research communications
of 2-(azaniumylmethyl)pyridinium bis(hydrogen squarate)
aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, Samsun 55139, Turkey
*Correspondence e-mail: zeynep.kelesoglu@omu.edu.tr
The 6H10N22+·2C4HO4−, comprises two hydrogen squarate (Hsq−; 2-hydroxy-3,4-dioxocyclobutanolate) anions and a 2-(azaniumylmethyl)pyridinium dication. The squaric acid molecules each donate an H atom to the N atoms of the pyridine ring and the aminomethyl units of a 2-(aminomethyl)pyridine molecule, forming the 1:2 salt. The Hsq− anions are linked by strong O—H⋯O hydrogen bonds and an N—H⋯O hydrogen bond links the 2-(azaniumylmethyl)pyridinium cation to one of the squaric acid anions. The features additional N—H⋯O and O—H⋯O hydrogen bonds, π–π stacking and unusual weak C—O⋯π(ring) interactions.
of the title compound, CCCDC reference: 1538918
1. Chemical context
Hydrogen bonding is the most common way of generating supramolecular organic systems in crystal engineering and molecular recognition. Hydrogen-bonded systems generated from organic cations and anions are of special interest as they would be expected to form stronger hydrogen bonds than those in neutral molecules (Reetz et al.,1994; Bertolasi et al., 2001). Squaric acid (H2C4O4, H2sq), has been of interest because of its cyclic structure and potential aromaticity and is used as a building block in crystal engineering due to the simplicity of the cyclic units. It can be found in three forms: uncharged H2sq, the Hsq− monoanion and the sq2− dianion. The mono- and dianions are often produced following deprotonation by (Lam & Mak, 2000; Mathew et al., 2002). The squarate derivatives are almost flat because of the π-conjugation of their C—C and C—O bonds, and therefore their four oxygen atoms behave as planar (sp2) electron donors of one or two lone pairs of electrons. Recently, we reported the synthesis and characterization of the same organoammonium squarate as the title compound but as a hydrate in the triclinic P (Korkmaz & Bulut, 2013). We report here the unsolvated form of this salt, which crystallizes in the monoclinic P21/c.
2. Structural commentary
2-(Aminomethyl) pyridine forms a salt with two squaric acid molecules and each molecule of the acid loses one proton. One of these is transferred to the N atom of the pyridine ring, generating the 4-(aminomethyl)morpholinium mono-cation. The other from the second acid molecule is engaged in the formation of a homo-conjugated hydrogen squarate anion via a short, symmetric O5—H5A⋯O3 [2.4583 (14) Å] hydrogen bond (Fig. 1). The electron density associated with this H atom is shared by the O5 and O3 atoms, indicating a large degree of ionic character (Gilli & Gilli, 2000). Considering the range (2.38–2.50 Å) of Gilli's classification for such an interaction, this hydrogen bonding can be referred to as negative charge-assisted hydrogen bonding [(−) CAHB] (Gilli & Gilli, 2009; Gilli et al., 2001; Becke, 1993, Lee et al., 1988) and can be represented as [-O⋯H⋯O-]−.
N1/C1–C5, C7–C10 and C11–C14 are defined as rings 1, 2 and 3, respectively, with centroids Cg1, Cg2 and Cg3. The dihedral angles between the mean plane of ring 1 and those of rings 2 and 3 are 18.818 (8) and 31.564 (6)°, respectively. The dihedral angle between the two squarate anions is 29.19 (1)°. The angles between the C—C bonds in the Hsq− anions are close to 90°, with the oxygen atoms directed almost along the diagonals.
