research communications
of 4,4′-dinitro-[1,1′-biphenyl]-2-amine
aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Sultanate of , Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, cSpraying Systems Company Turkey, Esentepe Mah. Kore Şehitleri Cad. Kaya Aldoğan Sok., Serhan apt. No. 3 Daire:3 Şişli İstanbul, Turkey, and dDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net
In the title biphenyl derivative, C12H9N3O4, the dihedral angle between the benzene rings is 52.84 (10)°. The nitro group attached to the benzene ring is inclined to the ring by 4.03 (2)°, while the nitro group attached to the amino-substituted benzene ring is inclined to the ring by 8.84 (2)°. In the crystal, molecules are linked by two pairs of N—H⋯O hydrogen bonds, forming chains propagating along [101]. Within the chains, these N—H⋯O hydrogen bonds result in the formation of R22(20) and R22(14) ring motifs. The latter ring motif is reinforced by a pair of C—H⋯O hydrogen bonds, enclosing R21(6) ring motifs. The chains are linked by a second C—H⋯O hydrogen bond, forming a three-dimensional supramolecular structure.
Keywords: crystal structure; dinitro; biphenyl; amine; biphenyl derivatives; hydrogen bonding.
CCDC reference: 1537734
1. Chemical context
Biphenyl and its derivatives have been shown to play an important role in fighting cancer and arteriosclerosis in humans (Umeda et al., 2005). The dihedral angle between the phenyl rings of biphenyl derivatives is associated with their affinity for cellular target molecules and, therefore, can correlate with their toxicity. The parent compound, biphenyl, adopts a planar conformation in the solid state with a dihedral angle of 0° (Trotter, 1961). The calculated dihedral angle for biphenyl derivatives without ortho substituents is ca 41° (Shaikh et al., 2008). Deviations from the energetically most favourable conformation are most likely the result of crystal packing effects, which allow such compounds to adopt an energetically favorable conformation in the solid state by maximizing the lattice energy. Many research groups have calculated the inter-ring torsion angle of biphenyl in the solid state (Brock, 1980; Brock & Minton, 1989; Bastiansen & Samdal, 1985), and in the gas phase (Bastiansen & Traetteberg, 1962). We report here a detailed description of the molecular structure and supramolecular features of the title biphenyl derivative, 4,4′-dinitro-[1,1′-biphenyl]-2-amine, (I).
2. Structural commentary
The molecular structure of the title compound (I), is illustrated in Fig. 1. The dihedral angle between the two rings of the biphenyl unit is 52.84 (10)°. The nitro group (N3/O3/O4) is inclined to the benzene ring (C7–C12) to which it is attached by 4.03 (2)°. The nitro group (N1/O1/O2) is inclined to the amino-substituted benzene ring (C1–C6), to which it is attached, by 8.84 (2)°. The amino N atom, N2, lies in the plane of the C1–C6 benzene ring, and the N2—C5 bond length of 1.375 (3) Å clearly indicates a single bond. The C1—N1 distance of 1.466 (3) Å is slightly less than the C10—N3 bond distance of 1.477 (3) Å, which indicates that the 2-amino group containing a benzene ring (C1–C6) is more conjugated with the nitro group (N1/O1/O2) than is the other nitro group (N3/O3/O4) with respect to the C7–C12 benzene ring. The bond length of the C4—C7 bridge is 1.482 (3) Å, which indicates a single bond, and is similar to the same bond length of 1.494 (2) Å reported for dimethyl 2,2′-dinitrobiphenyl-4,4′-dicarboxylate (Lehane et al., 2014), and ca 1.493 Å observed in 2,2′-dinitrobiphenyl (Sekine et al., 1994).
