research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ruthenium(II) carbonyl compounds with the 4′-chloro-2,2′:6′,2′′-terpyridine ligand

CROSSMARK_Color_square_no_text.svg

aUniversity of Jyväskylä, Department of Chemistry, PO Box 35, FI-40014 University of Jyväskylä, Finland
*Correspondence e-mail: matti.o.haukka@jyu.fi

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 February 2017; accepted 10 March 2017; online 21 March 2017)

Two ruthenium carbonyl complexes with the 4′-chloro-2,2′:6′,2′′-terpyridine ligand (tpy-Cl, C15H10ClN3), i.e. [RuCl(tpy-Cl)(CO)2][RuCl3(CO)3] (I) [systematic name: cis-di­carbonyl­chlorido(4′-chloro-2,2′:6′,2′′-terpyridine-κ3N)ruthenium(II) fac-tricarbonyltri­chlorido­ruthenate(II)], and [RuCl2(tpy-Cl)(CO)2] (II) [cis-dicarbonyl-trans-di­chlorido(4′-chloro-2,2′:6′,2′′-terpyridine-κ2N1,N1′)ruthenium(II)], were synthesized and characterized by single-crystal X-ray diffraction. The RuII atoms in both centrosymmetric structures (I) and (II) display similar, slightly distorted octa­hedral coordination spheres. The coordination sphere in the complex cation in compound (I) is defined by three N atoms of the tridentate tpy-Cl ligand, two carbonyl carbon atoms and one chlorido ligand; the charge is balanced by an octa­hedral [Ru(CO)3Cl3] counter-anion. In the neutral compound (II), the tpy-Cl ligand coordinates to the metal only through two of its N atoms. The coordination sphere of the RuII atom is completed by two carbonyl and two chlorido ligands. In the crystal structures of both (I) and (II), weak C—H⋯Cl inter­actions are observed.

1. Chemical context

Ruthenium-carbonyl compounds with polypyridine ligands are known to be active catalysts for several catalytic processes including the reduction of carbon dioxide (Collomb-Dunand-Sauthier et al., 1994[Collomb-Dunand-Sauthier, M.-N., Deronzier, A. & Ziessel, R. (1994). J. Chem. Soc. Chem. Commun. pp. 189-191.]; Chardon-Noblat et al., 2002[Chardon-Noblat, S., Da Costa, P., Deronzier, A., Maniguet, S. & Ziessel, R. (2002). J. Electroanal. Chem. 529, 135-144.]; Kuramochi et al., 2015[Kuramochi, Y., Fukaya, K., Yoshida, M. & Ishida, M. (2015). Chem. Eur. J. 21, 10049-10060.]), water–gas shift reaction (Luukkanen et al., 1999[Luukkanen, S., Homanen, P., Haukka, M., Pakkanen, T. A., Deronzier, A., Chardon-Noblat, S., Zsoldos, D. & Ziessel, R. (1999). Appl. Catal. Gen. 185, 157-164.]) and hydro­formyl­ation (Alvila et al., 1994[Alvila, L., Pursiainen, J., Kiviaho, J., Pakkanen, T. A. & Krause, O. (1994). J. Mol. Catal. 91, 335-342.]). Many of these systems are metallopolymers obtained by reducing mononuclear precursors either chemically or electrochemically. The 2,2′-bi­pyridine ligand or its derivatives are the most commonly used ligand systems in these catalysts. It is also reported that possible substituents on polypyridine rings can have a strong impact on the catalytic behaviour of the compounds (Chardon-Noblat et al., 2001[Chardon-Noblat, S., Deronzier, A. & Ziessel, R. (2001). Collect. Czech. Chem. Commun. 66, 207-227.]), which could offer a route to tailor the catalytic activity. Compounds with terpyridine and its derivatives as ligands together with carbonyl ligands are less commonly used (Deacon et al., 1984[Deacon, G. B., Patrick, J. M., Skelton, B. W., Thomas, N. C. & White, A. H. (1984). Aust. J. Chem. 37, 929-945.]; Gibson et al., 1997[Gibson, D. H., Sleadd, B. A., Mashuta, M. S. & Richardson, J. F. (1997). Organometallics, 16, 4421-4427.]; Ziessel et al., 2004[Ziessel, R., Grosshenny, V., Hissler, M. & Stroh, C. (2004). Inorg. Chem. 43, 4262-4271.]), although it has also been shown that these types of compounds can be used to obtain active catalysts. Terpyridines are able to act as strong tridentate ligands because of the arrangement of the pyridine nitro­gen atoms. However, bidentate coordination is also known (Deacon et al., 1984[Deacon, G. B., Patrick, J. M., Skelton, B. W., Thomas, N. C. & White, A. H. (1984). Aust. J. Chem. 37, 929-945.]; Kooijman et al., 2007[Kooijman, H., Spek, A. L., Mulder, A. & Reinhoudt, D. N. (2007). Private communication (CCDC numbers 666468 and 666615). CCDC, Cambridge, England.]; Amoroso et al., 2010[Amoroso, A. J., Banu, A., Coogan, M. P., Edwards, P. G., Hossain, G. & Malik, K. M. A. (2010). Dalton Trans. 39, 6993-7003.]).

In this context we report on the two title compounds, [RuCl(tpy-Cl)(CO)2][Ru(CO)3Cl3] (I)[link] and [RuCl2(tpy-Cl)(CO)2] (II)[link] with the 4′-chloro-2,2′:6′,2′′-terpyridine ligand (tpy-Cl, C15H10ClN3), which show both types of coordination, i.e. tridentate for (I)[link] and bidentate for (II)[link]. The title compounds were synthesized by adopting a literature procedure (Homanen et al., 1996[Homanen, P., Haukka, M., Pakkanen, T. A., Pursiainen, J. & Laitinen, R. H. (1996). Organometallics, 15, 4081-4084.]).