The C—C distances in the planar squarate ring systems reflect partial double-bond character for C9—C10, C7—C10, C11—C12 and C11—C14 with distances of 1.4291 (17), 1.4357 (16), 1.4139 (17) and 1.4465 (18) Å, respectively. In contrast C7—C8, C8—C9, C12—C13 and C13—C14 display more single-bond character with distances of 1.4886 (17), 1.4929 (17), 1.4802 (18) and 1.5141 (17) Å, respectively. The Hsq− ion has one C—O bond (C11—O5) at 1.3023 (17) Å, which is significantly longer than a normal single C—O bond. This most likely reflects the involvement in the negative charge-assisted hydrogen bonding mentioned earlier. At 1.3000 (15) Å, the C10—O4 bond is similarly extended. The remaining C—O bonds in both rings display a similar pattern with one obvious C=O double bond in each ring [C8=O2, 1.2268 (15) Å and C13=O7, 1.2141 (17) Å] and the others of intermediate length in the range 1.2356 (16) to 1.2658 (15) Å, indicating some delocalization occurring in both rings.
3. Supramolecular features
The two hydrogen squarate anions are linked in the A⋯O3 [2.4583 (14) Å] related to the proton-sharing interaction discussed earlier. This pair of anions is further linked to the 2-(azaniumylmethyl)pyridinium dication by an N1—H1A⋯O1 hydrogen bond, Fig. 1, Table 1. O5—H5A⋯O3, N2—H2B⋯O2i and N2—H2B⋯O5i hydrogen bonds form rings with an R32(7) graph-set motif while N2—H2C⋯O6i and N2—H2B⋯O5i hydrogen bonds combine to form R22(7) rings. In addition, heteronuclear N2—H2C⋯O6i, and N2—H2A⋯O8ii and homonuclear O4—H4A⋯O6iii and O5—H5A⋯O3 hydrogen bonds generate a larger R34(14) ring motif (Fig. 2, Table 1). The crystal packing also features unusual weak C7—O1⋯Cg2ii, C7—O1⋯Cg3iv and C13—O7⋯Cg2v interactions reinforced by π–π stacking interactions. These latter contacts [Cg1· · ·Cg3 = 2.5382 (9) Å, Cg2· ··Cg2ii = 3.5997 (9) Å, Cg2· · ·Cg3iv = 3.6406 (10) Å and Cg3·· ·Cg2v = 3.6406 (10) Å; symmetry codes: (ii) 1 − x, 1 − y, 1 − z; (iv) − x, + y, − z; (v) − x, − + y, − z] also contribute to the stabilization of the crystal packing (Fig. 3).
by a short hydrogen-bonding interaction O5—H54. Database survey
A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016) revealed the structures of various organoammonium squarates (Georgopoulos et al., 2005; Wang & Stucky, 1974; Kanters et al., 1991; Kolev et al., 2000; Karle et al., 1996; Angelova et al.,1996). In the squarate anion form, the anions are generally linked to by N—H⋯O hydrogen bonds (Gilli et al., 2001; Korkmaz et al., 2011; Dega-Szafran et al., 2012). Structures of 2-(amoniomethyl) pyridinium, dihydrogen squarate and squaric acid derivatives are also known (Korkmaz et al., 2011; Korkmaz & Bulut, 2013, 2014). Often, the supramolecular architectures of similar structures have been investigated together with their spectroscopic properties, including their potential non-linear optical (NLO) behaviour (Bosshard et al., 1995; Kolev et al., 2008). The literature also reveals that squarenes show photo-chemical, photo-conductive and NLO properties and that they can be used as electron acceptors in photo-sensitive devices (Korkmaz et al., 2016).
5. Synthesis and crystallization
All chemical reagents were analytical grade commercial products. The solvent was purified by conventional methods. Squaric acid (H2Sq; 0,46 g, 4 mmol) and 2-(aminomethyl)pyridine (0,24 g; 2 mmol) were dissolved in water (25 cm3) to obtain a mixture in the molar ratio 2:1 and the solution was heated to 323 K in a temperature-controlled bath and stirred for one h. The reaction mixture was then slowly cooled to room temperature. The crystals formed were filtered and washed with 10 cm3 of methanol, and dried in air.
6. Refinement
Crystal data, data collection and structure . All C-bound hydrogen atoms were included in calculated positions with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene) and allowed to ride, with Uiso(H) = 1.2Ueq(C). The NH3 group (N—H = 0.89 Å) was also allowed to ride in the with Uiso(H) = 1.5Ueq(N). The O-bound H atoms and N1-bound H atom were located in a difference-Fourier map and refined with Uiso(H) = 1.2Ueq(O) and Uiso(H) = 1.5Ueq(N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1538918
https://doi.org/10.1107/S2056989017004376/sj5524sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017004376/sj5524Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017004376/sj5524Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C6H10N22+·2C4HO4− | F(000) = 696 |
Mr = 336.26 | Dx = 1.586 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4653 (7) Å | Cell parameters from 9896 reflections |
b = 15.4548 (14) Å | θ = 3.0–28.3° |
c = 12.2095 (12) Å | µ = 0.13 mm−1 |
β = 90.073 (4)° | T = 296 K |
V = 1408.7 (2) Å3 | Block, bronze |
Z = 4 | 0.17 × 0.13 × 0.11 mm |
Bruker APEXII CCD diffractometer | 3090 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.042 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | θmax = 28.3°, θmin = 3.0° |
Tmin = 0.672, Tmax = 0.746 | h = −9→9 |
70681 measured reflections | k = −20→20 |
3496 independent reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters not refined |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0556P)2 + 0.5691P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
3496 reflections | Δρmax = 0.26 e Å−3 |
227 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3472 (2) | 0.59963 (10) | 0.10814 (12) | 0.0377 (3) | |
H1 | 0.376471 | 0.541181 | 0.111071 | 0.045* | |
C2 | 0.2856 (2) | 0.63543 (13) | 0.01196 (13) | 0.0479 (4) | |
H2 | 0.270245 | 0.601292 | −0.050069 | 0.058* | |
C3 | 0.2473 (2) | 0.72223 (14) | 0.00899 (14) | 0.0507 (4) | |
H3 | 0.210063 | 0.747750 | −0.056155 | 0.061* | |
C4 | 0.2640 (2) | 0.77205 (11) | 0.10321 (14) | 0.0442 (4) | |
H4 | 0.236500 | 0.830733 | 0.101700 | 0.053* | |
C5 | 0.32152 (18) | 0.73381 (8) | 0.19877 (12) | 0.0305 (3) | |
C6 | 0.3378 (2) | 0.78078 (10) | 0.30627 (14) | 0.0419 (4) | |
H6A | 0.424710 | 0.751293 | 0.352098 | 0.050* | |
H6B | 0.381247 | 0.839005 | 0.293104 | 0.050* | |
C7 | 0.61186 (16) | 0.53092 (8) | 0.38741 (10) | 0.0245 (2) | |
C8 | 0.59463 (17) | 0.44771 (8) | 0.32689 (10) | 0.0273 (3) | |
C9 | 0.71303 (18) | 0.40741 (8) | 0.41129 (10) | 0.0278 (3) | |
C10 | 0.72538 (16) | 0.48889 (8) | 0.46610 (10) | 0.0247 (2) | |
C11 | 0.64141 (18) | 0.16148 (8) | 0.29601 (10) | 0.0289 (3) | |
C12 | 0.54027 (17) | 0.10155 (8) | 0.23404 (10) | 0.0271 (3) | |
C13 | 0.57553 (18) | 0.03307 (9) | 0.31604 (10) | 0.0293 (3) | |
C14 | 0.67917 (17) | 0.09946 (8) | 0.38172 (10) | 0.0272 (3) | |
N1 | 0.36494 (15) | 0.64919 (7) | 0.19743 (9) | 0.0288 (2) | |
N2 | 0.16375 (17) | 0.78523 (8) | 0.36470 (10) | 0.0346 (3) | |
H2A | 0.177821 | 0.813962 | 0.427290 | 0.052* | |
H2C | 0.125260 | 0.731888 | 0.378838 | 0.052* | |
H2B | 0.083844 | 0.812501 | 0.322984 | 0.052* | |
O1 | 0.54865 (14) | 0.60498 (6) | 0.37564 (8) | 0.0328 (2) | |
O2 | 0.51318 (15) | 0.42458 (7) | 0.24462 (8) | 0.0387 (3) | |
O3 | 0.77376 (16) | 0.33276 (6) | 0.42957 (9) | 0.0409 (3) | |
O4 | 0.80146 (14) | 0.51691 (6) | 0.55513 (8) | 0.0331 (2) | |
O5 | 0.68219 (19) | 0.24159 (7) | 0.27431 (9) | 0.0457 (3) | |
O6 | 0.45452 (15) | 0.10825 (7) | 0.14494 (8) | 0.0380 (3) | |
O7 | 0.54053 (18) | −0.04333 (7) | 0.32469 (10) | 0.0514 (3) | |
O8 | 0.76167 (16) | 0.09899 (7) | 0.46951 (8) | 0.0400 (3) | |
H1A | 0.419 (3) | 0.6260 (13) | 0.2598 (17) | 0.048* | |
H5A | 0.725 (3) | 0.2770 (14) | 0.3380 (18) | 0.060* | |
H4A | 0.868 (3) | 0.4687 (15) | 0.5894 (17) | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0412 (7) | 0.0344 (7) | 0.0375 (8) | 0.0016 (6) | 0.0005 (6) | −0.0072 (6) |
C2 | 0.0440 (8) | 0.0679 (11) | 0.0320 (7) | −0.0028 (8) | −0.0042 (6) | −0.0111 (7) |
C3 | 0.0442 (9) | 0.0732 (12) | 0.0346 (8) | 0.0039 (8) | −0.0084 (6) | 0.0176 (8) |
C4 | 0.0458 (8) | 0.0362 (8) | 0.0505 (9) | 0.0057 (6) | −0.0058 (7) | 0.0159 (7) |
C5 | 0.0293 (6) | 0.0253 (6) | 0.0370 (7) | −0.0015 (5) | −0.0047 (5) | 0.0011 (5) |
C6 | 0.0383 (7) | 0.0333 (7) | 0.0540 (9) | −0.0031 (6) | −0.0126 (7) | −0.0137 (6) |
C7 | 0.0285 (6) | 0.0245 (6) | 0.0207 (5) | −0.0021 (4) | −0.0029 (4) | 0.0028 (4) |
C8 | 0.0327 (6) | 0.0254 (6) | 0.0237 (6) | −0.0010 (5) | −0.0045 (5) | 0.0012 (5) |
C9 | 0.0344 (6) | 0.0230 (6) | 0.0259 (6) | −0.0008 (5) | −0.0073 (5) | −0.0009 (4) |
C10 | 0.0297 (6) | 0.0222 (5) | 0.0223 (5) | −0.0007 (4) | −0.0045 (4) | 0.0009 (4) |
C11 | 0.0364 (6) | 0.0242 (6) | 0.0261 (6) | 0.0020 (5) | −0.0054 (5) | −0.0052 (5) |
C12 | 0.0307 (6) | 0.0257 (6) | 0.0248 (6) | 0.0040 (5) | −0.0059 (5) | −0.0052 (5) |
C13 | 0.0322 (6) | 0.0280 (6) | 0.0276 (6) | −0.0013 (5) | −0.0061 (5) | −0.0020 (5) |
C14 | 0.0297 (6) | 0.0287 (6) | 0.0234 (6) | 0.0000 (5) | −0.0039 (5) | −0.0035 (5) |
N1 | 0.0310 (5) | 0.0265 (5) | 0.0287 (5) | 0.0017 (4) | −0.0043 (4) | 0.0019 (4) |
N2 | 0.0473 (7) | 0.0276 (6) | 0.0288 (6) | 0.0021 (5) | −0.0120 (5) | −0.0032 (4) |
O1 | 0.0431 (5) | 0.0240 (4) | 0.0312 (5) | 0.0049 (4) | −0.0081 (4) | 0.0028 (4) |
O2 | 0.0505 (6) | 0.0340 (5) | 0.0315 (5) | −0.0006 (4) | −0.0189 (4) | −0.0030 (4) |
O3 | 0.0594 (7) | 0.0227 (5) | 0.0405 (6) | 0.0071 (4) | −0.0227 (5) | −0.0051 (4) |
O4 | 0.0452 (5) | 0.0257 (5) | 0.0282 (5) | 0.0014 (4) | −0.0150 (4) | −0.0028 (4) |
O5 | 0.0797 (9) | 0.0227 (5) | 0.0346 (5) | −0.0061 (5) | −0.0174 (5) | −0.0021 (4) |
O6 | 0.0520 (6) | 0.0309 (5) | 0.0310 (5) | 0.0043 (4) | −0.0204 (4) | −0.0050 (4) |
O7 | 0.0700 (8) | 0.0309 (6) | 0.0532 (7) | −0.0154 (5) | −0.0214 (6) | 0.0067 (5) |
O8 | 0.0525 (6) | 0.0386 (6) | 0.0290 (5) | −0.0023 (5) | −0.0171 (4) | −0.0034 (4) |
C1—N1 | 1.3388 (18) | C9—O3 | 1.2593 (16) |
C1—C2 | 1.377 (2) | C9—C10 | 1.4291 (17) |
C1—H1 | 0.9300 | C10—O4 | 1.3000 (15) |
C2—C3 | 1.372 (3) | C11—O5 | 1.3023 (17) |
C2—H2 | 0.9300 | C11—C12 | 1.4139 (17) |
C3—C4 | 1.390 (3) | C11—C14 | 1.4465 (18) |
C3—H3 | 0.9300 | C12—O6 | 1.2658 (15) |
C4—C5 | 1.376 (2) | C12—C13 | 1.4802 (18) |
C4—H4 | 0.9300 | C13—O7 | 1.2141 (17) |
C5—N1 | 1.3475 (17) | C13—C14 | 1.5141 (17) |
C5—C6 | 1.505 (2) | C14—O8 | 1.2356 (16) |
C6—N2 | 1.485 (2) | N1—H1A | 0.93 (2) |
C6—H6A | 0.9700 | N2—H2A | 0.8900 |
C6—H6B | 0.9700 | N2—H2C | 0.8900 |
C7—O1 | 1.2462 (15) | N2—H2B | 0.8900 |
C7—C10 | 1.4357 (16) | O3—H5A | 1.46 (2) |
C7—C8 | 1.4886 (17) | O4—H4A | 0.99 (2) |
C8—O2 | 1.2268 (15) | O5—H5A | 1.00 (2) |
C8—C9 | 1.4929 (17) | ||
N1—C1—C2 | 119.82 (15) | C10—C9—C8 | 89.62 (10) |
N1—C1—H1 | 120.1 | O4—C10—C9 | 135.48 (12) |
C2—C1—H1 | 120.1 | O4—C10—C7 | 131.74 (12) |
C3—C2—C1 | 119.01 (15) | C9—C10—C7 | 92.73 (10) |
C3—C2—H2 | 120.5 | O5—C11—C12 | 129.70 (12) |
C1—C2—H2 | 120.5 | O5—C11—C14 | 137.03 (12) |
C2—C3—C4 | 120.09 (15) | C12—C11—C14 | 93.24 (11) |
C2—C3—H3 | 120.0 | O6—C12—C11 | 132.49 (13) |
C4—C3—H3 | 120.0 | O6—C12—C13 | 136.82 (12) |
C5—C4—C3 | 119.43 (15) | C11—C12—C13 | 90.68 (10) |
C5—C4—H4 | 120.3 | O7—C13—C12 | 135.73 (12) |
C3—C4—H4 | 120.3 | O7—C13—C14 | 136.29 (13) |
N1—C5—C4 | 118.78 (14) | C12—C13—C14 | 87.94 (10) |
N1—C5—C6 | 117.37 (12) | O8—C14—C11 | 136.71 (12) |
C4—C5—C6 | 123.85 (14) | O8—C14—C13 | 135.18 (12) |
N2—C6—C5 | 111.82 (11) | C11—C14—C13 | 88.10 (10) |
N2—C6—H6A | 109.3 | C1—N1—C5 | 122.79 (12) |
C5—C6—H6A | 109.3 | C1—N1—H1A | 119.1 (12) |
N2—C6—H6B | 109.3 | C5—N1—H1A | 117.8 (12) |
C5—C6—H6B | 109.3 | C6—N2—H2A | 109.5 |
H6A—C6—H6B | 107.9 | C6—N2—H2C | 109.5 |
O1—C7—C10 | 135.70 (12) | H2A—N2—H2C | 109.5 |
O1—C7—C8 | 134.73 (11) | C6—N2—H2B | 109.5 |
C10—C7—C8 | 89.54 (10) | H2A—N2—H2B | 109.5 |
O2—C8—C7 | 134.48 (12) | H2C—N2—H2B | 109.5 |
O2—C8—C9 | 137.39 (12) | C9—O3—H5A | 108.5 (9) |
C7—C8—C9 | 88.12 (9) | C10—O4—H4A | 108.8 (12) |
O3—C9—C10 | 134.53 (12) | C11—O5—H5A | 115.9 (12) |
O3—C9—C8 | 135.83 (12) | ||
N1—C1—C2—C3 | 1.5 (2) | O1—C7—C10—C9 | 177.87 (16) |
C1—C2—C3—C4 | −2.5 (3) | C8—C7—C10—C9 | −0.11 (10) |
C2—C3—C4—C5 | 0.9 (3) | O5—C11—C12—O6 | −4.0 (3) |
C3—C4—C5—N1 | 1.8 (2) | C14—C11—C12—O6 | 177.80 (15) |
C3—C4—C5—C6 | −177.64 (15) | O5—C11—C12—C13 | 176.91 (15) |
N1—C5—C6—N2 | −96.31 (15) | C14—C11—C12—C13 | −1.33 (11) |
C4—C5—C6—N2 | 83.15 (19) | O6—C12—C13—O7 | 4.0 (3) |
O1—C7—C8—O2 | 0.6 (3) | C11—C12—C13—O7 | −176.90 (19) |
C10—C7—C8—O2 | 178.65 (16) | O6—C12—C13—C14 | −177.79 (17) |
O1—C7—C8—C9 | −177.91 (15) | C11—C12—C13—C14 | 1.27 (10) |
C10—C7—C8—C9 | 0.10 (10) | O5—C11—C14—O8 | 2.2 (3) |
O2—C8—C9—O3 | −0.3 (3) | C12—C11—C14—O8 | −179.74 (17) |
C7—C8—C9—O3 | 178.15 (17) | O5—C11—C14—C13 | −176.71 (18) |
O2—C8—C9—C10 | −178.57 (17) | C12—C11—C14—C13 | 1.30 (10) |
C7—C8—C9—C10 | −0.11 (10) | O7—C13—C14—O8 | −2.1 (3) |
O3—C9—C10—O4 | −0.8 (3) | C12—C13—C14—O8 | 179.77 (16) |
C8—C9—C10—O4 | 177.53 (16) | O7—C13—C14—C11 | 176.91 (19) |
O3—C9—C10—C7 | −178.19 (17) | C12—C13—C14—C11 | −1.24 (10) |
C8—C9—C10—C7 | 0.11 (10) | C2—C1—N1—C5 | 1.3 (2) |
O1—C7—C10—O4 | 0.3 (3) | C4—C5—N1—C1 | −3.0 (2) |
C8—C7—C10—O4 | −177.69 (15) | C6—C5—N1—C1 | 176.53 (13) |
Cg2 and Cg3 are the centroids of the C7–C10 and C11–C14 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1 | 0.93 (2) | 1.74 (2) | 2.6598 (15) | 166.7 (19) |
N2—H2B···O2i | 0.89 | 2.05 | 2.8565 (16) | 150 |
N2—H2B···O5i | 0.89 | 2.56 | 3.1613 (17) | 126 |
N2—H2C···O6i | 0.89 | 2.02 | 2.8765 (16) | 161 |
N2—H2A···O8ii | 0.89 | 1.90 | 2.7580 (15) | 162 |
O4—H4A···O6iii | 0.99 (2) | 1.51 (2) | 2.4993 (14) | 175 (2) |
O5—H5A···O3 | 1.00 (2) | 1.46 (2) | 2.4583 (14) | 175 (2) |
C7—O1···Cg2ii | 1.25 (1) | 3.38 (1) | 3.3226 (14) | 77 (1) |
C7—O1···Cg3iv | 1.25 (1) | 3.39 (1) | 3.3297 (14) | 76 (1) |
C13—O7···Cg2v | 1.21 (1) | 3.52 (1) | 3.4188 (15) | 75 (1) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+3/2, y+1/2, −z+1/2; (v) −x+3/2, y−1/2, −z+1/2. |
Acknowledgements
The authors are grateful to the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the diffractometer.
Funding information
Funding for this research was provided by: Ondokuz Mayıs University, Turkey (award No. PYO.FEN.1904.15.012).
References
Angelova, O., Velikova, V., Kolev, T. & Radomirska, V. (1996). Acta Cryst. C52, 3252–3256. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (2001). Acta Cryst. B57, 591–598. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bosshard, C., Sutter, K., Pre?tre, P., Hulliger, J., Flörsheimer, M., Kaatz, P. & Günter, P. (1995). In Organic Nonlinear Optical Materials. Amsterdam: Gordon & Breach. Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dega-Szafran, Z., Dutkiewicz, G., Kosturkiewicz, Z. & Szafran, M. (2012). J. Mol. Struct. 1015, 86–93. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Georgopoulos, S. L., Diniz, R., Rodrigues, B. L., Yoshida, M. I. & de Oliveira, L. F. C. (2005). J. Mol. Struct. 753, 147–153. CSD CrossRef CAS Google Scholar
Gilli, G., Bertolasi, V., Gilli, P. & Ferretti, V. (2001). Acta Cryst. B57, 859–865. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gilli, G. & Gilli, P. (2000). J. Mol. Struct. 552, 1–15. Web of Science CrossRef CAS Google Scholar
Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond: Outline of a Comprehensive Hydrogen Bond Theory. Oxford: Oxford University Press. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kanters, J. A., Schouten, A., Kroon, J. & Grech, E. (1991). Acta Cryst. C47, 807–810. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Karle, I. L., Ranganathan, D. & Haridas, V. (1996). J. Am. Chem. Soc. 118, 7128–7133. CSD CrossRef CAS Web of Science Google Scholar
Kolev, T., Glavcheva, Z., Petrova, R. & Angelova, O. (2000). Acta Cryst. C56, 110–112. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kolev, T. M., Yancheva, D. Y., Stamboliyska, B. A., Dimitrov, M. D. & Wortmann, R. (2008). Chem. Phys. 348, 45–52. Web of Science CrossRef CAS Google Scholar
Korkmaz, U. & Bulut, A. (2013). J. Mol. Struct. 1050, 61–68. Web of Science CSD CrossRef CAS Google Scholar
Korkmaz, U. & Bulut, A. (2014). Spectrochim. Acta Part A, 130, 376–385. CSD CrossRef CAS Google Scholar
Korkmaz, U., Bulut, I. & Bulut, A. (2016). Acta Cryst. E72, 998–1001. CSD CrossRef IUCr Journals Google Scholar
Korkmaz, U., Uçar, İ., Bulut, A. & Büyükgüngör, O. (2011). Struct. Chem. 22, 1249–1259. CSD CrossRef CAS Google Scholar
Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657–6665. Web of Science CSD CrossRef CAS Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Mathew, S., Paul, G., Shivasankar, K., Choudhury, A. & Rao, C. N. R. (2002). J. Mol. Struct. 641, 263–279. Web of Science CSD CrossRef CAS Google Scholar
Reetz, M. T., Höger, S. & Harms, K. (1994). Angew. Chem. Int. Ed. Engl. 33, 181–183. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, Y. & Stucky, G. D. (1974). J. Chem. Soc. 2, 925–928. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.