3. Supramolecular features
In the crystal, molecules are linked by two pairs of N—H⋯O hydrogen bonds, forming chains propagating along the [101] direction. Within the chains, these N—H⋯O hydrogen bonds result in the formation of R22(20) and R22(14) ring motifs (Table 1 and Fig. 2). The latter ring motif is reinforced by a pair of C—H⋯O hydrogen bonds, enclosing R21(6) ring motifs (Table 1 and Fig. 2). The chains are linked by a second C—H⋯O hydrogen bond (Table 1), forming a three-dimensional supramolecular structure, as illustrated in Figs. 3 and 4.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.38, update February 2017; Groom et al., 2016) revealed the structure of two similar compounds viz 4′-nitro-2-biphenylamine (II) (CSD refcode DIWFEU; Sutherland & Ali-Adib, 1986) and 4,4′-dinitrobiphenyl (III) (DNTDPH; Boonstra, 1963). In (II), the benzene rings are inclined to one another by 54.64 (6)°, compared to ca 32.91° in (III), and to 52.84 (2)° in the title compound (I). In (II), the nitro group is inclined to the benzene ring to which it is attached by 7.08 (6)°, compared to ca 3.55 and 10.14° in (III) and 8.3 (2)° in the title compound (I).
5. Synthesis and crystallization
The title compound (I), was prepared by a literature procedure (Ol'khovik et al., 2008). Orange prismatic crystals, suitable for single-crystal X-ray analysis, were grown by slow evaporation of a solution in ethanol.
6. Refinement
Crystal data, data collection and structure . The N-bound H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.93–0.96 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1537734
https://doi.org/10.1107/S205698901700408X/su5355sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901700408X/su5355Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901700408X/su5355Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C12H9N3O4 | F(000) = 536 |
Mr = 259.22 | Dx = 1.496 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 14.2940 (11) Å | Cell parameters from 3570 reflections |
b = 7.0352 (6) Å | θ = 2.1–27.8° |
c = 11.6043 (9) Å | µ = 0.12 mm−1 |
β = 99.437 (6)° | T = 296 K |
V = 1151.15 (16) Å3 | Prism, orange |
Z = 4 | 0.34 × 0.20 × 0.07 mm |
Stoe IPDS 2 diffractometer | 2566 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1052 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.044 |
Detector resolution: 6.67 pixels mm-1 | θmax = 27.4°, θmin = 2.9° |
rotation method scans | h = −18→18 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −8→9 |
Tmin = 0.980, Tmax = 0.993 | l = −14→11 |
6476 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: mixed |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.81 | w = 1/[σ2(Fo2) + (0.0353P)2] where P = (Fo2 + 2Fc2)/3 |
2566 reflections | (Δ/σ)max < 0.001 |
180 parameters | Δρmax = 0.10 e Å−3 |
2 restraints | Δρmin = −0.12 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.61664 (11) | 0.3867 (2) | 0.93876 (16) | 0.0867 (5) | |
N1 | 0.60769 (13) | 0.3912 (3) | 0.8317 (2) | 0.0701 (5) | |
O3 | −0.08732 (12) | 0.2401 (3) | 0.36959 (17) | 0.1108 (7) | |
O2 | 0.67457 (11) | 0.3941 (3) | 0.77943 (16) | 0.1004 (6) | |
N2 | 0.26998 (16) | 0.4451 (3) | 0.8191 (2) | 0.0831 (6) | |
N3 | −0.02768 (15) | 0.3445 (4) | 0.3418 (2) | 0.0899 (7) | |
O4 | −0.04065 (12) | 0.4408 (3) | 0.25269 (19) | 0.1165 (7) | |
C5 | 0.34478 (14) | 0.4181 (3) | 0.76003 (19) | 0.0575 (5) | |
C6 | 0.43668 (14) | 0.4150 (3) | 0.82181 (19) | 0.0597 (5) | |
H6 | 0.447162 | 0.429120 | 0.902589 | 0.072* | |
C4 | 0.33093 (14) | 0.3924 (3) | 0.63808 (18) | 0.0578 (5) | |
C2 | 0.50098 (15) | 0.3718 (3) | 0.64471 (19) | 0.0630 (6) | |
H2 | 0.553081 | 0.358487 | 0.606754 | 0.076* | |
C8 | 0.21562 (15) | 0.4992 (3) | 0.4654 (2) | 0.0704 (6) | |
H8 | 0.260703 | 0.585579 | 0.448436 | 0.084* | |
C7 | 0.23591 (14) | 0.3858 (3) | 0.56438 (18) | 0.0604 (5) | |
C1 | 0.51178 (14) | 0.3912 (3) | 0.76354 (19) | 0.0565 (5) | |
C12 | 0.16757 (15) | 0.2578 (3) | 0.5889 (2) | 0.0737 (6) | |
H12 | 0.180146 | 0.181271 | 0.655006 | 0.088* | |
C3 | 0.41015 (15) | 0.3728 (3) | 0.58389 (19) | 0.0642 (6) | |
H3 | 0.401257 | 0.359785 | 0.503076 | 0.077* | |
C11 | 0.08146 (16) | 0.2435 (3) | 0.5161 (2) | 0.0787 (7) | |
H11 | 0.035605 | 0.158226 | 0.532243 | 0.094* | |
C10 | 0.06496 (16) | 0.3583 (4) | 0.4192 (2) | 0.0709 (6) | |
C9 | 0.13043 (16) | 0.4857 (3) | 0.3926 (2) | 0.0754 (6) | |
H9 | 0.117272 | 0.561654 | 0.326283 | 0.090* | |
H2B | 0.2854 (15) | 0.490 (3) | 0.8945 (17) | 0.106 (9)* | |
H2A | 0.2140 (13) | 0.484 (4) | 0.780 (2) | 0.114 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0876 (11) | 0.1025 (13) | 0.0647 (12) | 0.0106 (9) | −0.0035 (9) | −0.0071 (11) |
N1 | 0.0702 (12) | 0.0638 (12) | 0.0744 (15) | 0.0050 (10) | 0.0068 (12) | −0.0060 (12) |
O3 | 0.0786 (11) | 0.1494 (18) | 0.1005 (16) | −0.0237 (12) | 0.0033 (10) | −0.0310 (13) |
O2 | 0.0715 (10) | 0.1330 (15) | 0.0988 (14) | −0.0058 (11) | 0.0202 (10) | −0.0176 (12) |
N2 | 0.0719 (13) | 0.1179 (18) | 0.0591 (14) | −0.0019 (12) | 0.0092 (11) | −0.0076 (13) |
N3 | 0.0814 (16) | 0.1079 (19) | 0.0760 (18) | 0.0001 (13) | 0.0000 (14) | −0.0284 (14) |
O4 | 0.1077 (14) | 0.1460 (18) | 0.0828 (15) | 0.0023 (12) | −0.0234 (11) | 0.0033 (14) |
C5 | 0.0680 (13) | 0.0557 (13) | 0.0501 (13) | −0.0050 (10) | 0.0135 (11) | −0.0001 (10) |
C6 | 0.0709 (13) | 0.0582 (13) | 0.0481 (12) | −0.0029 (10) | 0.0045 (11) | 0.0007 (10) |
C4 | 0.0708 (13) | 0.0515 (12) | 0.0512 (13) | −0.0050 (10) | 0.0102 (11) | 0.0016 (11) |
C2 | 0.0746 (14) | 0.0591 (14) | 0.0573 (15) | −0.0005 (11) | 0.0171 (12) | −0.0026 (11) |
C8 | 0.0774 (14) | 0.0767 (15) | 0.0542 (14) | −0.0036 (12) | 0.0025 (12) | 0.0066 (12) |
C7 | 0.0715 (13) | 0.0594 (13) | 0.0490 (13) | −0.0049 (11) | 0.0063 (11) | −0.0043 (11) |
C1 | 0.0645 (12) | 0.0457 (12) | 0.0580 (15) | 0.0001 (10) | 0.0063 (11) | −0.0007 (11) |
C12 | 0.0873 (15) | 0.0735 (15) | 0.0578 (15) | −0.0149 (13) | 0.0047 (13) | 0.0043 (13) |
C3 | 0.0862 (15) | 0.0601 (13) | 0.0468 (13) | −0.0011 (11) | 0.0123 (12) | 0.0004 (11) |
C11 | 0.0838 (16) | 0.0794 (16) | 0.0702 (18) | −0.0193 (13) | 0.0045 (13) | −0.0057 (15) |
C10 | 0.0702 (14) | 0.0817 (17) | 0.0562 (16) | 0.0010 (12) | −0.0033 (12) | −0.0183 (13) |
C9 | 0.0838 (15) | 0.0808 (17) | 0.0577 (15) | 0.0032 (13) | 0.0001 (13) | 0.0054 (13) |
O1—N1 | 1.228 (2) | C2—C1 | 1.369 (3) |
N1—O2 | 1.214 (2) | C2—C3 | 1.372 (3) |
N1—C1 | 1.466 (3) | C2—H2 | 0.9300 |
O3—N3 | 1.209 (2) | C8—C9 | 1.367 (3) |
N2—C5 | 1.375 (3) | C8—C7 | 1.389 (3) |
N2—H2B | 0.922 (17) | C8—H8 | 0.9300 |
N2—H2A | 0.894 (17) | C7—C12 | 1.392 (3) |
N3—O4 | 1.224 (3) | C12—C11 | 1.378 (3) |
N3—C10 | 1.477 (3) | C12—H12 | 0.9300 |
C5—C6 | 1.390 (3) | C3—H3 | 0.9300 |
C5—C4 | 1.408 (3) | C11—C10 | 1.373 (3) |
C6—C1 | 1.370 (3) | C11—H11 | 0.9300 |
C6—H6 | 0.9300 | C10—C9 | 1.368 (3) |
C4—C3 | 1.389 (3) | C9—H9 | 0.9300 |
C4—C7 | 1.482 (3) | ||
O2—N1—O1 | 123.1 (2) | C7—C8—H8 | 119.5 |
O2—N1—C1 | 118.3 (2) | C8—C7—C12 | 118.8 (2) |
O1—N1—C1 | 118.63 (19) | C8—C7—C4 | 120.41 (19) |
C5—N2—H2B | 115.9 (14) | C12—C7—C4 | 120.6 (2) |
C5—N2—H2A | 119.6 (17) | C2—C1—C6 | 122.8 (2) |
H2B—N2—H2A | 116 (2) | C2—C1—N1 | 119.0 (2) |
O3—N3—O4 | 123.1 (2) | C6—C1—N1 | 118.2 (2) |
O3—N3—C10 | 118.6 (3) | C11—C12—C7 | 120.5 (2) |
O4—N3—C10 | 118.3 (3) | C11—C12—H12 | 119.7 |
N2—C5—C6 | 119.4 (2) | C7—C12—H12 | 119.7 |
N2—C5—C4 | 121.8 (2) | C2—C3—C4 | 122.7 (2) |
C6—C5—C4 | 118.80 (19) | C2—C3—H3 | 118.6 |
C1—C6—C5 | 119.9 (2) | C4—C3—H3 | 118.6 |
C1—C6—H6 | 120.1 | C10—C11—C12 | 118.4 (2) |
C5—C6—H6 | 120.1 | C10—C11—H11 | 120.8 |
C3—C4—C5 | 118.49 (19) | C12—C11—H11 | 120.8 |
C3—C4—C7 | 118.3 (2) | C9—C10—C11 | 122.6 (2) |
C5—C4—C7 | 123.25 (18) | C9—C10—N3 | 119.0 (3) |
C1—C2—C3 | 117.28 (19) | C11—C10—N3 | 118.4 (2) |
C1—C2—H2 | 121.4 | C8—C9—C10 | 118.6 (2) |
C3—C2—H2 | 121.4 | C8—C9—H9 | 120.7 |
C9—C8—C7 | 121.0 (2) | C10—C9—H9 | 120.7 |
C9—C8—H8 | 119.5 | ||
N2—C5—C6—C1 | −179.0 (2) | O2—N1—C1—C6 | −170.96 (19) |
C4—C5—C6—C1 | 1.3 (3) | O1—N1—C1—C6 | 9.7 (3) |
N2—C5—C4—C3 | 177.7 (2) | C8—C7—C12—C11 | 0.2 (3) |
C6—C5—C4—C3 | −2.6 (3) | C4—C7—C12—C11 | −175.9 (2) |
N2—C5—C4—C7 | −2.1 (3) | C1—C2—C3—C4 | 0.0 (3) |
C6—C5—C4—C7 | 177.60 (19) | C5—C4—C3—C2 | 2.0 (3) |
C9—C8—C7—C12 | −0.3 (3) | C7—C4—C3—C2 | −178.2 (2) |
C9—C8—C7—C4 | 175.8 (2) | C7—C12—C11—C10 | 0.0 (3) |
C3—C4—C7—C8 | −50.6 (3) | C12—C11—C10—C9 | −0.1 (3) |
C5—C4—C7—C8 | 129.1 (2) | C12—C11—C10—N3 | −179.4 (2) |
C3—C4—C7—C12 | 125.4 (2) | O3—N3—C10—C9 | −175.5 (2) |
C5—C4—C7—C12 | −54.9 (3) | O4—N3—C10—C9 | 3.9 (3) |
C3—C2—C1—C6 | −1.4 (3) | O3—N3—C10—C11 | 3.8 (3) |
C3—C2—C1—N1 | −179.90 (18) | O4—N3—C10—C11 | −176.8 (2) |
C5—C6—C1—C2 | 0.7 (3) | C7—C8—C9—C10 | 0.2 (3) |
C5—C6—C1—N1 | 179.24 (19) | C11—C10—C9—C8 | 0.0 (3) |
O2—N1—C1—C2 | 7.6 (3) | N3—C10—C9—C8 | 179.3 (2) |
O1—N1—C1—C2 | −171.76 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O1i | 0.92 (2) | 2.36 (2) | 3.229 (3) | 157 (2) |
N2—H2A···O4ii | 0.89 (2) | 2.50 (2) | 3.345 (3) | 157 (2) |
C6—H6···O1i | 0.93 | 2.54 | 3.308 (3) | 140 |
C9—H9···O3iii | 0.93 | 2.57 | 3.496 (3) | 174 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x, −y+1, −z+1; (iii) −x, y+1/2, −z+1/2. |
Acknowledgements
The authors are grateful to the Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey for X-ray the data collection.
Funding information
Funding for this research was provided by: Department of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev.
References
Bastiansen, O. & Samdal, S. (1985). J. Mol. Struct. 128, 115–125. CrossRef CAS Web of Science Google Scholar
Bastiansen, O. & Traetteberg, M. (1962). Tetrahedron, 17, 147–154. CrossRef CAS Web of Science Google Scholar
Boonstra, E. G. (1963). Acta Cryst. 16, 816–823. CSD CrossRef IUCr Journals Web of Science Google Scholar
Brock, C. P. (1980). Acta Cryst. B36, 968–971. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Brock, C. P. & Minton, P. (1989). J. Am. Chem. Soc. 111, 4586–4593. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lehane, R. L., Golen, J. A., Rheingold, A. L. & Manke, D. R. (2014). Acta Cryst. E70, o305. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ol'khovik, V. K., Pap, A. A., Vasilevskii, V. A., Galinovskii, N. A. & Tereshko, S. N. (2008). Russ. J. Org. Chem. 44, 1172–1179. CAS Google Scholar
Sekine, A., Ohashi, Y., Yoshimura, K., Yagi, M. & Higuchi, J. (1994). Acta Cryst. C50, 1101–1104. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Shaikh, N. S., Parkin, S., Luthe, G. & Lehmler, H.-J. (2008). Chemosphere, 70, 1694–1698. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Sutherland, H. H. & Ali-Adib, Z. (1986). Acta Cryst. C42, 432–433. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Trotter, J. (1961). Acta Cryst. 14, 1135–1140. CSD CrossRef IUCr Journals Web of Science Google Scholar
Umeda, Y., Aiso, S., Yamazaki, K., Ohnishi, M., Arito, H., Nagano, K., Yamamoto, S. & Matsushima, T. (2005). J. Vet. Med. Sci. 67, 417–424. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.