[Scheme 1]

2. Structural commentary

Compound (I)[link] is a salt and crystallizes in the monoclinic space group P21/c with four formula units in the unit cell. The coordination sphere of the RuII atom in the cation is a slightly distorted octa­hedron. The equatorial positions are occupied by three pyridine N atoms from the Tpy-Cl ligand and by one carbonyl ligand; axial positions are occupied by one chloride and one carbonyl ligand. The charge on the RuII atom is balanced by an octa­hedrally shaped fac-[Ru(CO)3Cl3] anion (Fig. 1[link]). As expected, in the cation the Ru1—N5 bond to the central pyridine ring of the tpy-Cl ligand [2.019 (2) Å] is the shortest of the Ru—N bonds (Gibson et al., 1997[Gibson, D. H., Sleadd, B. A., Mashuta, M. S. & Richardson, J. F. (1997). Organometallics, 16, 4421-4427.]; Ziessel et al., 2004[Ziessel, R., Grosshenny, V., Hissler, M. & Stroh, C. (2004). Inorg. Chem. 43, 4262-4271.]). The Ru1—N1 [2.097 (2) Å] and Ru1—N15 [2.093 (2) Å] bonds involving the outer pyridine rings are lengthened to relieve strain and to retain a typical terpyridine bite angle of about 79°. Similar structures can be found in other ruthenium(II) complexes containing terpyridine ligands (Gibson et al., 1997[Gibson, D. H., Sleadd, B. A., Mashuta, M. S. & Richardson, J. F. (1997). Organometallics, 16, 4421-4427.]). The Ru1—C2 bond of the equatorial carbonyl group [1.918 (3) Å] is longer than the Ru1—C1 bond [1.893 (3) Å] of the axial carbonyl group, indicating a slightly stronger trans-influence caused by the pyridine N atom. The Ru1—Cl1 distance [2.4279 (7) Å] is in the range of typical Ru—Cl bond lengths (Deacon et al., 1984[Deacon, G. B., Patrick, J. M., Skelton, B. W., Thomas, N. C. & White, A. H. (1984). Aust. J. Chem. 37, 929-945.]; Ziessel et al., 2004[Ziessel, R., Grosshenny, V., Hissler, M. & Stroh, C. (2004). Inorg. Chem. 43, 4262-4271.]). The corres­ponding Ru—Cl bond lengths in the [Ru(CO)3Cl3] counter-anion [2.4129 (7)–2.4212 (7) Å] also fall into the typical range of Ru—Cl bonds (Table 1[link]).

Table 1
Selected bond lengths (Å) for (I)[link]

Ru1—C1 1.893 (3) Ru2—C20 1.902 (3)
Ru1—C2 1.918 (3) Ru2—C18 1.914 (3)
Ru1—N5 2.019 (2) Ru2—Cl4 2.4129 (7)
Ru1—N15 2.093 (2) Ru2—Cl5 2.4199 (7)
Ru1—N1 2.097 (2) Ru2—Cl3 2.4212 (7)
Ru1—Cl1 2.4279 (7) N1—C3 1.336 (3)
Ru2—C19 1.893 (3)    
[Figure 1]
Figure 1
The mol­ecular structures of the cation and anion in compound (I)[link]. Displacement ellipsoids are drawn at the 50% probability level.

Compound (II)[link] is a neutral complex and crystallizes in the triclinic space group P[\overline{1}] with two formula units. The coordination sphere around the RuII atom is again a slightly distorted octa­hedron (Fig. 2[link]). The four equatorial positions are occupied by two N atoms [Ru1—N1 = 2.105 (2) and Ru1—N2 = 2.157 (2) Å] from the Tpy-Cl ligand and by two carbonyl ligands [Ru1—C2 = 1.877 (3); Ru1—C1 = 1.895 (3) Å]. The chlorido ligands [Ru1—Cl1 = 2.3762 (8); Ru1—Cl2 = 2.4098 (7) Å] are placed at axial positions of the mol­ecule. The Ru1—N2 and Ru1—C1 bond lengths are slightly longer than Ru1—N1 and Ru1—C2 bond lengths due to the steric strain generated by the non-coordinating pyridine ring (Table 2[link]).

Table 2
Selected bond lengths (Å) for (II)[link]

Ru1—C2 1.877 (3) Ru1—N2 2.157 (2)
Ru1—C1 1.895 (3) Ru1—Cl1 2.3762 (8)
Ru1—N1 2.105 (2) Ru1—Cl2 2.4098 (7)
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link]. Displacement ellipsoids are drawn at the 50% probability level.

The Tpy-Cl ligand in compound (I)[link] is non-planar, despite coordination of all its three N atoms [dihedral angles between the mean planes of the central pyridine ring and the adjacent pyridine rings are 5.70 (8) and 13.28 (7)°]. In compound (II)[link], the ring with the non-coordinating N atom is inclined considerably relative to the coordination plane of the two pyridine rings [dihedral angle 57.71 (9)°].

3. Supra­molecular features

The packing of mol­ecules (I)[link] and (II)[link] are dominated by van der Waals inter­actions; packing plots are displayed in Fig. 3[link] for (I)[link] and Fig. 4[link] for (II)[link]. Only weak hydrogen bonds and ππ contacts can be found in these structures. In both (I)[link] and (II)[link], some non-conventional hydrogen bonds between the aromatic C—H hydrogen atoms and chlorido ligands of neighboring mol­ecules do exist. The shortest contacts are summarized in Tables 3[link] and 4[link]. In addition to these hydrogen bonds, the aromatic rings in structure (I)[link] are involved in weak face-to-face ππ-inter­actions with considerable offsets. The shortest inter­molecular C—C distances range from 3.23 to 3.50 Å. In (II)[link], an edge-to-face contact exists between C3—H3 and C16 of the neighboring mol­ecule. The distance between H3 and C16 is 2.89 Å and the angle C3—H3⋯C16 amounts to 134°. All inter­actions considered, three-dimensional network structures are obtained both for (I)[link] and (II)[link].

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cl5i 0.95 2.76 3.664 (3) 158
C16—H16⋯Cl1ii 0.95 2.72 3.515 (3) 142
C5—H5⋯Cl3iii 0.95 2.82 3.553 (3) 134
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Table 4
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl2i 0.95 2.77 3.687 (3) 163
Symmetry code: (i) -x+2, -y+1, -z+1.
[Figure 3]
Figure 3
The crystal packing of (I)[link] in a view along the b axis.
[Figure 4]
Figure 4
The crystal packing of (II)[link] in a view along the b axis.

4. Synthesis and crystallization

The title compounds were synthesized using a literature procedure (Homanen et al., 1996[Homanen, P., Haukka, M., Pakkanen, T. A., Pursiainen, J. & Laitinen, R. H. (1996). Organometallics, 15, 4081-4084.]) and both compounds were obtained in a single pot reaction. A solution of [Ru(CO)3Cl2]2 (25.6 mg, 0.05 mmol) in 3 ml of THF was refluxed for 1 h under argon gas. After the reaction time, 26.7 mg (0.1 mmol) of tpy-Cl in 3 ml of THF was added to the above reaction mixture. The resulting mixture was refluxed for another 2 h in air with continuous stirring. During the reaction, the pale yellow solution turned to a reddish solution with a colourless precipitate. The precipitate was collected through centrifugation and the filtrate was evaporated for crystallization. Compound (I)[link] was obtained as a major product originating from the precipitate and compound (II)[link] was collected as a minor product from the filtrate. High-quality crystals of the salt (I)[link] for single-crystal X-ray diffraction were obtained from DMSO solution and those of complex (II)[link] were obtained as brown-coloured crystals from the filtrate.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All H atoms were positioned in calculated positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and Uiso = 1.2Ueq(C). The maximum electron density in complex (I)[link] is located at 0.67 Å from atom C8 and in complex (II)[link] at 1.28 Å from atom N2, respectively. The minimum density in complex (I)[link] is located at 0.77 Å from atom Ru1 and in complex (II)[link] at 0.87 Å from atom Ru1, respectively.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula [RuCl(C15H10ClN3)(CO)2][Ru(CO)3Cl3] [RuCl2(C15H10ClN3(CO)2]
Mr 751.70 495.70
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 123 123
a, b, c (Å) 14.3578 (4), 13.9158 (2), 13.2220 (3) 7.3019 (3), 8.5080 (3), 14.7702 (6)
α, β, γ (°) 90, 114.080 (3), 90 101.287 (3), 91.835 (3), 98.144 (3)
V3) 2411.86 (11) 889.09 (6)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.85 1.35
Crystal size (mm) 0.34 × 0.08 × 0.06 0.30 × 0.08 × 0.05
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.914, 1.000 0.300, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11072, 4864, 4264 7508, 3662, 3405
Rint 0.023 0.036
(sin θ/λ)max−1) 0.625 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.050, 1.06 0.033, 0.088, 1.07
No. of reflections 4864 3662
No. of parameters 316 235
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.48 0.74, −1.43
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and UCSF Chimera (Pettersen et al., 2004[Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). J. Comput. Chem. 25, 1605-1612.]).

Supporting information


Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: UCSF Chimera (Pettersen et al., 2004); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(I) cis-Dicarbonylchlorido(4'-chloro-2,2':6',2''-terpyridine-κ3N)ruthenium(II) fac-tricarbonyltrichloridoruthenate(II)] top
Crystal data top
[RuCl(C15H10ClN3)(CO)2][RuCl3(CO)3]F(000) = 1456
Mr = 751.70Dx = 2.070 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.3578 (4) ÅCell parameters from 6406 reflections
b = 13.9158 (2) Åθ = 3.5–28.5°
c = 13.2220 (3) ŵ = 1.85 mm1
β = 114.080 (3)°T = 123 K
V = 2411.86 (11) Å3Plate, colourless
Z = 40.34 × 0.08 × 0.06 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
4864 independent reflections
Radiation source: micro-source4264 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.3953 pixels mm-1θmax = 26.4°, θmin = 3.1°
φ scans and ω scans with κ offseth = 1717
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2013)
k = 1617
Tmin = 0.914, Tmax = 1.000l = 1614
11072 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0156P)2 + 1.2338P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4864 reflectionsΔρmax = 0.43 e Å3
316 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.17472 (2)0.27299 (2)0.26207 (2)0.01106 (6)
Ru20.39629 (2)0.64980 (2)0.27157 (2)0.01345 (6)
Cl10.08461 (5)0.27737 (4)0.38251 (5)0.01640 (14)
Cl50.37371 (5)0.70601 (5)0.08982 (6)0.02129 (15)
Cl30.22742 (5)0.70409 (5)0.24405 (6)0.02024 (15)
Cl20.21948 (5)0.02482 (5)0.03389 (6)0.02083 (15)
Cl40.32731 (5)0.49515 (5)0.19478 (6)0.01848 (15)
N10.22418 (16)0.13257 (15)0.31413 (17)0.0124 (5)
O10.29403 (15)0.26878 (13)0.11931 (16)0.0217 (4)
N50.05630 (16)0.19549 (15)0.15594 (17)0.0122 (5)
C120.0292 (2)0.24201 (18)0.0912 (2)0.0127 (5)
O30.42369 (15)0.57772 (14)0.49897 (17)0.0229 (4)
C130.01943 (19)0.34784 (18)0.1003 (2)0.0117 (5)
C180.4133 (2)0.60467 (19)0.4148 (2)0.0167 (6)
C70.1595 (2)0.06339 (18)0.2494 (2)0.0142 (6)
C20.2842 (2)0.34104 (18)0.3748 (2)0.0163 (6)
C80.0622 (2)0.09880 (18)0.1648 (2)0.0123 (5)
C200.4498 (2)0.7734 (2)0.3261 (2)0.0186 (6)
N150.07324 (16)0.38173 (15)0.17428 (17)0.0123 (5)
O40.59817 (15)0.57097 (14)0.28775 (17)0.0253 (5)
O50.48190 (16)0.84698 (14)0.35804 (19)0.0297 (5)
C190.5239 (2)0.60141 (19)0.2846 (2)0.0173 (6)
C100.1111 (2)0.09151 (19)0.0372 (2)0.0141 (6)
O20.34998 (15)0.37495 (13)0.44648 (16)0.0227 (4)
C170.0862 (2)0.47673 (18)0.1892 (2)0.0140 (6)
H170.15050.50060.23940.017*
C90.0227 (2)0.04364 (19)0.1039 (2)0.0136 (6)
H90.02030.02450.10770.016*
C110.1165 (2)0.19109 (19)0.0286 (2)0.0154 (6)
H110.17750.22280.01830.018*
C140.0985 (2)0.40961 (18)0.0409 (2)0.0148 (6)
H140.16160.38520.01130.018*
C30.3098 (2)0.10532 (19)0.3987 (2)0.0154 (6)
H30.35490.15340.44320.018*
C160.0084 (2)0.54168 (18)0.1334 (2)0.0145 (6)
H160.01910.60870.14680.017*
C40.3355 (2)0.00955 (19)0.4243 (2)0.0181 (6)
H40.39560.00770.48680.022*
C10.2473 (2)0.27202 (18)0.1705 (2)0.0157 (6)
C50.2717 (2)0.06013 (19)0.3569 (2)0.0175 (6)
H50.28850.12620.37130.021*
C150.0840 (2)0.50795 (19)0.0589 (2)0.0154 (6)
H150.13770.55150.01990.019*
C60.1835 (2)0.03308 (19)0.2687 (2)0.0163 (6)
H60.13940.08040.22150.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01021 (11)0.00932 (11)0.01166 (11)0.00047 (8)0.00241 (9)0.00009 (9)
Ru20.01030 (12)0.01230 (11)0.01481 (11)0.00009 (8)0.00210 (9)0.00140 (9)
Cl10.0184 (4)0.0147 (3)0.0170 (3)0.0021 (3)0.0081 (3)0.0012 (3)
Cl50.0233 (4)0.0193 (4)0.0174 (3)0.0003 (3)0.0043 (3)0.0022 (3)
Cl30.0127 (3)0.0181 (3)0.0262 (4)0.0016 (3)0.0042 (3)0.0053 (3)
Cl20.0168 (4)0.0221 (4)0.0218 (4)0.0090 (3)0.0060 (3)0.0057 (3)
Cl40.0188 (4)0.0130 (3)0.0227 (4)0.0025 (3)0.0074 (3)0.0034 (3)
N10.0127 (12)0.0125 (11)0.0121 (11)0.0003 (9)0.0053 (10)0.0011 (9)
O10.0216 (11)0.0229 (11)0.0232 (11)0.0031 (9)0.0119 (10)0.0026 (9)
N50.0122 (12)0.0122 (11)0.0115 (11)0.0017 (9)0.0041 (10)0.0005 (9)
C120.0126 (14)0.0155 (13)0.0106 (13)0.0004 (11)0.0055 (11)0.0008 (11)
O30.0250 (12)0.0238 (11)0.0223 (11)0.0017 (9)0.0122 (10)0.0021 (9)
C130.0126 (14)0.0135 (13)0.0109 (13)0.0003 (11)0.0067 (11)0.0011 (11)
C180.0102 (14)0.0137 (14)0.0254 (16)0.0001 (11)0.0063 (12)0.0041 (13)
C70.0162 (15)0.0163 (14)0.0115 (13)0.0008 (11)0.0070 (12)0.0027 (11)
C20.0181 (16)0.0127 (13)0.0204 (15)0.0029 (12)0.0102 (13)0.0026 (12)
C80.0171 (15)0.0126 (13)0.0108 (13)0.0003 (11)0.0093 (12)0.0009 (11)
C200.0129 (15)0.0211 (15)0.0205 (15)0.0034 (12)0.0053 (12)0.0005 (13)
N150.0122 (12)0.0125 (11)0.0129 (11)0.0012 (9)0.0059 (10)0.0012 (9)
O40.0183 (12)0.0298 (12)0.0271 (12)0.0071 (9)0.0086 (10)0.0017 (10)
O50.0236 (12)0.0206 (11)0.0428 (14)0.0060 (9)0.0114 (11)0.0129 (10)
C190.0196 (16)0.0160 (14)0.0130 (13)0.0023 (12)0.0031 (12)0.0002 (11)
C100.0148 (14)0.0187 (14)0.0102 (13)0.0053 (11)0.0065 (12)0.0024 (11)
O20.0194 (11)0.0216 (10)0.0205 (11)0.0064 (9)0.0013 (10)0.0051 (9)
C170.0148 (14)0.0142 (13)0.0135 (13)0.0024 (11)0.0064 (12)0.0013 (11)
C90.0195 (15)0.0123 (13)0.0113 (13)0.0047 (11)0.0087 (12)0.0030 (11)
C110.0133 (14)0.0192 (14)0.0113 (13)0.0004 (11)0.0026 (12)0.0016 (11)
C140.0148 (14)0.0174 (14)0.0139 (13)0.0012 (11)0.0076 (12)0.0020 (11)
C30.0151 (15)0.0158 (14)0.0153 (13)0.0001 (11)0.0062 (12)0.0003 (11)
C160.0222 (16)0.0095 (12)0.0181 (14)0.0021 (11)0.0146 (13)0.0009 (11)
C40.0172 (15)0.0204 (15)0.0163 (14)0.0062 (12)0.0063 (12)0.0070 (12)
C10.0154 (15)0.0108 (13)0.0158 (14)0.0017 (11)0.0011 (12)0.0001 (11)
C50.0234 (16)0.0118 (13)0.0217 (15)0.0031 (12)0.0135 (13)0.0018 (12)
C150.0158 (15)0.0184 (14)0.0145 (13)0.0074 (12)0.0087 (12)0.0052 (12)
C60.0197 (16)0.0142 (13)0.0184 (14)0.0011 (11)0.0113 (13)0.0015 (12)
Geometric parameters (Å, º) top
Ru1—C11.893 (3)C7—C81.473 (4)
Ru1—C21.918 (3)C2—O21.133 (3)
Ru1—N52.019 (2)C8—C91.387 (4)
Ru1—N152.093 (2)C20—O51.131 (3)
Ru1—N12.097 (2)N15—C171.338 (3)
Ru1—Cl12.4279 (7)O4—C191.132 (3)
Ru2—C191.893 (3)C10—C91.386 (4)
Ru2—C201.902 (3)C10—C111.390 (4)
Ru2—C181.914 (3)C17—C161.392 (4)
Ru2—Cl42.4129 (7)C17—H170.9500
Ru2—Cl52.4199 (7)C9—H90.9500
Ru2—Cl32.4212 (7)C11—H110.9500
Cl2—C101.724 (3)C14—C151.390 (4)
N1—C31.336 (3)C14—H140.9500
N1—C71.369 (3)C3—C41.387 (4)
O1—C11.131 (3)C3—H30.9500
N5—C121.342 (3)C16—C151.373 (4)
N5—C81.350 (3)C16—H160.9500
C12—C111.383 (4)C4—C51.381 (4)
C12—C131.480 (3)C4—H40.9500
O3—C181.125 (3)C5—C61.379 (4)
C13—N151.374 (3)C5—H50.9500
C13—C141.385 (4)C15—H150.9500
C7—C61.384 (4)C6—H60.9500
C1—Ru1—C290.60 (11)C6—C7—C8123.5 (2)
C1—Ru1—N594.52 (10)O2—C2—Ru1174.6 (2)
C2—Ru1—N5174.14 (10)N5—C8—C9119.5 (2)
C1—Ru1—N1595.21 (10)N5—C8—C7114.0 (2)
C2—Ru1—N15103.79 (10)C9—C8—C7126.3 (2)
N5—Ru1—N1578.61 (8)O5—C20—Ru2179.5 (3)
C1—Ru1—N190.13 (10)C17—N15—C13118.7 (2)
C2—Ru1—N198.32 (10)C17—N15—Ru1127.51 (18)
N5—Ru1—N178.86 (8)C13—N15—Ru1113.54 (16)
N15—Ru1—N1157.17 (8)O4—C19—Ru2177.0 (2)
C1—Ru1—Cl1178.53 (8)C9—C10—C11122.5 (2)
C2—Ru1—Cl187.98 (8)C9—C10—Cl2118.5 (2)
N5—Ru1—Cl186.92 (6)C11—C10—Cl2119.0 (2)
N15—Ru1—Cl184.78 (6)N15—C17—C16122.0 (3)
N1—Ru1—Cl190.45 (6)N15—C17—H17119.0
C19—Ru2—C2093.51 (11)C16—C17—H17119.0
C19—Ru2—C1893.76 (11)C10—C9—C8117.6 (2)
C20—Ru2—C1893.03 (11)C10—C9—H9121.2
C19—Ru2—Cl486.39 (8)C8—C9—H9121.2
C20—Ru2—Cl4177.64 (9)C12—C11—C10117.1 (2)
C18—Ru2—Cl489.34 (8)C12—C11—H11121.5
C19—Ru2—Cl586.44 (8)C10—C11—H11121.5
C20—Ru2—Cl587.36 (9)C13—C14—C15118.9 (3)
C18—Ru2—Cl5179.55 (9)C13—C14—H14120.6
Cl4—Ru2—Cl590.27 (2)C15—C14—H14120.6
C19—Ru2—Cl3175.98 (8)N1—C3—C4122.6 (3)
C20—Ru2—Cl389.96 (8)N1—C3—H3118.7
C18—Ru2—Cl388.08 (8)C4—C3—H3118.7
Cl4—Ru2—Cl390.06 (2)C15—C16—C17119.3 (2)
Cl5—Ru2—Cl391.70 (3)C15—C16—H16120.3
C3—N1—C7118.8 (2)C17—C16—H16120.3
C3—N1—Ru1127.74 (18)C5—C4—C3118.5 (3)
C7—N1—Ru1113.43 (17)C5—C4—H4120.8
C12—N5—C8123.0 (2)C3—C4—H4120.8
C12—N5—Ru1118.52 (17)O1—C1—Ru1176.8 (2)
C8—N5—Ru1117.81 (17)C6—C5—C4119.5 (2)
N5—C12—C11120.3 (2)C6—C5—H5120.2
N5—C12—C13113.3 (2)C4—C5—H5120.2
C11—C12—C13126.3 (2)C16—C15—C14119.5 (2)
N15—C13—C14121.5 (2)C16—C15—H15120.2
N15—C13—C12115.6 (2)C14—C15—H15120.2
C14—C13—C12122.9 (2)C5—C6—C7119.7 (3)
O3—C18—Ru2179.5 (3)C5—C6—H6120.2
N1—C7—C6120.8 (2)C7—C6—H6120.2
N1—C7—C8115.5 (2)
C8—N5—C12—C110.7 (4)C12—C13—N15—Ru13.3 (3)
Ru1—N5—C12—C11171.18 (18)C13—N15—C17—C161.0 (4)
C8—N5—C12—C13176.3 (2)Ru1—N15—C17—C16172.89 (18)
Ru1—N5—C12—C135.8 (3)C11—C10—C9—C81.0 (4)
N5—C12—C13—N151.4 (3)Cl2—C10—C9—C8176.72 (18)
C11—C12—C13—N15175.3 (2)N5—C8—C9—C100.9 (3)
N5—C12—C13—C14179.9 (2)C7—C8—C9—C10172.8 (2)
C11—C12—C13—C143.2 (4)N5—C12—C11—C100.6 (4)
C3—N1—C7—C62.0 (4)C13—C12—C11—C10175.9 (2)
Ru1—N1—C7—C6176.53 (18)C9—C10—C11—C120.8 (4)
C3—N1—C7—C8174.3 (2)Cl2—C10—C11—C12176.86 (19)
Ru1—N1—C7—C87.2 (3)N15—C13—C14—C151.6 (4)
C12—N5—C8—C90.8 (4)C12—C13—C14—C15176.8 (2)
Ru1—N5—C8—C9171.39 (17)C7—N1—C3—C40.6 (4)
C12—N5—C8—C7173.6 (2)Ru1—N1—C3—C4178.83 (18)
Ru1—N5—C8—C73.1 (3)N15—C17—C16—C151.5 (4)
N1—C7—C8—N56.9 (3)N1—C3—C4—C52.5 (4)
C6—C7—C8—N5177.0 (2)C3—C4—C5—C61.8 (4)
N1—C7—C8—C9167.1 (2)C17—C16—C15—C140.4 (4)
C6—C7—C8—C99.0 (4)C13—C14—C15—C161.1 (4)
C14—C13—N15—C170.6 (4)C4—C5—C6—C70.6 (4)
C12—C13—N15—C17177.9 (2)N1—C7—C6—C52.6 (4)
C14—C13—N15—Ru1175.26 (18)C8—C7—C6—C5173.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl5i0.952.763.664 (3)158
C16—H16···Cl1ii0.952.723.515 (3)142
C5—H5···Cl3iii0.952.823.553 (3)134
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y1, z.
(II) cis-Dicarbonyl-trans-dichlorido(4'-chloro-2,2':6',2''-terpyridine-κ2N1,N1')ruthenium(II) top
Crystal data top
[RuCl2(C15H10ClN3(CO)2]Z = 2
Mr = 495.70F(000) = 488
Triclinic, P1Dx = 1.852 Mg m3
a = 7.3019 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5080 (3) ÅCell parameters from 5231 reflections
c = 14.7702 (6) Åθ = 5.4–76.2°
α = 101.287 (3)°µ = 1.35 mm1
β = 91.835 (3)°T = 123 K
γ = 98.144 (3)°Plate, brown
V = 889.09 (6) Å30.30 × 0.08 × 0.05 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
3662 independent reflections
Radiation source: micro-source3405 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.3953 pixels mm-1θmax = 26.6°, θmin = 1.4°
φ scans and ω scans with κ offseth = 89
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2013)
k = 710
Tmin = 0.300, Tmax = 1.000l = 1818
7508 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.5543P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3662 reflectionsΔρmax = 0.74 e Å3
235 parametersΔρmin = 1.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.97989 (3)0.30538 (2)0.20165 (2)0.01402 (9)
Cl21.19336 (10)0.26275 (9)0.31916 (5)0.02134 (16)
Cl30.53931 (11)0.29015 (9)0.58174 (5)0.02370 (16)
Cl10.76545 (11)0.37329 (9)0.09657 (5)0.02563 (17)
O10.9433 (4)0.0448 (3)0.10113 (17)0.0312 (5)
O21.2842 (4)0.3556 (3)0.07324 (19)0.0380 (6)
N20.7827 (3)0.2976 (3)0.30696 (17)0.0187 (5)
N11.0061 (3)0.5492 (3)0.27105 (17)0.0183 (5)
N30.6478 (4)0.1192 (3)0.26366 (18)0.0226 (5)
C21.1703 (5)0.3368 (4)0.1217 (2)0.0242 (6)
C130.6151 (4)0.0228 (4)0.2446 (2)0.0201 (6)
C120.6700 (4)0.1661 (4)0.3213 (2)0.0190 (6)
C100.6327 (4)0.2955 (4)0.4765 (2)0.0197 (6)
C160.5048 (5)0.2483 (4)0.1144 (2)0.0280 (7)
H160.47000.34520.06930.034*
C90.7419 (4)0.4346 (4)0.4621 (2)0.0204 (6)
H90.76620.52930.50960.024*
C110.5945 (4)0.1598 (4)0.4060 (2)0.0208 (6)
H110.51860.06460.41520.025*
C70.9276 (4)0.5750 (3)0.3533 (2)0.0190 (6)
C80.8142 (4)0.4312 (3)0.3764 (2)0.0176 (5)
C170.5949 (5)0.2517 (4)0.1970 (2)0.0271 (7)
H170.62110.35310.20760.032*
C10.9506 (4)0.0845 (4)0.1412 (2)0.0226 (6)
C140.5230 (4)0.0391 (4)0.1639 (2)0.0236 (6)
H140.50020.14200.15430.028*
C60.9447 (4)0.7303 (4)0.4081 (2)0.0234 (6)
H60.89170.74720.46650.028*
C150.4656 (5)0.1013 (4)0.0977 (2)0.0281 (7)
H150.40040.09660.04180.034*
C31.0952 (4)0.6760 (4)0.2401 (2)0.0235 (6)
H31.14610.65710.18120.028*
C51.0398 (5)0.8593 (4)0.3764 (2)0.0261 (6)
H51.05330.96570.41320.031*
C41.1151 (4)0.8330 (4)0.2910 (2)0.0248 (6)
H41.17900.92060.26780.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01375 (13)0.01423 (13)0.01338 (13)0.00090 (9)0.00123 (8)0.00191 (9)
Cl20.0197 (3)0.0204 (3)0.0232 (3)0.0047 (3)0.0033 (3)0.0023 (3)
Cl30.0266 (4)0.0286 (4)0.0179 (3)0.0064 (3)0.0063 (3)0.0069 (3)
Cl10.0278 (4)0.0256 (4)0.0223 (4)0.0028 (3)0.0067 (3)0.0043 (3)
O10.0374 (14)0.0215 (11)0.0310 (13)0.0025 (10)0.0078 (10)0.0031 (10)
O20.0325 (14)0.0397 (14)0.0417 (15)0.0039 (11)0.0167 (12)0.0068 (12)
N20.0167 (11)0.0194 (12)0.0205 (12)0.0036 (9)0.0012 (9)0.0043 (9)
N10.0172 (12)0.0179 (11)0.0194 (12)0.0015 (9)0.0012 (9)0.0042 (9)
N30.0228 (13)0.0226 (12)0.0224 (13)0.0033 (10)0.0023 (10)0.0044 (10)
C20.0289 (16)0.0192 (14)0.0238 (15)0.0035 (12)0.0008 (12)0.0030 (12)
C130.0175 (13)0.0229 (14)0.0191 (14)0.0009 (11)0.0027 (11)0.0044 (11)
C120.0177 (13)0.0197 (13)0.0191 (14)0.0010 (11)0.0004 (11)0.0043 (11)
C100.0205 (14)0.0256 (14)0.0141 (13)0.0069 (11)0.0014 (10)0.0043 (11)
C160.0315 (17)0.0237 (15)0.0224 (15)0.0075 (13)0.0072 (13)0.0033 (12)
C90.0210 (14)0.0209 (14)0.0193 (14)0.0059 (11)0.0018 (11)0.0028 (11)
C110.0188 (14)0.0207 (14)0.0225 (14)0.0012 (11)0.0001 (11)0.0050 (11)
C70.0164 (13)0.0193 (13)0.0209 (14)0.0026 (11)0.0003 (11)0.0033 (11)
C80.0159 (13)0.0180 (13)0.0172 (13)0.0027 (10)0.0032 (10)0.0004 (10)
C170.0279 (16)0.0234 (15)0.0296 (17)0.0032 (13)0.0070 (13)0.0043 (13)
C10.0208 (14)0.0271 (16)0.0208 (14)0.0037 (12)0.0052 (11)0.0069 (12)
C140.0248 (15)0.0238 (14)0.0207 (15)0.0008 (12)0.0013 (12)0.0049 (12)
C60.0237 (15)0.0224 (15)0.0227 (15)0.0030 (12)0.0006 (12)0.0017 (12)
C150.0309 (17)0.0303 (16)0.0195 (15)0.0057 (14)0.0022 (12)0.0040 (12)
C30.0204 (14)0.0259 (15)0.0246 (15)0.0018 (12)0.0004 (12)0.0074 (12)
C50.0246 (15)0.0210 (15)0.0305 (17)0.0022 (12)0.0014 (13)0.0014 (12)
C40.0211 (14)0.0201 (14)0.0329 (17)0.0008 (12)0.0015 (12)0.0078 (12)
Geometric parameters (Å, º) top
Ru1—C21.877 (3)C16—C171.376 (5)
Ru1—C11.895 (3)C16—C151.387 (5)
Ru1—N12.105 (2)C16—H160.9500
Ru1—N22.157 (2)C9—C81.383 (4)
Ru1—Cl12.3762 (8)C9—H90.9500
Ru1—Cl22.4098 (7)C11—H110.9500
Cl3—C101.723 (3)C7—C61.395 (4)
O1—C11.135 (4)C7—C81.481 (4)
O2—C21.129 (4)C17—H170.9500
N2—C121.348 (4)C14—C151.390 (4)
N2—C81.361 (4)C14—H140.9500
N1—C31.345 (4)C6—C51.384 (4)
N1—C71.352 (4)C6—H60.9500
N3—C131.344 (4)C15—H150.9500
N3—C171.344 (4)C3—C41.384 (4)
C13—C141.391 (4)C3—H30.9500
C13—C121.490 (4)C5—C41.383 (5)
C12—C111.391 (4)C5—H50.9500
C10—C111.384 (4)C4—H40.9500
C10—C91.387 (4)
C2—Ru1—C185.52 (13)C8—C9—C10117.9 (3)
C2—Ru1—N196.08 (11)C8—C9—H9121.0
C1—Ru1—N1178.40 (10)C10—C9—H9121.0
C2—Ru1—N2171.98 (12)C10—C11—C12118.4 (3)
C1—Ru1—N2101.47 (11)C10—C11—H11120.8
N1—Ru1—N276.94 (10)C12—C11—H11120.8
C2—Ru1—Cl190.26 (10)N1—C7—C6120.8 (3)
C1—Ru1—Cl193.67 (10)N1—C7—C8115.5 (3)
N1—Ru1—Cl186.24 (7)C6—C7—C8123.5 (3)
N2—Ru1—Cl193.17 (7)N2—C8—C9122.6 (3)
C2—Ru1—Cl292.02 (10)N2—C8—C7115.3 (3)
C1—Ru1—Cl292.10 (10)C9—C8—C7122.0 (3)
N1—Ru1—Cl287.93 (7)N3—C17—C16123.4 (3)
N2—Ru1—Cl283.87 (7)N3—C17—H17118.3
Cl1—Ru1—Cl2173.94 (3)C16—C17—H17118.3
C12—N2—C8118.4 (3)O1—C1—Ru1175.0 (3)
C12—N2—Ru1126.9 (2)C15—C14—C13117.3 (3)
C8—N2—Ru1112.57 (19)C15—C14—H14121.3
C3—N1—C7119.5 (3)C13—C14—H14121.3
C3—N1—Ru1125.0 (2)C5—C6—C7119.1 (3)
C7—N1—Ru1115.54 (19)C5—C6—H6120.4
C13—N3—C17116.5 (3)C7—C6—H6120.4
O2—C2—Ru1179.6 (3)C16—C15—C14119.1 (3)
N3—C13—C14124.5 (3)C16—C15—H15120.5
N3—C13—C12114.9 (3)C14—C15—H15120.5
C14—C13—C12120.4 (3)N1—C3—C4122.3 (3)
N2—C12—C11122.1 (3)N1—C3—H3118.9
N2—C12—C13120.7 (3)C4—C3—H3118.9
C11—C12—C13117.1 (3)C4—C5—C6119.8 (3)
C11—C10—C9120.4 (3)C4—C5—H5120.1
C11—C10—Cl3119.0 (2)C6—C5—H5120.1
C9—C10—Cl3120.6 (2)C5—C4—C3118.4 (3)
C17—C16—C15119.1 (3)C5—C4—H4120.8
C17—C16—H16120.5C3—C4—H4120.8
C15—C16—H16120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl2i0.952.773.687 (3)163
Symmetry code: (i) x+2, y+1, z+1.
 

Funding information

Funding for this research was provided by: Academy of Finland (award No. 295581); COST Action 1302, `Smart Inorganic Polymers'.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlvila, L., Pursiainen, J., Kiviaho, J., Pakkanen, T. A. & Krause, O. (1994). J. Mol. Catal. 91, 335–342.  CrossRef CAS Google Scholar
First citationAmoroso, A. J., Banu, A., Coogan, M. P., Edwards, P. G., Hossain, G. & Malik, K. M. A. (2010). Dalton Trans. 39, 6993–7003.  CSD CrossRef CAS PubMed Google Scholar
First citationChardon-Noblat, S., Da Costa, P., Deronzier, A., Maniguet, S. & Ziessel, R. (2002). J. Electroanal. Chem. 529, 135–144.  CAS Google Scholar
First citationChardon-Noblat, S., Deronzier, A. & Ziessel, R. (2001). Collect. Czech. Chem. Commun. 66, 207–227.  CAS Google Scholar
First citationCollomb-Dunand-Sauthier, M.-N., Deronzier, A. & Ziessel, R. (1994). J. Chem. Soc. Chem. Commun. pp. 189–191.  Google Scholar
First citationDeacon, G. B., Patrick, J. M., Skelton, B. W., Thomas, N. C. & White, A. H. (1984). Aust. J. Chem. 37, 929–945.  CSD CrossRef CAS Google Scholar
First citationGibson, D. H., Sleadd, B. A., Mashuta, M. S. & Richardson, J. F. (1997). Organometallics, 16, 4421–4427.  CSD CrossRef CAS Google Scholar
First citationHomanen, P., Haukka, M., Pakkanen, T. A., Pursiainen, J. & Laitinen, R. H. (1996). Organometallics, 15, 4081–4084.  CSD CrossRef CAS Google Scholar
First citationKooijman, H., Spek, A. L., Mulder, A. & Reinhoudt, D. N. (2007). Private communication (CCDC numbers 666468 and 666615). CCDC, Cambridge, England.  Google Scholar
First citationKuramochi, Y., Fukaya, K., Yoshida, M. & Ishida, M. (2015). Chem. Eur. J. 21, 10049–10060.  CSD CrossRef CAS PubMed Google Scholar
First citationLuukkanen, S., Homanen, P., Haukka, M., Pakkanen, T. A., Deronzier, A., Chardon-Noblat, S., Zsoldos, D. & Ziessel, R. (1999). Appl. Catal. Gen. 185, 157–164.  CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. (2004). J. Comput. Chem. 25, 1605–1612.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZiessel, R., Grosshenny, V., Hissler, M. & Stroh, C. (2004). Inorg. Chem. 43, 4262–4271.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds