry codes: (i) x, y − 1, z; (ii) −x, −y + 1, −z + 1]. Both aromatic rings show π–π stacking, with Cg1⋯Cg1iii = 3.791 (3) Å for the phenyl ring and Cg2⋯Cg2iv = 3.508 (3) Å for the pyridine ring [Cg1 and Cg2 are the centroids of the C14–C19 and N2/C3–C7 rings; symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (iv) −x, −y, −z + 2; Fig. 4].
The crystal packing of (II) is built up by C—H⋯O, N—H⋯Cl and C—H⋯π interactions (Table 2 and Fig. 5). Two types of inversion dimers are created by C—H⋯O interactions enclosing R22(10) and R22(16) ring motifs, and resulting in the formation of chains parallel to the b axis. No π–π interactions are observed in the packing of (II).
4. Database survey
The Pt—N distances of 2.066 (3) Å in (I) and 2.143 (2) Å in (II) agree well with the average Pt—N distance of 2.06 (7) Å for Pt–pyridine fragments present in the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom et al., 2016).
The CSD contains 34 Pt complexes with Pt coordinated by Cl, pyridine and C=C, with 28 complexes having an additional Cl atom as the fourth ligand (27 trans and one cis coordination), three a C atom and another three an N atom.
The synthesis of (II), starting from the dinuclear complex [Pt2Cl2(Eteug-1H)2], can be rationalized by the replacement of the Cl atom in the trans position with respect to the C=C bond. Verification of the Pt—Cl distances in the dinuclear complex di-μ-chlorido-bis[(η2-2-allyl-4-methoxy-5-{[(propan-2-yloxy)carbonyl]methoxy}phenyl-κC1)platinum(II)], [Pt2(IsoPreug-1H)2Cl2] (IsoPreug-1H is isopropyleugenoxylacetate; CSD refcode EWAVIJ; Nguyen Thi Thanh et al., 2016) indicates that the longest Pt—Cl bond [2.4773 (7) versus 2.3527 (7) Å] is cleaved, leading to a cis position of 2-aminopyridine with respect to the C=C bond.
5. Synthesis and crystallization
5.1. Synthesis of K[PtCl3(Eteug)] and [Pt2Cl2(Eteug-1H)2]
The mononuclear complex K[PtCl3(Eteug)] and the dinuclear chelate ring complex [Pt2Cl2(Eteug-1H)2] were synthesized following the protocol of Da and co-workers (Da et al., 2012; Da, Chi et al., 2015; Da, Hai et al., 2015).
5.2. Synthesis of trans-[PtCl2(Eteug)(C5H6N2)], (I)
While stirring, a solution of 2-aminopyridine (0.22 mmol) in acetone (2 ml) was added slowly to a solution of K[PtCl3(Eteug)] (0.2 mmol) in acetone (15 ml). After 2 h, a white precipitate of KCl was separated out. After stirring for 3 h at room temperature, ethanol (2 ml) was added to the obtained solution. Slow evaporation of the solvent at room temperature afforded the desired product as bright orange–yellow crystals. The yield was 80%. The product is soluble in acetone and chloroform, but only slightly soluble in ethanol and insoluble in water. Single crystals suitable for X-ray diffraction were obtained from an acetone/ethanol (3:1 v/v) solution via slow evaporation of the solvents at 277–278 K.
5.3. Data for trans-[PtCl2(Eteug)(C5H6N2)], (I)
IR (Impack-410 Nicolet spectrometer, KBr, cm−1): 3454, 3341 (νNH); 3060, 2930 (νCH); 1739 (νC=O); 1598, 1512 (aromatic, νC=C, νC= N).
1H NMR (δ p.p.m.; Bruker AVANCE 500 MHz, CDCl3): 7.15 (1H, d, 4J = 1.5 Hz, Ar), 7.00 (1H, t, 3J = 8.0 Hz, 4J = 1.5 Hz, Ar), 6.77 (1H, d, 3J = 8 Hz, Ar), 4.82 (1H, d, 2J = 17 Hz, OCH2), 4.77 (1H, d, 2J = 16.5 Hz, OCH2) , 3.91 (3H, s, OCH3), 4.28 (2H, q, 3J = 7 Hz, -CH2CH3), 1.33 (3H, t, 3J = 7 Hz, CH2CH3), 3.26 (1H, dd, 2J = 15 Hz, 3J = 7.5 Hz, CH2CH), 3.39 (1H, dd, 2J = 15 Hz, 3J = 7.5 Hz, CH2CH), 5.99 (1H, m, 2JPtH = 70 Hz, CH=CH2), 4.69 (1H, d, 3J = 8, 2JPtH = 70 Hz, cis-alkene), 4.78 (1H, ov, trans-alkene), 6.47 (1H, d, 3J = 8.5 Hz, Ar of 2-aminopyridine), 6.6 (1H, t, 3J = 6 Hz, Ar), 7.35 (1H, m, 3J = 7.5 Hz, 4J = 1.5 Hz, Ar), 7.86 (1H, d, 3J = 6 Hz, Ar), 5.21 (ov, NH2).
5.4. Synthesis of [Pt(Eteug-1H)Cl(C5H6N2)], (II)
A solution of 2-aminopyridine (0.22 mmol) in acetone (2 ml) was added slowly to a mixture of [Pt2(Eteug-1H)2Cl2] (0.1 mmol) and acetone/ethanol (6 ml, 1:2 v/v). After stirring for 2 h at room temperature, a yellow solution was obtained. A white precipitate was formed by slow evaporation of the solvent at 277–278 K. The precipitate was collected by filtration and washed with ethanol. The product is soluble in acetone and chloroform, but only slightly soluble in ethanol and insoluble in water. The yield was 75%. Single crystals suitable for X-ray diffraction were obtained from a acetone/ethanol (1:1 v/v) solution via slow evaporation of the solvents at 277–278 K.
5.5. Data for [Pt(Eteug-1H)Cl(C5H6N2)], (II)
IR (Impack-410 Nicolet spectrometer, KBr, cm−1): 3446, 3332 (νNH); 3070, 2941, 2849 (νCH); 1756 (νC=O); 1566 (aromatic, νC=C, νC=N).
1H NMR (δ p.p.m.; Bruker AVANCE 500 MHz, CD3COCD3): 6.66 (1H, s, Ar), 7.04 (1H, s, 3JPtH = 40 Hz, Ar), 4.59 (1H, d, 2J = 16 Hz, 2H, OCH2), 4.55 (1H, d, 2J = 16 Hz, OCH2), 3.73 (3H, s, 3J = 7 Hz, OCH3), 4.21 (2H, m, 3J = 7 Hz, CH2CH3), 1.28 (3H, t, 3J = 7.0 Hz, CH2CH3), 2.65 (1H, d, 2J = 16.5; 3JPtH = 100 Hz, CH2CH), 3.78 (1H, ov, CH2CH), 4.74 (1H, m, 2JPtH = 75 Hz, CH=CH2), 3.72 (1H, ov, cis-alkene), 3.82 (1H, d, 3J = 13.5 Hz, trans-alkene), 6.85 (1H, d, 3J = 8.5 Hz, Ar of 2-aminopyridine), 6.72 (1H, m, Ar), 7.56 (1H, m, Ar), 8.07 (1H, d, 3J = 6 Hz, Ar), 6.43 (ov, NH2).
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in idealized positions and refined in the riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for methyl groups), and with C—H distances of 0.95 (aromatic and =CH2), 0.98 (CH3), 0.99 (CH2) and 1.00 Å (CH), and N—H distances of 0.88 Å (NH2).
details are summarized in Table 3In (I), the central C atom in the CH2—CH=CH2 fragment is disordered over two positions [population parameters = 0.614 (14) and 0.386 (14)] and was refined with constraints for bond lengths and anisotropic displacement parameters present in this fragment.
Supporting information
https://doi.org/10.1107/S2056989017004285/rz5208sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017004285/rz5208Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017004285/rz5208IIsup3.hkl
For both compounds, data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SUPERFLIP (Palatinus & Chapuis, 2007) for (II). For both compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[PtCl2(C5H6N2)(C14H18O4)] | Z = 2 |
Mr = 610.39 | F(000) = 592 |
Triclinic, P1 | Dx = 1.953 Mg m−3 |
a = 8.3187 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.4119 (3) Å | Cell parameters from 13838 reflections |
c = 12.1012 (4) Å | θ = 2.7–29.0° |
α = 70.437 (3)° | µ = 7.05 mm−1 |
β = 73.688 (3)° | T = 100 K |
γ = 87.038 (2)° | Block, orange |
V = 1037.76 (6) Å3 | 0.3 × 0.3 × 0.15 mm |
Agilent SuperNova diffractometer (single source at offset, Eos detector) | 4241 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 4006 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.052 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.6° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | k = −14→14 |
Tmin = 0.406, Tmax = 1.000 | l = −15→15 |
21329 measured reflections |
Refinement on F2 | 26 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H-atom parameters constrained |
wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.0193P)2 + 4.6851P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4241 reflections | Δρmax = 1.41 e Å−3 |
265 parameters | Δρmin = −2.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1 | 0.11518 (2) | 0.08277 (2) | 0.62392 (2) | 0.02167 (7) | |
N2 | −0.0430 (4) | 0.0375 (3) | 0.7993 (3) | 0.0155 (7) | |
C3 | −0.0741 (5) | 0.1198 (4) | 0.8603 (4) | 0.0146 (8) | |
C4 | −0.1797 (5) | 0.0846 (4) | 0.9812 (4) | 0.0170 (8) | |
H4 | −0.2041 | 0.1432 | 1.0232 | 0.020* | |
C5 | −0.2465 (5) | −0.0343 (4) | 1.0371 (4) | 0.0205 (9) | |
H5 | −0.3167 | −0.0591 | 1.1187 | 0.025* | |
C6 | −0.2119 (6) | −0.1198 (4) | 0.9745 (4) | 0.0208 (9) | |
H6 | −0.2573 | −0.2030 | 1.0124 | 0.025* | |
C7 | −0.1108 (5) | −0.0804 (4) | 0.8570 (4) | 0.0175 (9) | |
H7 | −0.0870 | −0.1380 | 0.8139 | 0.021* | |
N8 | −0.0004 (4) | 0.2351 (3) | 0.8045 (3) | 0.0174 (7) | |
H8A | 0.0666 | 0.2556 | 0.7296 | 0.021* | |
H8B | −0.0193 | 0.2898 | 0.8429 | 0.021* | |
Cl9 | −0.0885 (2) | 0.20013 (13) | 0.55243 (12) | 0.0524 (5) | |
Cl10 | 0.30457 (16) | −0.05058 (16) | 0.70053 (13) | 0.0431 (4) | |
C11 | 0.2551 (6) | 0.0923 (4) | 0.4411 (4) | 0.0277 (11) | |
H11A | 0.1965 | 0.1311 | 0.3822 | 0.033* | 0.614 (14) |
H11B | 0.2525 | 0.0041 | 0.4747 | 0.033* | 0.614 (14) |
H11C | 0.3564 | 0.0494 | 0.4378 | 0.033* | 0.386 (14) |
H11D | 0.1567 | 0.0527 | 0.4423 | 0.033* | 0.386 (14) |
C12A | 0.3491 (9) | 0.1682 (6) | 0.4797 (6) | 0.023 (2) | 0.614 (14) |
H12A | 0.4508 | 0.1263 | 0.5000 | 0.028* | 0.614 (14) |
C12B | 0.2510 (13) | 0.2166 (8) | 0.4441 (9) | 0.017 (3) | 0.386 (14) |
H12B | 0.1698 | 0.2651 | 0.4012 | 0.020* | 0.386 (14) |
C13 | 0.3685 (9) | 0.2936 (6) | 0.4434 (6) | 0.063 (2) | |
H13A | 0.2955 | 0.3289 | 0.3893 | 0.075* | 0.614 (14) |
H13B | 0.4857 | 0.3167 | 0.3923 | 0.075* | 0.614 (14) |
H13C | 0.3991 | 0.3586 | 0.3616 | 0.075* | 0.386 (14) |
H13D | 0.4693 | 0.2450 | 0.4510 | 0.075* | 0.386 (14) |
C14 | 0.3340 (7) | 0.3596 (5) | 0.5366 (4) | 0.0345 (13) | |
C15 | 0.4254 (6) | 0.3359 (4) | 0.6219 (4) | 0.0270 (11) | |
H15 | 0.5109 | 0.2775 | 0.6217 | 0.032* | |
C16 | 0.3922 (5) | 0.3972 (4) | 0.7070 (4) | 0.0175 (9) | |
C17 | 0.2668 (5) | 0.4837 (4) | 0.7075 (4) | 0.0170 (8) | |
C18 | 0.1784 (6) | 0.5086 (4) | 0.6213 (4) | 0.0243 (10) | |
H18 | 0.0940 | 0.5679 | 0.6201 | 0.029* | |
C19 | 0.2133 (7) | 0.4467 (5) | 0.5364 (4) | 0.0315 (12) | |
H19 | 0.1527 | 0.4649 | 0.4773 | 0.038* | |
O20 | 0.4752 (4) | 0.3819 (3) | 0.7940 (3) | 0.0220 (7) | |
C21 | 0.6142 (6) | 0.3034 (5) | 0.7900 (5) | 0.0313 (12) | |
H21A | 0.6947 | 0.3334 | 0.7087 | 0.047* | |
H21B | 0.5748 | 0.2180 | 0.8068 | 0.047* | |
H21C | 0.6687 | 0.3047 | 0.8516 | 0.047* | |
O22 | 0.2431 (4) | 0.5390 (3) | 0.7957 (3) | 0.0178 (6) | |
C23 | 0.1152 (5) | 0.6250 (4) | 0.8002 (4) | 0.0187 (9) | |
H23A | 0.1245 | 0.6827 | 0.7165 | 0.022* | |
H23B | 0.1309 | 0.6750 | 0.8497 | 0.022* | |
C24 | −0.0586 (5) | 0.5614 (4) | 0.8548 (4) | 0.0163 (8) | |
O25 | −0.0878 (4) | 0.4502 (3) | 0.9044 (3) | 0.0201 (6) | |
O26 | −0.1749 (3) | 0.6460 (3) | 0.8437 (3) | 0.0170 (6) | |
C27 | −0.3490 (5) | 0.5976 (4) | 0.9030 (4) | 0.0188 (9) | |
H27A | −0.3670 | 0.5590 | 0.9923 | 0.023* | |
H27B | −0.3737 | 0.5333 | 0.8710 | 0.023* | |
C28 | −0.4627 (5) | 0.7039 (4) | 0.8770 (4) | 0.0192 (9) | |
H28A | −0.4425 | 0.7425 | 0.7885 | 0.029* | |
H28B | −0.4399 | 0.7657 | 0.9113 | 0.029* | |
H28C | −0.5798 | 0.6727 | 0.9143 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.03045 (11) | 0.01466 (10) | 0.01438 (10) | −0.00576 (7) | 0.00493 (7) | −0.00608 (7) |
N2 | 0.0166 (17) | 0.0131 (17) | 0.0137 (17) | 0.0016 (14) | −0.0029 (14) | −0.0015 (14) |
C3 | 0.0140 (19) | 0.013 (2) | 0.018 (2) | 0.0038 (15) | −0.0069 (16) | −0.0051 (16) |
C4 | 0.016 (2) | 0.020 (2) | 0.015 (2) | 0.0041 (16) | −0.0037 (16) | −0.0067 (17) |
C5 | 0.014 (2) | 0.027 (2) | 0.017 (2) | −0.0024 (17) | −0.0031 (17) | −0.0031 (18) |
C6 | 0.023 (2) | 0.015 (2) | 0.020 (2) | −0.0071 (17) | −0.0048 (18) | 0.0001 (17) |
C7 | 0.021 (2) | 0.015 (2) | 0.016 (2) | −0.0006 (17) | −0.0051 (17) | −0.0042 (17) |
N8 | 0.0212 (18) | 0.0122 (17) | 0.0168 (18) | 0.0005 (14) | −0.0011 (14) | −0.0054 (14) |
Cl9 | 0.1016 (13) | 0.0365 (8) | 0.0210 (6) | 0.0429 (8) | −0.0248 (7) | −0.0113 (6) |
Cl10 | 0.0236 (6) | 0.0824 (11) | 0.0382 (7) | 0.0192 (7) | −0.0099 (5) | −0.0404 (8) |
C11 | 0.038 (3) | 0.022 (2) | 0.014 (2) | −0.007 (2) | 0.0094 (19) | −0.0080 (18) |
C12A | 0.020 (4) | 0.024 (4) | 0.016 (4) | −0.007 (3) | 0.009 (3) | −0.006 (3) |
C12B | 0.024 (6) | 0.020 (5) | 0.005 (5) | −0.001 (4) | −0.003 (4) | −0.004 (4) |
C13 | 0.071 (4) | 0.072 (4) | 0.038 (3) | −0.051 (4) | 0.030 (3) | −0.040 (3) |
C14 | 0.040 (3) | 0.039 (3) | 0.018 (2) | −0.031 (3) | 0.015 (2) | −0.015 (2) |
C15 | 0.022 (2) | 0.023 (2) | 0.028 (3) | −0.0113 (19) | 0.0111 (19) | −0.012 (2) |
C16 | 0.016 (2) | 0.013 (2) | 0.019 (2) | −0.0036 (16) | −0.0001 (17) | −0.0037 (17) |
C17 | 0.015 (2) | 0.017 (2) | 0.015 (2) | −0.0030 (16) | −0.0003 (16) | −0.0024 (17) |
C18 | 0.024 (2) | 0.022 (2) | 0.020 (2) | −0.0099 (19) | −0.0062 (19) | 0.0024 (19) |
C19 | 0.038 (3) | 0.036 (3) | 0.014 (2) | −0.023 (2) | −0.004 (2) | 0.001 (2) |
O20 | 0.0160 (15) | 0.0223 (16) | 0.0280 (17) | 0.0099 (13) | −0.0059 (13) | −0.0104 (14) |
C21 | 0.020 (2) | 0.028 (3) | 0.038 (3) | 0.012 (2) | −0.001 (2) | −0.007 (2) |
O22 | 0.0159 (14) | 0.0168 (15) | 0.0246 (16) | 0.0060 (12) | −0.0075 (12) | −0.0112 (13) |
C23 | 0.016 (2) | 0.012 (2) | 0.028 (2) | 0.0032 (16) | −0.0051 (18) | −0.0079 (18) |
C24 | 0.018 (2) | 0.015 (2) | 0.016 (2) | 0.0015 (16) | −0.0059 (16) | −0.0042 (17) |
O25 | 0.0216 (16) | 0.0144 (15) | 0.0222 (16) | −0.0002 (12) | −0.0033 (13) | −0.0057 (13) |
O26 | 0.0130 (14) | 0.0128 (14) | 0.0220 (16) | 0.0001 (11) | −0.0015 (12) | −0.0044 (12) |
C27 | 0.013 (2) | 0.019 (2) | 0.021 (2) | −0.0030 (17) | 0.0005 (17) | −0.0057 (18) |
C28 | 0.015 (2) | 0.024 (2) | 0.017 (2) | 0.0017 (17) | −0.0038 (17) | −0.0062 (18) |
Pt1—N2 | 2.066 (3) | C13—H13C | 0.9900 |
Pt1—Cl9 | 2.2860 (14) | C13—H13D | 0.9900 |
Pt1—Cl10 | 2.2990 (14) | C13—C14 | 1.513 (7) |
Pt1—C11 | 2.161 (4) | C14—C15 | 1.395 (8) |
Pt1—C12A | 2.221 (7) | C14—C19 | 1.376 (8) |
Pt1—C12B | 2.217 (10) | C15—H15 | 0.9500 |
N2—C3 | 1.352 (5) | C15—C16 | 1.389 (6) |
N2—C7 | 1.358 (5) | C16—C17 | 1.399 (6) |
C3—C4 | 1.412 (6) | C16—O20 | 1.375 (5) |
C3—N8 | 1.348 (5) | C17—C18 | 1.386 (6) |
C4—H4 | 0.9500 | C17—O22 | 1.377 (5) |
C4—C5 | 1.364 (6) | C18—H18 | 0.9500 |
C5—H5 | 0.9500 | C18—C19 | 1.391 (7) |
C5—C6 | 1.397 (6) | C19—H19 | 0.9500 |
C6—H6 | 0.9500 | O20—C21 | 1.426 (5) |
C6—C7 | 1.367 (6) | C21—H21A | 0.9800 |
C7—H7 | 0.9500 | C21—H21B | 0.9800 |
N8—H8A | 0.8800 | C21—H21C | 0.9800 |
N8—H8B | 0.8800 | O22—C23 | 1.413 (5) |
C11—H11A | 0.9500 | C23—H23A | 0.9900 |
C11—H11B | 0.9500 | C23—H23B | 0.9900 |
C11—H11C | 0.9500 | C23—C24 | 1.518 (6) |
C11—H11D | 0.9500 | C24—O25 | 1.211 (5) |
C11—C12A | 1.458 (8) | C24—O26 | 1.333 (5) |
C11—C12B | 1.429 (9) | O26—C27 | 1.467 (5) |
C12A—H12A | 1.0000 | C27—H27A | 0.9900 |
C12A—C13 | 1.353 (9) | C27—H27B | 0.9900 |
C12B—H12B | 1.0000 | C27—C28 | 1.502 (6) |
C12B—C13 | 1.344 (9) | C28—H28A | 0.9800 |
C13—H13A | 0.9900 | C28—H28B | 0.9800 |
C13—H13B | 0.9900 | C28—H28C | 0.9800 |
N2—Pt1—Cl9 | 89.18 (10) | C12A—C13—H13B | 107.2 |
N2—Pt1—Cl10 | 88.85 (10) | C12A—C13—C14 | 120.4 (6) |
N2—Pt1—C11 | 167.04 (16) | C12B—C13—H13C | 107.2 |
N2—Pt1—C12A | 153.0 (2) | C12B—C13—H13D | 107.2 |
N2—Pt1—C12B | 153.2 (3) | C12B—C13—C14 | 120.7 (6) |
Cl9—Pt1—Cl10 | 174.90 (6) | H13A—C13—H13B | 106.8 |
C11—Pt1—Cl9 | 91.10 (15) | H13C—C13—H13D | 106.8 |
C11—Pt1—Cl10 | 89.77 (15) | C14—C13—H13A | 107.2 |
C11—Pt1—C12A | 38.8 (2) | C14—C13—H13B | 107.2 |
C11—Pt1—C12B | 38.1 (2) | C14—C13—H13C | 107.2 |
C12A—Pt1—Cl9 | 103.0 (2) | C14—C13—H13D | 107.2 |
C12A—Pt1—Cl10 | 80.8 (2) | C15—C14—C13 | 121.1 (6) |
C12B—Pt1—Cl9 | 75.1 (3) | C19—C14—C13 | 119.9 (6) |
C12B—Pt1—Cl10 | 108.4 (3) | C19—C14—C15 | 119.0 (5) |
C3—N2—Pt1 | 122.0 (3) | C14—C15—H15 | 119.8 |
C3—N2—C7 | 119.1 (4) | C16—C15—C14 | 120.5 (5) |
C7—N2—Pt1 | 118.9 (3) | C16—C15—H15 | 119.8 |
N2—C3—C4 | 120.4 (4) | C15—C16—C17 | 120.0 (4) |
N8—C3—N2 | 118.8 (4) | O20—C16—C15 | 125.3 (4) |
N8—C3—C4 | 120.8 (4) | O20—C16—C17 | 114.6 (4) |
C3—C4—H4 | 120.3 | C18—C17—C16 | 119.3 (4) |
C5—C4—C3 | 119.4 (4) | O22—C17—C16 | 115.6 (4) |
C5—C4—H4 | 120.3 | O22—C17—C18 | 125.1 (4) |
C4—C5—H5 | 119.9 | C17—C18—H18 | 120.0 |
C4—C5—C6 | 120.1 (4) | C17—C18—C19 | 120.0 (5) |
C6—C5—H5 | 119.9 | C19—C18—H18 | 120.0 |
C5—C6—H6 | 120.9 | C14—C19—C18 | 121.2 (5) |
C7—C6—C5 | 118.1 (4) | C14—C19—H19 | 119.4 |
C7—C6—H6 | 120.9 | C18—C19—H19 | 119.4 |
N2—C7—C6 | 122.9 (4) | C16—O20—C21 | 116.7 (4) |
N2—C7—H7 | 118.5 | O20—C21—H21A | 109.5 |
C6—C7—H7 | 118.5 | O20—C21—H21B | 109.5 |
C3—N8—H8A | 120.0 | O20—C21—H21C | 109.5 |
C3—N8—H8B | 120.0 | H21A—C21—H21B | 109.5 |
H8A—N8—H8B | 120.0 | H21A—C21—H21C | 109.5 |
Pt1—C11—H11A | 112.8 | H21B—C21—H21C | 109.5 |
Pt1—C11—H11B | 84.7 | C17—O22—C23 | 117.0 (3) |
Pt1—C11—H11C | 113.4 | O22—C23—H23A | 109.2 |
Pt1—C11—H11D | 83.9 | O22—C23—H23B | 109.2 |
H11A—C11—H11B | 120.0 | O22—C23—C24 | 112.2 (3) |
H11C—C11—H11D | 120.0 | H23A—C23—H23B | 107.9 |
C12A—C11—Pt1 | 72.8 (3) | C24—C23—H23A | 109.2 |
C12A—C11—H11A | 120.0 | C24—C23—H23B | 109.2 |
C12A—C11—H11B | 120.0 | O25—C24—C23 | 125.1 (4) |
C12B—C11—Pt1 | 73.1 (4) | O25—C24—O26 | 124.8 (4) |
C12B—C11—H11C | 120.0 | O26—C24—C23 | 110.1 (3) |
C12B—C11—H11D | 120.0 | C24—O26—C27 | 115.6 (3) |
Pt1—C12A—H12A | 111.8 | O26—C27—H27A | 110.0 |
C11—C12A—Pt1 | 68.3 (3) | O26—C27—H27B | 110.0 |
C11—C12A—H12A | 111.8 | O26—C27—C28 | 108.4 (3) |
C13—C12A—Pt1 | 116.3 (5) | H27A—C27—H27B | 108.4 |
C13—C12A—C11 | 129.2 (6) | C28—C27—H27A | 110.0 |
C13—C12A—H12A | 111.8 | C28—C27—H27B | 110.0 |
Pt1—C12B—H12B | 110.3 | C27—C28—H28A | 109.5 |
C11—C12B—Pt1 | 68.8 (4) | C27—C28—H28B | 109.5 |
C11—C12B—H12B | 110.3 | C27—C28—H28C | 109.5 |
C13—C12B—Pt1 | 116.9 (6) | H28A—C28—H28B | 109.5 |
C13—C12B—C11 | 132.6 (8) | H28A—C28—H28C | 109.5 |
C13—C12B—H12B | 110.3 | H28B—C28—H28C | 109.5 |
C12A—C13—H13A | 107.2 | ||
Pt1—N2—C3—C4 | −178.4 (3) | C13—C14—C19—C18 | 179.8 (4) |
Pt1—N2—C3—N8 | 0.5 (5) | C14—C15—C16—C17 | −0.2 (6) |
Pt1—N2—C7—C6 | 177.6 (3) | C14—C15—C16—O20 | −179.4 (4) |
Pt1—C11—C12A—C13 | −106.9 (7) | C15—C14—C19—C18 | −1.7 (7) |
Pt1—C11—C12B—C13 | 107.7 (11) | C15—C16—C17—C18 | −0.9 (6) |
Pt1—C12A—C13—C14 | 46.1 (8) | C15—C16—C17—O22 | 179.7 (4) |
Pt1—C12B—C13—C14 | −44.9 (10) | C15—C16—O20—C21 | 4.8 (6) |
N2—C3—C4—C5 | 1.8 (6) | C16—C17—C18—C19 | 0.8 (6) |
C3—N2—C7—C6 | 1.0 (6) | C16—C17—O22—C23 | −178.8 (4) |
C3—C4—C5—C6 | −0.7 (6) | C17—C16—O20—C21 | −174.4 (4) |
C4—C5—C6—C7 | −0.2 (6) | C17—C18—C19—C14 | 0.5 (7) |
C5—C6—C7—N2 | 0.1 (7) | C17—O22—C23—C24 | 74.6 (5) |
C7—N2—C3—C4 | −1.9 (6) | C18—C17—O22—C23 | 1.9 (6) |
C7—N2—C3—N8 | 177.0 (4) | C19—C14—C15—C16 | 1.5 (7) |
N8—C3—C4—C5 | −177.1 (4) | O20—C16—C17—C18 | 178.4 (4) |
C11—C12A—C13—C14 | 128.7 (7) | O20—C16—C17—O22 | −1.0 (5) |
C11—C12B—C13—C14 | −130.1 (10) | O22—C17—C18—C19 | −179.9 (4) |
C12A—C13—C14—C15 | 61.2 (8) | O22—C23—C24—O25 | 9.5 (6) |
C12A—C13—C14—C19 | −120.3 (7) | O22—C23—C24—O26 | −172.5 (3) |
C12B—C13—C14—C15 | 116.1 (8) | C23—C24—O26—C27 | −174.6 (3) |
C12B—C13—C14—C19 | −65.4 (9) | C24—O26—C27—C28 | −177.6 (3) |
C13—C14—C15—C16 | −180.0 (4) | O25—C24—O26—C27 | 3.5 (6) |
Cg1 is the centroid of the C14–C19 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H8B···O25 | 0.88 | 2.19 | 3.054 (5) | 167 |
C7—H7···O26i | 0.95 | 2.49 | 3.258 (6) | 138 |
C18—H18···Cl9ii | 0.95 | 2.78 | 3.460 (5) | 130 |
N8—H8A···Cg1 | 0.88 | 2.53 | 3.166 (4) | 129 |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1. |
[Pt(C14H17O4)Cl(C5H6N2)] | F(000) = 1112 |
Mr = 573.93 | Dx = 1.984 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.1198 (5) Å | Cell parameters from 14326 reflections |
b = 10.0855 (2) Å | θ = 3.2–29.1° |
c = 14.1855 (4) Å | µ = 7.47 mm−1 |
β = 117.329 (4)° | T = 100 K |
V = 1921.72 (11) Å3 | Block, white |
Z = 4 | 0.3 × 0.3 × 0.2 mm |
Agilent SuperNova diffractometer (single source at offset, Eos detector) | 3928 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 3715 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.033 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.3°, θmin = 2.5° |
ω scans | h = −18→18 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015) | k = −12→12 |
Tmin = 0.314, Tmax = 1.000 | l = −17→17 |
20268 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.016 | H-atom parameters constrained |
wR(F2) = 0.038 | w = 1/[σ2(Fo2) + (0.0159P)2 + 1.3858P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3928 reflections | Δρmax = 0.69 e Å−3 |
246 parameters | Δρmin = −1.04 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pt1 | 0.10189 (2) | 0.16233 (2) | 0.26543 (2) | 0.00950 (4) | |
N2 | −0.03286 (15) | 0.2169 (2) | 0.12855 (16) | 0.0120 (4) | |
C3 | −0.10502 (19) | 0.1243 (3) | 0.0838 (2) | 0.0152 (5) | |
H3 | −0.0934 | 0.0380 | 0.1141 | 0.018* | |
C4 | −0.1940 (2) | 0.1495 (3) | −0.0030 (2) | 0.0184 (6) | |
H4 | −0.2437 | 0.0828 | −0.0320 | 0.022* | |
C5 | −0.2097 (2) | 0.2756 (3) | −0.0476 (2) | 0.0185 (6) | |
H5 | −0.2705 | 0.2958 | −0.1084 | 0.022* | |
C6 | −0.1378 (2) | 0.3701 (3) | −0.0039 (2) | 0.0172 (6) | |
H6 | −0.1479 | 0.4561 | −0.0344 | 0.021* | |
C7 | −0.0487 (2) | 0.3395 (2) | 0.0864 (2) | 0.0131 (5) | |
N8 | 0.02411 (16) | 0.4301 (2) | 0.13082 (18) | 0.0190 (5) | |
H8A | 0.0804 | 0.4087 | 0.1861 | 0.023* | |
H8B | 0.0154 | 0.5109 | 0.1046 | 0.023* | |
C9 | 0.1753 (2) | 0.1410 (3) | 0.1694 (2) | 0.0165 (6) | |
H9A | 0.2434 | 0.1627 | 0.2122 | 0.020* | |
H9B | 0.1320 | 0.2033 | 0.1191 | 0.020* | |
C10 | 0.13895 (19) | 0.0178 (3) | 0.18011 (19) | 0.0141 (5) | |
H10 | 0.0818 | −0.0176 | 0.1146 | 0.017* | |
C11 | 0.20439 (19) | −0.0853 (3) | 0.25867 (19) | 0.0140 (5) | |
H11A | 0.1626 | −0.1585 | 0.2626 | 0.017* | |
H11B | 0.2511 | −0.1227 | 0.2345 | 0.017* | |
C12 | 0.26227 (18) | −0.0239 (2) | 0.36696 (18) | 0.0106 (5) | |
C13 | 0.22571 (18) | 0.0934 (2) | 0.38748 (19) | 0.0105 (5) | |
C14 | 0.27648 (18) | 0.1489 (2) | 0.48888 (19) | 0.0102 (5) | |
H14 | 0.2536 | 0.2298 | 0.5043 | 0.012* | |
C15 | 0.35958 (18) | 0.0873 (2) | 0.56683 (18) | 0.0104 (5) | |
C16 | 0.39390 (17) | −0.0322 (2) | 0.54590 (18) | 0.0099 (5) | |
C17 | 0.34544 (18) | −0.0865 (2) | 0.44517 (19) | 0.0105 (5) | |
H17 | 0.3691 | −0.1666 | 0.4295 | 0.013* | |
O18 | 0.47426 (13) | −0.08947 (17) | 0.62958 (13) | 0.0129 (4) | |
C19 | 0.52470 (19) | −0.1911 (3) | 0.6034 (2) | 0.0148 (5) | |
H19A | 0.5461 | −0.1566 | 0.5526 | 0.022* | |
H19B | 0.4797 | −0.2664 | 0.5719 | 0.022* | |
H19C | 0.5831 | −0.2202 | 0.6679 | 0.022* | |
O20 | 0.40683 (13) | 0.14275 (17) | 0.66777 (13) | 0.0113 (4) | |
C21 | 0.50526 (18) | 0.1854 (2) | 0.6969 (2) | 0.0124 (5) | |
H21A | 0.5375 | 0.1211 | 0.6697 | 0.015* | |
H21B | 0.5436 | 0.1867 | 0.7752 | 0.015* | |
C22 | 0.50842 (19) | 0.3214 (3) | 0.65427 (19) | 0.0135 (5) | |
O23 | 0.43843 (14) | 0.39064 (19) | 0.60292 (15) | 0.0208 (4) | |
O24 | 0.60368 (13) | 0.35149 (17) | 0.68185 (14) | 0.0140 (4) | |
C25 | 0.6206 (2) | 0.4778 (3) | 0.6433 (2) | 0.0177 (6) | |
H25A | 0.5806 | 0.5482 | 0.6543 | 0.021* | |
H25B | 0.6007 | 0.4719 | 0.5665 | 0.021* | |
C26 | 0.7291 (2) | 0.5093 (3) | 0.7039 (2) | 0.0240 (6) | |
H26A | 0.7436 | 0.5898 | 0.6749 | 0.036* | |
H26B | 0.7681 | 0.4353 | 0.6978 | 0.036* | |
H26C | 0.7466 | 0.5234 | 0.7788 | 0.036* | |
Cl27 | 0.04241 (4) | 0.25459 (6) | 0.37522 (5) | 0.01518 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.00860 (6) | 0.00919 (6) | 0.00852 (6) | 0.00084 (3) | 0.00203 (4) | 0.00005 (3) |
N2 | 0.0111 (10) | 0.0127 (11) | 0.0102 (10) | 0.0025 (9) | 0.0033 (8) | 0.0001 (8) |
C3 | 0.0147 (13) | 0.0158 (13) | 0.0155 (13) | −0.0001 (11) | 0.0074 (11) | −0.0018 (11) |
C4 | 0.0147 (14) | 0.0216 (15) | 0.0171 (13) | 0.0003 (11) | 0.0058 (11) | −0.0074 (11) |
C5 | 0.0140 (13) | 0.0283 (16) | 0.0101 (12) | 0.0096 (12) | 0.0029 (10) | −0.0020 (11) |
C6 | 0.0182 (14) | 0.0192 (14) | 0.0134 (13) | 0.0088 (11) | 0.0066 (11) | 0.0030 (11) |
C7 | 0.0150 (13) | 0.0148 (14) | 0.0122 (12) | 0.0055 (10) | 0.0084 (11) | 0.0014 (10) |
N8 | 0.0184 (12) | 0.0116 (11) | 0.0218 (12) | 0.0009 (9) | 0.0047 (10) | 0.0043 (9) |
C9 | 0.0136 (13) | 0.0237 (15) | 0.0113 (12) | 0.0045 (11) | 0.0051 (11) | 0.0000 (11) |
C10 | 0.0145 (13) | 0.0167 (14) | 0.0093 (11) | 0.0025 (11) | 0.0039 (10) | −0.0050 (10) |
C11 | 0.0127 (13) | 0.0128 (13) | 0.0129 (12) | 0.0019 (10) | 0.0028 (10) | −0.0034 (10) |
C12 | 0.0103 (12) | 0.0133 (13) | 0.0088 (11) | −0.0013 (10) | 0.0049 (10) | −0.0018 (10) |
C13 | 0.0086 (12) | 0.0111 (13) | 0.0125 (12) | 0.0000 (10) | 0.0054 (10) | 0.0015 (10) |
C14 | 0.0106 (12) | 0.0090 (12) | 0.0122 (12) | 0.0005 (9) | 0.0063 (10) | −0.0004 (9) |
C15 | 0.0109 (12) | 0.0128 (13) | 0.0088 (11) | −0.0051 (10) | 0.0056 (10) | −0.0019 (9) |
C16 | 0.0080 (11) | 0.0117 (13) | 0.0093 (11) | 0.0004 (10) | 0.0034 (9) | 0.0033 (9) |
C17 | 0.0123 (12) | 0.0083 (12) | 0.0127 (12) | 0.0015 (10) | 0.0072 (10) | 0.0009 (10) |
O18 | 0.0132 (9) | 0.0119 (9) | 0.0107 (8) | 0.0044 (7) | 0.0031 (7) | 0.0026 (7) |
C19 | 0.0134 (13) | 0.0159 (13) | 0.0154 (13) | 0.0049 (11) | 0.0069 (11) | 0.0043 (11) |
O20 | 0.0100 (9) | 0.0159 (9) | 0.0079 (8) | −0.0030 (7) | 0.0039 (7) | −0.0033 (7) |
C21 | 0.0103 (12) | 0.0146 (13) | 0.0103 (12) | −0.0017 (10) | 0.0031 (10) | −0.0010 (10) |
C22 | 0.0142 (13) | 0.0156 (14) | 0.0088 (12) | −0.0022 (10) | 0.0036 (10) | −0.0051 (10) |
O23 | 0.0140 (10) | 0.0204 (10) | 0.0204 (10) | 0.0014 (8) | 0.0014 (8) | 0.0044 (8) |
O24 | 0.0126 (9) | 0.0120 (9) | 0.0178 (9) | −0.0010 (7) | 0.0072 (8) | 0.0013 (7) |
C25 | 0.0212 (14) | 0.0124 (14) | 0.0179 (13) | −0.0023 (11) | 0.0076 (11) | 0.0017 (11) |
C26 | 0.0211 (15) | 0.0194 (15) | 0.0300 (16) | −0.0059 (12) | 0.0103 (13) | 0.0030 (12) |
Cl27 | 0.0151 (3) | 0.0148 (3) | 0.0144 (3) | 0.0038 (2) | 0.0058 (2) | −0.0020 (2) |
Pt1—N2 | 2.143 (2) | C12—C17 | 1.389 (3) |
Pt1—C9 | 2.127 (3) | C13—C14 | 1.399 (3) |
Pt1—C10 | 2.127 (2) | C14—H14 | 0.9500 |
Pt1—C13 | 2.003 (2) | C14—C15 | 1.382 (3) |
Pt1—Cl27 | 2.3209 (6) | C15—C16 | 1.397 (4) |
N2—C3 | 1.353 (3) | C15—O20 | 1.391 (3) |
N2—C7 | 1.346 (3) | C16—C17 | 1.385 (3) |
C3—H3 | 0.9500 | C16—O18 | 1.376 (3) |
C3—C4 | 1.367 (4) | C17—H17 | 0.9500 |
C4—H4 | 0.9500 | O18—C19 | 1.425 (3) |
C4—C5 | 1.392 (4) | C19—H19A | 0.9800 |
C5—H5 | 0.9500 | C19—H19B | 0.9800 |
C5—C6 | 1.363 (4) | C19—H19C | 0.9800 |
C6—H6 | 0.9500 | O20—C21 | 1.416 (3) |
C6—C7 | 1.402 (4) | C21—H21A | 0.9900 |
C7—N8 | 1.345 (3) | C21—H21B | 0.9900 |
N8—H8A | 0.8800 | C21—C22 | 1.509 (4) |
N8—H8B | 0.8800 | C22—O23 | 1.196 (3) |
C9—H9A | 0.9500 | C22—O24 | 1.343 (3) |
C9—H9B | 0.9500 | O24—C25 | 1.454 (3) |
C9—C10 | 1.395 (4) | C25—H25A | 0.9900 |
C10—H10 | 1.0000 | C25—H25B | 0.9900 |
C10—C11 | 1.514 (3) | C25—C26 | 1.495 (4) |
C11—H11A | 0.9900 | C26—H26A | 0.9800 |
C11—H11B | 0.9900 | C26—H26B | 0.9800 |
C11—C12 | 1.509 (3) | C26—H26C | 0.9800 |
C12—C13 | 1.391 (4) | ||
N2—Pt1—Cl27 | 90.28 (6) | C13—C12—C11 | 117.5 (2) |
C9—Pt1—N2 | 90.24 (9) | C17—C12—C11 | 121.0 (2) |
C9—Pt1—C10 | 38.29 (10) | C17—C12—C13 | 121.3 (2) |
C9—Pt1—Cl27 | 161.33 (7) | C12—C13—Pt1 | 114.69 (17) |
C10—Pt1—N2 | 92.85 (9) | C12—C13—C14 | 118.2 (2) |
C10—Pt1—Cl27 | 160.20 (7) | C14—C13—Pt1 | 127.13 (19) |
C13—Pt1—N2 | 174.40 (9) | C13—C14—H14 | 119.6 |
C13—Pt1—C9 | 87.89 (10) | C15—C14—C13 | 120.7 (2) |
C13—Pt1—C10 | 82.42 (10) | C15—C14—H14 | 119.6 |
C13—Pt1—Cl27 | 93.18 (7) | C14—C15—C16 | 120.5 (2) |
C3—N2—Pt1 | 118.29 (17) | C14—C15—O20 | 119.5 (2) |
C7—N2—Pt1 | 122.69 (17) | O20—C15—C16 | 120.0 (2) |
C7—N2—C3 | 119.0 (2) | C17—C16—C15 | 119.2 (2) |
N2—C3—H3 | 118.6 | O18—C16—C15 | 116.5 (2) |
N2—C3—C4 | 122.8 (3) | O18—C16—C17 | 124.3 (2) |
C4—C3—H3 | 118.6 | C12—C17—H17 | 120.0 |
C3—C4—H4 | 120.9 | C16—C17—C12 | 120.0 (2) |
C3—C4—C5 | 118.1 (3) | C16—C17—H17 | 120.0 |
C5—C4—H4 | 120.9 | C16—O18—C19 | 116.32 (19) |
C4—C5—H5 | 120.1 | O18—C19—H19A | 109.5 |
C6—C5—C4 | 119.9 (2) | O18—C19—H19B | 109.5 |
C6—C5—H5 | 120.1 | O18—C19—H19C | 109.5 |
C5—C6—H6 | 120.2 | H19A—C19—H19B | 109.5 |
C5—C6—C7 | 119.6 (3) | H19A—C19—H19C | 109.5 |
C7—C6—H6 | 120.2 | H19B—C19—H19C | 109.5 |
N2—C7—C6 | 120.6 (2) | C15—O20—C21 | 113.37 (19) |
N8—C7—N2 | 118.4 (2) | O20—C21—H21A | 109.1 |
N8—C7—C6 | 121.0 (2) | O20—C21—H21B | 109.1 |
C7—N8—H8A | 120.0 | O20—C21—C22 | 112.4 (2) |
C7—N8—H8B | 120.0 | H21A—C21—H21B | 107.9 |
H8A—N8—H8B | 120.0 | C22—C21—H21A | 109.1 |
Pt1—C9—H9A | 107.3 | C22—C21—H21B | 109.1 |
Pt1—C9—H9B | 91.7 | O23—C22—C21 | 126.4 (2) |
H9A—C9—H9B | 120.0 | O23—C22—O24 | 125.2 (2) |
C10—C9—Pt1 | 70.86 (15) | O24—C22—C21 | 108.4 (2) |
C10—C9—H9A | 120.0 | C22—O24—C25 | 116.0 (2) |
C10—C9—H9B | 120.0 | O24—C25—H25A | 110.1 |
Pt1—C10—H10 | 115.6 | O24—C25—H25B | 110.1 |
C9—C10—Pt1 | 70.85 (15) | O24—C25—C26 | 107.8 (2) |
C9—C10—H10 | 115.6 | H25A—C25—H25B | 108.5 |
C9—C10—C11 | 122.4 (2) | C26—C25—H25A | 110.1 |
C11—C10—Pt1 | 107.81 (16) | C26—C25—H25B | 110.1 |
C11—C10—H10 | 115.6 | C25—C26—H26A | 109.5 |
C10—C11—H11A | 109.6 | C25—C26—H26B | 109.5 |
C10—C11—H11B | 109.6 | C25—C26—H26C | 109.5 |
H11A—C11—H11B | 108.1 | H26A—C26—H26B | 109.5 |
C12—C11—C10 | 110.2 (2) | H26A—C26—H26C | 109.5 |
C12—C11—H11A | 109.6 | H26B—C26—H26C | 109.5 |
C12—C11—H11B | 109.6 | ||
Pt1—N2—C3—C4 | 179.4 (2) | C13—C12—C17—C16 | −0.2 (4) |
Pt1—N2—C7—C6 | 179.41 (18) | C13—C14—C15—C16 | −0.5 (4) |
Pt1—N2—C7—N8 | 1.5 (3) | C13—C14—C15—O20 | −178.1 (2) |
Pt1—C9—C10—C11 | −99.4 (2) | C14—C15—C16—C17 | 1.9 (4) |
Pt1—C10—C11—C12 | −28.5 (2) | C14—C15—C16—O18 | −177.0 (2) |
Pt1—C13—C14—C15 | 177.68 (18) | C14—C15—O20—C21 | −115.9 (2) |
N2—C3—C4—C5 | 1.0 (4) | C15—C16—C17—C12 | −1.5 (4) |
C3—N2—C7—C6 | −1.3 (4) | C15—C16—O18—C19 | −164.7 (2) |
C3—N2—C7—N8 | −179.2 (2) | C15—O20—C21—C22 | 83.1 (3) |
C3—C4—C5—C6 | −0.7 (4) | C16—C15—O20—C21 | 66.4 (3) |
C4—C5—C6—C7 | −0.5 (4) | C17—C12—C13—Pt1 | −177.47 (19) |
C5—C6—C7—N2 | 1.5 (4) | C17—C12—C13—C14 | 1.5 (4) |
C5—C6—C7—N8 | 179.4 (3) | C17—C16—O18—C19 | 16.5 (3) |
C7—N2—C3—C4 | 0.0 (4) | O18—C16—C17—C12 | 177.3 (2) |
C9—C10—C11—C12 | 49.7 (3) | O20—C15—C16—C17 | 179.5 (2) |
C10—C11—C12—C13 | 21.0 (3) | O20—C15—C16—O18 | 0.6 (3) |
C10—C11—C12—C17 | −162.9 (2) | O20—C21—C22—O23 | 1.2 (4) |
C11—C12—C13—Pt1 | −1.4 (3) | O20—C21—C22—O24 | −177.57 (19) |
C11—C12—C13—C14 | 177.6 (2) | C21—C22—O24—C25 | 177.5 (2) |
C11—C12—C17—C16 | −176.2 (2) | C22—O24—C25—C26 | 165.5 (2) |
C12—C13—C14—C15 | −1.2 (4) | O23—C22—O24—C25 | −1.3 (4) |
Cg2 is the centroid of the C12-C17 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···O24i | 0.95 | 2.60 | 3.501 (3) | 159 |
C25—H25B···O23ii | 0.99 | 2.60 | 3.449 (3) | 144 |
N8—H8B···Cl27iii | 0.88 | 2.67 | 3.413 (2) | 143 |
C19—H19A···Cg2i | 0.98 | 2.63 | 3.476 (3) | 145 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, y+1/2, −z+1/2. |
Acknowledgements
The authors thank VLIR-UOS for financial support and the Hercules Foundation for supporting the purchase of the diffractometer.
Funding information
Funding for this research was provided by: Vlaamse Interuniversitaire Raad (VLIR-UOS) Belgium (award No. ZEIN2014Z182); Hercules Foundation Belgium (award No. AKUL/09/0035).
References
Chabner, B. A. & Roberts, T. G. (2005). Nat. Rev. Cancer, 5, 65–72. Web of Science CrossRef PubMed CAS Google Scholar
Da, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala, K. P. & Dinh, N. H. (2015). Polyhedron, 85, 104–109. CSD CrossRef CAS Google Scholar
Da, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131–142. Web of Science CrossRef CAS Google Scholar
Da, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525–3536. Web of Science CrossRef CAS Google Scholar
Da, T. T., Kim, Y. M., Mai, T. T. C., Cuong, N. C. & Dinh, N. H. (2010). J. Coord. Chem. 63, 473–483. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jadhav, B. K., Khandelwal, K. R., Ketkar, A. R. & Pisal, S. S. (2004). Drug Dev. Ind. Pharm. 30(2), 195–203. CrossRef Google Scholar
Johnstone, T. C., Park, G. Y. & Lippard, S. J. (2014). Anticancer Res. 34, 471–476. Web of Science CAS PubMed Google Scholar
Kelland, L. (2007). Nat. Rev. Cancer, 7, 573–584. CrossRef PubMed CAS Google Scholar
Le Thi Hong, H., Dao Thi Bich, D., Nguyen Bich, N. & Van Meervelt, L. (2016). Acta Cryst. E72, 912–917. CSD CrossRef IUCr Journals Google Scholar
Nguyen Thi Thanh, C., Pham Van, T., Le Thi Hong, H. & Van Meervelt, L. (2016). Acta Cryst. C72, 758–764. CSD CrossRef IUCr Journals Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wilson, J. J. & Lippard, S. J. (2014). Chem. Rev. 114, 4470–4495. Web of Science CrossRef CAS PubMed Google Scholar
Wong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451–2466. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.