research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,3-bis­­[(E)-benzyl­­idene­amino]­propan-2-ol

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by J. Simpson, University of Otago, New Zealand (Received 8 March 2017; accepted 27 March 2017; online 31 March 2017)

In the title compound, C17H18N2O, the central carbon atom with the OH substituent and one of the (E)-benzyl­idene­amino substituents are disordered over two sets of sites with occupancies of 0.851 (4) and 0.149 (4). The relative positions of the two disorder components is equivalent to a rotation of approximately 60° about the C—N single bond. In the crystal, the mol­ecules are held together by O—H⋯N hydrogen bonds, forming simple C(5) chains along the b-axis direction. In addition, pairs of the chains are further aggregated by weak C—H⋯π inter­actions.

1. Chemical context

During the last decades, inter­est in Schiff bases and their complexes has been constant due to their extensive use for industrial purposes and also for their broad range of biological activities (Al Zoubi et al. 2016[Al Zoubi, W., Al-Hamdani, A. A. S. & Kaseem, M. (2016). Appl. Organomet. Chem. 30, 810-817.]; Sahu et al. 2012[Sahu, R., Thakur, D. S. & Kashyap, P. (2012). Int. J. Pharm. Sci. Nanotech. 5, 1757-1764.]; Da Silva et al., 2011[Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, Â. (2011). J. Adv. Res. 2, 1-8.]; Przybylski et al. 2009[Przybylski, P., Huczyński, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124-148.]). The common structural feature of these compounds is the presence of a azomethine group (–R—C=N–), which can act as a hydrogen-bond acceptor or a ligand. To gain more insight into the structural and spectroscopic properties of this potentially polydentate ligand, we report herein the mol­ecular structure of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The compound exists in an E,E conformation with respect to the imine functions. One benzyl­idene­amino segment of the mol­ecule, C3/C4/N2/C5/C21–C26 is disordered over two sets of sites with a refined occupancy ratio of 0.851 (4):0.149 (4). The difference between the two conformers is reflected in the relative arrangement of the central spacer units. In the major disorder component, the torsion angle C3—C4—N2—C5 is −158.7 (2)° whereas the corresponding angle C3′—C4′—N2′—C5′ in the minor component is −93.3 (14)°. This translates to a rotation of approximately 60° about the C4—N2 bond. In the second, fully ordered, (E)-benzyl­idene­amino substituent, the equivalent torsion angles C1—N1—C2—C3 and C1—N1—C2—C3′ are −102.03 (18)° and −79.8 (8)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, Displacement ellipsoids are drawn at the 50% probability level. Only the major occupancy disorder component is shown.

Unlike some related structures, which have a well-defined synclinal (-sc) alignment of the hydroxyl and imine nitro­gen atoms around the N(imine)—C—C—O(hydrox­yl) bond [−65.3 (3)° (Rivera, Miranda-Carvajal, Ríos-Motta & Bolte, 2016[Rivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016). Acta Cryst. E72, 1731-1733.]) and −67.6 (4)° (Moodley & Van Zyl, 2012[Moodley, V. & Van Zyl, W. E. (2012). Acta Cryst. E68, o3477.])], the orientation between these groups in the title compound differs significantly, with the N1—C2—C3—O1 and N1—C2—C3′—O1 torsion angles being 81.51 (19)° and 21.2 (14)°, respectively.

The N1=C1 and N2=C5 distances in the mol­ecule are 1.270 (2) and 1.259 (3) Å, respectively, consistent with C=N double bonding. The C1—N1—C2 bond angle of 118.61 (15)° confirms the sp2 character of N1. The bond angles C5—N2—C4 and C5′—N2′—C4′ [116.9 (2) and 114.6 (12)°, respectively] indicate a slight loss of the sp2 character. The N1=C1 azomethine group is essentially co-planar with the attached benzene ring with an N1—C1—C11—C12 torsion angle being 2.0 (5)°. In contrast, in the disordered (E)-benzyl­idene­amino substituent, the corresponding torsion angles N2—C5—C21—C22 and N2′—C5′—C21′—C22′ are −17.6 (6) and 21 (4)° for the major and minor disorder components, respectively. All these data suggest that the difference between these (E)-benzyl­idene­amino substituents may result from some loss of conjugation between the phenyl ring and its azomethine substituent in the disordered branch of the mol­ecule.

3. Supra­molecular features

As found in related structures (Rivera, Miranda-Carvajal, Ríos-Motta & Bolte, 2016[Rivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016). Acta Cryst. E72, 1731-1733.]; Moodley & Van Zyl, 2012[Moodley, V. & Van Zyl, W. E. (2012). Acta Cryst. E68, o3477.]) in the crystal, mol­ecules are linked by an O1—H1⋯N1 hydrogen bond, Table 1[link], forming columnar structures built from C(5) chains along the b-axis direction. In addition, pairs of the chains are linked by weak C24—H24⋯Cg1 inter­actions (Table 1[link] and Fig. 2[link]), involving the C11–C16 phenyl ring, together with C15—H15⋯Cg2 and C15—H15⋯Cg3 contacts involving the phenyl rings of the two disorder components; the centroids are defined in Table 1[link]. It is noteworthy that the shortest (and presumably the strongest) of these non-classical contacts is C15—H15⋯Cg3 involving the phenyl ring in the minor disorder component (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1,Cg2, and Cg3, are the centroids of the C11–C16, C21–C26 and C21′–C26′ rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.93 (3) 1.92 (3) 2.8430 (19) 174 (2)
C24—H24⋯Cg1ii 0.95 2.88 3.802 (5) 164
C15—H15⋯Cg2iii 0.95 2.96 3.796 (3) 148
C15—H15⋯Cg3iii 0.95 2.79 3.640 (12) 150
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound showing the extended hydrogen-bonded network.

4. Database survey

A search in the Cambridge Crystallographic Database (CSD Version 5.38, last update 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the fragment 1,3-bis­[(benzyl­idene)amino]­propan-2-ol yielded the following structures: N,N′-[(2-hy­droxy-1,3-propanedi­yl)bis­(nitrilo­methylyl­idene-2,1-phenyl­ene)] bis­(4-methyl­benzene­sulfonamide) (Popov et al., 2009[Popov, L. D., Tupolova, Yu. P., Lukov, V. V., Shcherbakov, I. N., Burlov, A. S., Levchenkov, S. I., Kogan, V. A., Lyssenko, K. A. & Ivannikova, E. V. (2009). Inorg. Chim. Acta, 362, 1673-1680.]), 2,2′-[(2-hy­droxy­propane-1,3-di­yl)bis(nitrilo­methylyl­idene)]diphenol (Azam, Hussain et al., 2012[Azam, M., Hussain, U., Warad, I., Al-Resayes, S. I., Khan, Md. S., Shakir, Md., Trzesowska-Kruszynska, A. & Kruszynski, R. (2012). Dalton Trans. 41, 10854-10864.]), 1,3-bis­(2-hy­droxy-5-bromo­salicyl­idene­amine)­propan-2-ol (Elmali, 2000[Elmali, A. (2000). J. Chem. Crystallogr. 30, 473-477.]), 1,3-bis­[(E)-(2-chloro­benzyl­idene)amino]­propan-2-ol (Azam, Warad et al., 2012[Azam, M., Warad, I., Al-Resayes, S. I., Shakir, M., Ullah, M. F., Ahmad, A. & Sarkar, F. H. (2012). Inorg. Chem. Commun. 20, 252-258.]) and 1,3-bis­[(E)-(4-meth­oxy­benzyl­idene)amino]­propan-2-ol (Rivera, Miranda-Carvajal, Ríos-Motta & Bolte, 2016[Rivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016). Acta Cryst. E72, 1731-1733.]). In each of these structures, the N=C double bonds adopt E conformations.

5. Synthesis and crystallization

The title compound was prepared as described by Rivera, Miranda-Carvajal & Ríos-Motta (2016[Rivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016). Int. J. Chem. 8, 62-68.]). The crude product was recrystallized from diethyl ether solution with slow evaporation of the solvent, giving colorless crystals suitable for X–ray diffraction, m.p. 396.8–398 K, yield, 40%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydroxyl H atom was refined freely. All remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.95 Å for aromatic and azomethine atoms, d(C—H) = 0.99 Å for methyl­ene and d(C—H) = 1.00 Å for C3—H3. The Uiso(H) values were constrained to 1.2Ueq(C). The C3/C4/N2/C5/C21–C26 segment of the mol­ecule is disordered over two sets of sites with a refined occupancy ratio of 0.851 (4):0.149 (4).

Table 2
Experimental details

Crystal data
Chemical formula C17H18N2O
Mr 266.33
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 173
a, b, c (Å) 16.4313 (7), 7.1909 (3), 24.7345 (11)
V3) 2922.5 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.24 × 0.22 × 0.18
 
Data collection
Diffractometer STOE IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.742, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25768, 2574, 2200
Rint 0.054
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.111, 1.10
No. of reflections 2574
No. of parameters 276
No. of restraints 84
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.21
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS2014/7 and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008).

1,3-Bis[(E)-benzylideneamino]propan-2-ol top
Crystal data top
C17H18N2ODx = 1.211 Mg m3
Mr = 266.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 24714 reflections
a = 16.4313 (7) Åθ = 2.1–25.5°
b = 7.1909 (3) ŵ = 0.08 mm1
c = 24.7345 (11) ÅT = 173 K
V = 2922.5 (2) Å3Block, colourless
Z = 80.24 × 0.22 × 0.18 mm
F(000) = 1136
Data collection top
STOE IPDS II two-circle
diffractometer
2200 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.054
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(X-Area; Stoe & Cie, 2001)
h = 1819
Tmin = 0.742, Tmax = 1.000k = 88
25768 measured reflectionsl = 2929
2574 independent reflections
Refinement top
Refinement on F284 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.639P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2574 reflectionsΔρmax = 0.24 e Å3
276 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.63353 (8)0.70433 (16)0.38320 (5)0.0509 (4)
H10.6763 (14)0.763 (3)0.3660 (9)0.075 (7)*
N10.74117 (8)0.41062 (18)0.33137 (5)0.0392 (3)
C10.73647 (10)0.4889 (2)0.28545 (6)0.0364 (4)
H1A0.68400.51850.27180.044*
C20.66704 (11)0.3836 (2)0.36223 (7)0.0470 (4)
H2A0.66680.25840.37890.056*0.851 (4)
H2B0.61900.39420.33830.056*0.851 (4)
H2C0.62780.33530.33530.056*0.149 (4)
H2D0.67970.27680.38610.056*0.149 (4)
C30.66388 (15)0.5357 (3)0.40687 (9)0.0350 (5)0.851 (4)
H30.71940.55660.42220.042*0.851 (4)
C40.60471 (12)0.4859 (3)0.45148 (8)0.0394 (6)0.851 (4)
H4A0.60070.59120.47710.047*0.851 (4)
H4B0.55010.46540.43560.047*0.851 (4)
N20.62980 (16)0.3185 (3)0.48085 (10)0.0391 (5)0.851 (4)
C50.57527 (15)0.2327 (3)0.50643 (8)0.0361 (5)0.851 (4)
H50.52100.27730.50380.043*0.851 (4)
C210.5901 (2)0.0675 (5)0.54025 (17)0.0352 (7)0.851 (4)
C220.6613 (3)0.0353 (9)0.5350 (3)0.0425 (15)0.851 (4)
H220.70050.00160.50850.051*0.851 (4)
C230.6751 (4)0.1864 (10)0.5681 (3)0.0544 (14)0.851 (4)
H230.72320.25820.56390.065*0.851 (4)
C240.6186 (3)0.2338 (6)0.6078 (2)0.0561 (10)0.851 (4)
H240.62950.33380.63180.067*0.851 (4)
C250.5473 (3)0.1359 (6)0.61203 (15)0.0503 (10)0.851 (4)
H250.50800.17110.63830.060*0.851 (4)
C260.53203 (18)0.0143 (5)0.57820 (13)0.0409 (7)0.851 (4)
H260.48220.08050.58090.049*0.851 (4)
C110.80792 (10)0.5363 (2)0.25222 (6)0.0356 (4)
C120.88687 (10)0.4938 (2)0.26791 (7)0.0440 (4)
H120.89610.42640.30040.053*
C130.95204 (11)0.5492 (3)0.23646 (7)0.0499 (5)
H131.00580.51800.24720.060*
C140.93971 (12)0.6499 (2)0.18938 (7)0.0477 (4)
H140.98480.68970.16830.057*
C150.86123 (12)0.6919 (2)0.17337 (7)0.0474 (4)
H150.85220.76050.14110.057*
C160.79573 (11)0.6343 (2)0.20430 (6)0.0412 (4)
H160.74190.66190.19270.049*
C3'0.6215 (9)0.4977 (16)0.3939 (5)0.042 (3)0.149 (4)
H3'0.56370.45800.39900.050*0.149 (4)
C4'0.6731 (7)0.4957 (14)0.4447 (5)0.040 (3)0.149 (4)
H4'10.72950.53230.43560.049*0.149 (4)
H4'20.65120.58700.47090.049*0.149 (4)
N2'0.6732 (9)0.3067 (15)0.4696 (4)0.044 (3)0.149 (4)
C5'0.6203 (12)0.283 (2)0.5052 (6)0.041 (3)0.149 (4)
H5'0.58400.38210.51290.049*0.149 (4)
C21'0.6110 (12)0.104 (2)0.5364 (9)0.032 (4)0.149 (4)
C22'0.6731 (19)0.025 (5)0.5415 (17)0.035 (5)0.149 (4)
H22'0.71950.01440.51880.042*0.149 (4)
C23'0.6693 (15)0.169 (5)0.5788 (14)0.039 (5)0.149 (4)
H23'0.71640.23930.58730.047*0.149 (4)
C24'0.5946 (13)0.208 (4)0.6038 (14)0.048 (6)0.149 (4)
H24'0.58560.32220.62190.057*0.149 (4)
C25'0.5353 (11)0.075 (3)0.6010 (8)0.034 (4)0.149 (4)
H25'0.48730.08920.62210.040*0.149 (4)
C26'0.5437 (12)0.079 (3)0.5682 (9)0.040 (4)0.149 (4)
H26'0.50190.17050.56760.048*0.149 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0560 (8)0.0352 (6)0.0615 (8)0.0078 (6)0.0122 (6)0.0145 (6)
N10.0464 (8)0.0304 (6)0.0409 (7)0.0005 (6)0.0045 (6)0.0015 (6)
C10.0401 (9)0.0291 (7)0.0402 (9)0.0019 (6)0.0012 (7)0.0004 (6)
C20.0511 (10)0.0366 (9)0.0534 (10)0.0021 (8)0.0146 (8)0.0083 (8)
C30.0352 (12)0.0296 (10)0.0401 (12)0.0021 (9)0.0030 (10)0.0047 (9)
C40.0412 (13)0.0369 (10)0.0400 (10)0.0021 (8)0.0023 (8)0.0030 (8)
N20.0373 (13)0.0433 (11)0.0367 (13)0.0005 (10)0.0011 (11)0.0064 (9)
C50.0352 (11)0.0372 (11)0.0360 (10)0.0012 (10)0.0007 (9)0.0028 (8)
C210.0364 (18)0.0357 (14)0.0334 (15)0.0080 (12)0.0046 (13)0.0033 (11)
C220.044 (2)0.0458 (18)0.038 (2)0.0041 (18)0.003 (2)0.0014 (17)
C230.066 (2)0.044 (2)0.053 (3)0.0077 (14)0.0057 (16)0.003 (2)
C240.068 (3)0.042 (2)0.0583 (17)0.0111 (18)0.018 (2)0.0112 (16)
C250.061 (2)0.048 (2)0.0417 (15)0.021 (2)0.0047 (15)0.0085 (15)
C260.0428 (13)0.042 (2)0.0376 (19)0.0106 (14)0.0008 (11)0.0017 (15)
C110.0431 (9)0.0272 (7)0.0366 (8)0.0011 (6)0.0013 (7)0.0019 (6)
C120.0458 (10)0.0428 (9)0.0435 (9)0.0006 (7)0.0010 (8)0.0081 (7)
C130.0408 (10)0.0540 (11)0.0549 (11)0.0038 (8)0.0022 (8)0.0029 (9)
C140.0540 (11)0.0424 (9)0.0468 (10)0.0112 (8)0.0105 (8)0.0020 (8)
C150.0643 (12)0.0406 (9)0.0373 (9)0.0027 (8)0.0040 (8)0.0043 (7)
C160.0486 (10)0.0374 (8)0.0377 (8)0.0034 (7)0.0001 (7)0.0005 (7)
C3'0.046 (7)0.030 (6)0.050 (6)0.017 (5)0.000 (5)0.001 (4)
C4'0.045 (7)0.041 (5)0.036 (6)0.007 (4)0.007 (5)0.003 (4)
N2'0.048 (7)0.047 (5)0.038 (5)0.004 (5)0.001 (5)0.002 (4)
C5'0.046 (7)0.040 (6)0.035 (6)0.006 (5)0.003 (6)0.000 (5)
C21'0.039 (8)0.033 (6)0.024 (6)0.007 (5)0.004 (5)0.005 (5)
C22'0.029 (7)0.033 (6)0.043 (9)0.007 (5)0.022 (6)0.012 (5)
C23'0.036 (7)0.035 (8)0.046 (11)0.006 (5)0.014 (5)0.006 (8)
C24'0.042 (8)0.029 (7)0.073 (13)0.010 (7)0.002 (8)0.011 (6)
C25'0.030 (6)0.029 (8)0.042 (10)0.006 (5)0.006 (5)0.005 (5)
C26'0.047 (7)0.030 (8)0.042 (7)0.003 (5)0.001 (5)0.005 (6)
Geometric parameters (Å, º) top
O1—C31.436 (2)C26—H260.9500
O1—C3'1.522 (11)C11—C121.388 (2)
O1—H10.93 (3)C11—C161.394 (2)
N1—C11.270 (2)C12—C131.382 (2)
N1—C21.451 (2)C12—H120.9500
C1—C111.473 (2)C13—C141.386 (3)
C1—H1A0.9500C13—H130.9500
C2—C3'1.359 (13)C14—C151.382 (3)
C2—C31.555 (3)C14—H140.9500
C2—H2A0.9900C15—C161.384 (2)
C2—H2B0.9900C15—H150.9500
C2—H2C0.9900C16—H160.9500
C2—H2D0.9900C3'—C4'1.515 (14)
C3—C41.513 (3)C3'—H3'1.0000
C3—H31.0000C4'—N2'1.492 (13)
C4—N21.465 (3)C4'—H4'10.9900
C4—H4A0.9900C4'—H4'20.9900
C4—H4B0.9900N2'—C5'1.249 (15)
N2—C51.259 (3)C5'—C21'1.508 (15)
C5—C211.473 (3)C5'—H5'0.9500
C5—H50.9500C21'—C26'1.367 (15)
C21—C221.390 (4)C21'—C22'1.382 (16)
C21—C261.392 (4)C22'—C23'1.389 (17)
C22—C231.380 (4)C22'—H22'0.9500
C22—H220.9500C23'—C24'1.402 (17)
C23—C241.392 (5)C23'—H23'0.9500
C23—H230.9500C24'—C25'1.364 (16)
C24—C251.372 (5)C24'—H24'0.9500
C24—H240.9500C25'—C26'1.384 (15)
C25—C261.389 (4)C25'—H25'0.9500
C25—H250.9500C26'—H26'0.9500
C3—O1—H1108.2 (15)C12—C11—C16118.91 (15)
C3'—O1—H1128.8 (16)C12—C11—C1122.55 (14)
C1—N1—C2118.61 (15)C16—C11—C1118.49 (15)
N1—C1—C11123.57 (15)C13—C12—C11120.21 (16)
N1—C1—H1A118.2C13—C12—H12119.9
C11—C1—H1A118.2C11—C12—H12119.9
C3'—C2—N1133.2 (6)C12—C13—C14120.68 (17)
N1—C2—C3107.89 (15)C12—C13—H13119.7
N1—C2—H2A110.1C14—C13—H13119.7
C3—C2—H2A110.1C15—C14—C13119.42 (16)
N1—C2—H2B110.1C15—C14—H14120.3
C3—C2—H2B110.1C13—C14—H14120.3
H2A—C2—H2B108.4C14—C15—C16120.11 (16)
C3'—C2—H2C103.9C14—C15—H15119.9
N1—C2—H2C103.9C16—C15—H15119.9
C3'—C2—H2D103.9C15—C16—C11120.65 (16)
N1—C2—H2D103.9C15—C16—H16119.7
H2C—C2—H2D105.4C11—C16—H16119.7
O1—C3—C4105.89 (16)C2—C3'—C4'99.4 (10)
O1—C3—C2108.42 (17)C2—C3'—O1114.7 (8)
C4—C3—C2111.88 (17)C4'—C3'—O194.6 (9)
O1—C3—H3110.2C2—C3'—H3'115.1
C4—C3—H3110.2C4'—C3'—H3'115.1
C2—C3—H3110.2O1—C3'—H3'115.1
N2—C4—C3112.03 (18)N2'—C4'—C3'110.6 (9)
N2—C4—H4A109.2N2'—C4'—H4'1109.5
C3—C4—H4A109.2C3'—C4'—H4'1109.5
N2—C4—H4B109.2N2'—C4'—H4'2109.5
C3—C4—H4B109.2C3'—C4'—H4'2109.5
H4A—C4—H4B107.9H4'1—C4'—H4'2108.1
C5—N2—C4116.9 (2)C5'—N2'—C4'114.6 (12)
N2—C5—C21124.3 (2)N2'—C5'—C21'123.3 (14)
N2—C5—H5117.9N2'—C5'—H5'118.3
C21—C5—H5117.9C21'—C5'—H5'118.3
C22—C21—C26119.6 (3)C26'—C21'—C22'117.3 (15)
C22—C21—C5121.0 (3)C26'—C21'—C5'119.1 (15)
C26—C21—C5119.4 (3)C22'—C21'—C5'122.8 (16)
C23—C22—C21120.1 (4)C21'—C22'—C23'122 (2)
C23—C22—H22120.0C21'—C22'—H22'119.2
C21—C22—H22120.0C23'—C22'—H22'119.2
C22—C23—C24120.1 (4)C22'—C23'—C24'118.8 (19)
C22—C23—H23119.9C22'—C23'—H23'120.6
C24—C23—H23119.9C24'—C23'—H23'120.6
C25—C24—C23119.9 (3)C25'—C24'—C23'117.6 (17)
C25—C24—H24120.1C25'—C24'—H24'121.2
C23—C24—H24120.1C23'—C24'—H24'121.2
C24—C25—C26120.5 (3)C24'—C25'—C26'121.2 (16)
C24—C25—H25119.8C24'—C25'—H25'119.4
C26—C25—H25119.8C26'—C25'—H25'119.4
C25—C26—C21119.7 (3)C21'—C26'—C25'121.4 (15)
C25—C26—H26120.1C21'—C26'—H26'119.3
C21—C26—H26120.1C25'—C26'—H26'119.3
C2—N1—C1—C11175.36 (14)C1—C11—C12—C13176.91 (15)
C1—N1—C2—C3'79.8 (8)C11—C12—C13—C140.9 (3)
C1—N1—C2—C3102.03 (18)C12—C13—C14—C151.2 (3)
N1—C2—C3—O181.51 (19)C13—C14—C15—C160.2 (3)
N1—C2—C3'—O121.2 (14)C14—C15—C16—C111.1 (3)
N1—C2—C3—C4162.08 (16)C12—C11—C16—C151.3 (2)
O1—C3—C4—N2177.91 (17)C1—C11—C16—C15176.04 (14)
C2—C3—C4—N264.2 (2)N1—C2—C3'—C4'78.4 (8)
C3—C4—N2—C5158.7 (2)N1—C2—C3'—O121.2 (14)
C4—N2—C5—C21176.9 (3)C2—C3'—C4'—N2'66.3 (11)
N2—C5—C21—C2217.6 (6)O1—C3'—C4'—N2'177.7 (9)
N2—C5—C21—C26162.1 (3)C3'—C4'—N2'—C5'93.3 (14)
C26—C21—C22—C231.6 (10)C4'—N2'—C5'—C21'178.5 (15)
C5—C21—C22—C23178.1 (6)N2'—C5'—C21'—C26'169.5 (18)
C21—C22—C23—C241.5 (12)N2'—C5'—C21'—C22'21 (4)
C22—C23—C24—C253.3 (11)C26'—C21'—C22'—C23'3 (6)
C23—C24—C25—C262.1 (7)C5'—C21'—C22'—C23'167 (4)
C24—C25—C26—C210.9 (5)C21'—C22'—C23'—C24'14 (7)
C22—C21—C26—C252.8 (6)C22'—C23'—C24'—C25'17 (6)
C5—C21—C26—C25176.9 (3)C23'—C24'—C25'—C26'10 (5)
N1—C1—C11—C122.0 (2)C22'—C21'—C26'—C25'5 (4)
N1—C1—C11—C16175.34 (15)C5'—C21'—C26'—C25'174.7 (19)
C16—C11—C12—C130.4 (2)C24'—C25'—C26'—C21'1 (4)
Hydrogen-bond geometry (Å, º) top
Cg1,Cg2, and Cg3, are the centroids of the C11–C16, C21–C26 and C21'–C26' rings, respectively
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.93 (3)1.92 (3)2.8430 (19)174 (2)
C24—H24···Cg1ii0.952.883.802 (5)164
C15—H15···Cg2iii0.952.963.796 (3)148
C15—H15···Cg3iii0.952.793.640 (12)150
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y, z+1/2; (iii) x+3/2, y+1, z1/2.
 

Acknowledgements

IMC is grateful to COLCIENCIAS for his doctoral scholarship.

Funding information

Funding for this research was provided by: Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia (award No. 35816).

References

First citationAl Zoubi, W., Al-Hamdani, A. A. S. & Kaseem, M. (2016). Appl. Organomet. Chem. 30, 810–817.  CrossRef CAS Google Scholar
First citationAzam, M., Hussain, U., Warad, I., Al-Resayes, S. I., Khan, Md. S., Shakir, Md., Trzesowska-Kruszynska, A. & Kruszynski, R. (2012). Dalton Trans. 41, 10854–10864.  CrossRef CAS PubMed Google Scholar
First citationAzam, M., Warad, I., Al-Resayes, S. I., Shakir, M., Ullah, M. F., Ahmad, A. & Sarkar, F. H. (2012). Inorg. Chem. Commun. 20, 252–258.  CrossRef CAS Google Scholar
First citationElmali, A. (2000). J. Chem. Crystallogr. 30, 473–477.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoodley, V. & Van Zyl, W. E. (2012). Acta Cryst. E68, o3477.  CrossRef IUCr Journals Google Scholar
First citationPopov, L. D., Tupolova, Yu. P., Lukov, V. V., Shcherbakov, I. N., Burlov, A. S., Levchenkov, S. I., Kogan, V. A., Lyssenko, K. A. & Ivannikova, E. V. (2009). Inorg. Chim. Acta, 362, 1673–1680.  CrossRef CAS Google Scholar
First citationPrzybylski, P., Huczyński, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.  CrossRef CAS Google Scholar
First citationRivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016). Int. J. Chem. 8, 62–68.  CrossRef Google Scholar
First citationRivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016). Acta Cryst. E72, 1731–1733.  CrossRef IUCr Journals Google Scholar
First citationSahu, R., Thakur, D. S. & Kashyap, P. (2012). Int. J. Pharm. Sci. Nanotech. 5, 1757–1764.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, Â. (2011). J. Adv. Res. 2, 1–8.  Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds