research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Substitution of indium for chromium in TlIn5−xCrxSe8: crystal structure of TlIn4.811(5)Cr0.189(5)Se8

CROSSMARK_Color_square_no_text.svg

aLaboratoire CRISMAT UMR6508, 6 Blvd du Maréchal Juin, 14050 Caen Cedex 4, France
*Correspondence e-mail: robin.lefevre@ensicaen.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 February 2017; accepted 28 February 2017; online 14 March 2017)

The new thallium penta­(indium/chromium) octa­selenide, TlIn4.811(5)Cr0.189(5)Se8, has been synthesized by solid-state reaction. It crystallizes isotypically with TlIn5Se8 in the space group C2/m. Although the two Tl positions are disordered and only partially occupied, no Tl deficiency was observed. The insertion of chromium in the structure has been confirmed by EDS analysis. Chromium substitutes indium exclusively at one of three In sites, viz. at one of the positions with site symmetry 2/m (Wyckoff position 2a). In the crystal structure, edge-sharing InSe6 octa­hedra, and (In,Cr)Se6 octa­hedra and InSe4 tetra­hedra make up two types of columns that are linked into a framework in which two different types of channels parallel to [010] are present. The Tl atoms are located in the larger of the channels, whereas the other, smaller channel remains unoccupied.

1. Chemical context

This study is part of an on-going project focused on low-dimensional chalcogenides with low thermal conductivity. Quasi one-dimensional networks are of great inter­est for thermoelectric applications. Such structures can combine structural disorder, responsible for scattering of phonons, to an electronically conductive network.

Recently, low thermal conductive compounds belonging to the family of pseudo-hollandites were studied. A thermoelectric figure of merit up to ZT = 0.5 at 800 K was found for TlCr5Se8 (Takahashi et al., 2013[Takahashi, H., Raghavendra, N., Gascoin, F., Pelloquin, D., Hébert, S. & Guilmeau, E. (2013). Chem. Mater. 25, 1809-1815.]). This discovery inspired further studies on this class of materials. Pseudo-hollandites are compounds with general formula AM5X8, (A = alkali metal, alkaline earth metal, Tl; M = V, Ti, Cr; X = S, Se, Te), the structures of which are made up from CdI2-type layers and double chains of MX6 octa­hedra sharing edges and faces in such a way that channels are created along one axis in which the A cations are located. Monoclinic TlCr5Se8 and the related triclinic compound Ba0.5Cr5Se8 have thermal conductivities well below 1 W m−1 K−1 from room temperature to 873 K (Lefèvre et al., 2015[Lefèvre, R., Berthebaud, D., Perez, O., Pelloquin, D., Hébert, S. & Gascoin, F. (2015). Chem. Mater. 27, 7110-7118.], 2016[Lefèvre, R., Berthebaud, D., Bux, S., Hébert, S. & Gascoin, F. (2016). Dalton Trans. 45, 12119-12126.]). As part of our project, we successfully synthesized a solid solution of TlV5–xCrxSe8 (x = 0, 1, 2, 3, 4, 5) and studied the magnetism and thermoelectric properties of TlV5Se8 (Maier et al., 2015[Maier, S., Lefèvre, R., Lin, X., Nunna, R., Berthebaud, D., Hèbert, S., Mar, A. & Gascoin, F. (2015). J. Mater. Chem. C. 3, 10509-10517.]).

Working on a similar compound, monoclinic TlIn5Se8, we attempted to synthesize a solid solution TlIn5–xCrxSe8. Initially, the nominal composition TlIn4CrSe8 was chosen so that chromium fully substitutes indium at the octa­hedral site (Wyckoff position 2a) of TlIn5Se8. Here we present the structure of one compound of the solid solution series TlIn5–xCrxSe8 (x = 0.189) with only a partial substitution of indium for chromium at this site.

2. Structural commentary

The composition of the crystals as determined from the refinement is in good agreement with the EDS analysis. The refined structure is represented in Fig. 1[link], both as individual atoms and in a polyhedral representation. All atoms in the asymmetric unit (two Tl, one mixed-occupied In/Cr, two In and four Se sites) are located on special positions. Except Tl2 and mixed-occupied (In1/Cr) on positions with site symmetry 2/m (Wyckoff positions 2d and 2a, respectively), all other atoms are located on a mirror plane (4i).

[Figure 1]
Figure 1
The crystal structure of TlIn4.811(5)Cr0.189(5)Se8. (a) Representation by atoms displayed with displacement ellipsoids at the 50% probability level; (b) polyhedral representation.

Indium atoms are found in octa­hedral (In1, In2) and tetra­hedral (In3) environments by selenium atoms. Only one of the indium atoms, In1, shares its position with chromium in an octa­hedral environment. The (In1,Cr)Se6 and In2Se6 octa­hedra form two types of columns. One column is made up only of edge-sharing In2Se6 octa­hedra in a zigzag shape. The second column is made up of alternating (In1/Cr)Se6 octa­hedra and In3Se4 tetra­hedra connected by edge-sharing, likewise in a zigzag shape. These two building units are linked together to form a framework in which two types of channels propagating parallel to [010] are present. One of the channels hosts the two partly occupied Tl atoms, while the other is smaller and thus empty. Compared to the pseudo-hollandite network, the infinite planes are broken into columns in the title structure, leaving a supplementary channel at the junction of the columns and the double chains.

The existence of the title solid solution is in agreement with the decrease or increase of unit-cell parameters of TlIn5–xCrxSe8 from x = 0 (Walther & Deiseroth, 1998[Walther, R. & Deiseroth, H. J. (1998). Z. Krist. New Cryst. Struct. 212, 293.]) to x = 5 (Klepp & Boller, 1983[Klepp, K. & Boller, H. (1983). J. Solid State Chem. 48, 388-395.]), as explicited in Fig. 2[link]a. Further, the decrease in the determined metal-to-metal and metal-to-selenium distances shows a clear trend in agreement with the increase of the chromium content (Fig. 2[link]b,c).

[Figure 2]
Figure 2
Evolution of (a) the unit-cell parameters, (b) MM distances and (c) M—Se distances depending on x in the TlIn5–xCrxSe8 solid solution series.

3. Synthesis and crystallization

To prevent oxidation of reactants and products, all mani­p­ulations were performed under inert gas or vacuum (glove box or sealed containers). The elements, Cr (powder, 325 mesh, 99%), In (teardrops, 4 mm, 99.9%) and Se (shots, 99.999%), all from Alfa Aesar, were used as received; Tl (granules, 99.99%), as well from Alfa Aesar, received in water, was first rinsed and dried before being stored in a glovebox. The elements Tl, In, Cr and Se in the molar ratio 1:4:1:8 were loaded directly in a fused silica tube that was subsequently evacuated and flame sealed. The mixture was first heated up to 723 K within 7 h for half a day, and then to 1073 K in 7 h for half a day. The mixture was then cooled down to room temperature in 48 h. An inter­mediate annealing process at 873 K for 15 h was performed. Single crystals were extracted from the bulk.

The bulk sample quality was checked by means of X-ray powder diffraction using a X-Pert Pro Panalytical diffrac­t­ometer (Cu Kα1,2 radiations) equipped with a PIXCEL detector. Phase identification was performed with X'Pert HighScore plus (Panalytical, 2009[Panalytical (2009). X'Pert HighScore plus 3.0. Panalytical B. V., Almelo, The Netherlands.]). Phase analysis using X-ray powder diffraction revealed at first sight TlCr5Se8 (Klepp & Boller, 1983[Klepp, K. & Boller, H. (1983). J. Solid State Chem. 48, 388-395.]) and TlIn5Se8 (Walther & Deiseroth, 1998[Walther, R. & Deiseroth, H. J. (1998). Z. Krist. New Cryst. Struct. 212, 293.]). However, the Bragg positions of these reflections were clearly shifted, pointing to the presence of a TlIn5–xCrxSe8 solid solution.

Energy Dispersive X-Ray Spectroscopy (EDS) analyses were also performed to check the composition using a scanning electron microscope (SEM; ZEISS Supra 55, 15 kV). Analysis on basis of nine measured crystallites confirmed the presence of four elements, with a determined average molar composition of Tl 1.05; In 4.54; Cr 0.46; Se 9.1.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula TlIn4.811Cr0.189Se8
Mr 1398.3
Crystal system, space group Monoclinic, C2/m
Temperature (K) 293
a, b, c (Å) 19.8257 (18), 3.9754 (4), 9.5881 (9)
β (°) 101.645 (5)
V3) 740.13 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 37.98
Crystal size (mm) 0.13 × 0.11 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Numerical (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.405, 0.747
No. of measured, independent and observed [I > 3σ(I)] reflections 5647, 1537, 1181
Rint 0.028
(sin θ/λ)max−1) 0.770
 
Refinement
R[F > 3σ(F)], wR(F), S 0.030, 0.031, 1.34
No. of reflections 1537
No. of parameters 50
Δρmax, Δρmin (e Å−3) 1.41, −1.69
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), DIAMOND (Brandenburg & Putz, 2014[Brandenburg, K. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structure solution using SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]) led to one thallium site, three indium sites and four selenium sites. Refinement of Tl1 in position (0.5,0,0.5) resulted in large anisotropic displacement parameters. As previously reported, Tl1 usually is located at a partly occupied position around the center position with approximate coordinates of (0.46, 0, 0.52) (Walther & Deiseroth, 1998[Walther, R. & Deiseroth, H. J. (1998). Z. Krist. New Cryst. Struct. 212, 293.]). Consideration of the split model (in addition, the In1 site occupancy refined to 0.81 while other indium sites were modelled as fully occupied) led to much more reasonable displacement parameters and improved reliability factors. At that step, the reliability factors were: GOF(all reflections) = 2.42 and wR (all reflections) = 0.056, while the maximum and minimum electron densities were +10.28 and −6.03 e Å−3.

The insertion of chromium in the structure has been confirmed by EDS analysis. Consideration of a mixed-occupied In/Cr site for the original In1 position (same coordinates and anisotropic displacement parameters for the two atoms and full occupation for this site) led to a further improvement of reliability factors [GOF (all) = 2.06 and wR(all) = 0.0476] and a decrease of the residual electron densities to +9.71 and −5.83 e Å−3. The maximum electron density was found on position (0, 0.5, 0.5). This position is between the partially occupied Tl1 atoms. Thus, a second partially occupied thallium atom, Tl2, was introduced. The two thallium sites are non-simultaneously occupied. The displacement parameter of Tl2 was modelled as isotropic due to its low occupancy compared to Tl1. Adding this second Tl site significantly reduced the residual electron density to final values of +1.41 and −1.69 e Å−3. These density peaks are found at 0.82 and 0.73 Å, respectively, from atoms Se2 and In3.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: DIAMOND (Brandenburg & Putz, 2014); software used to prepare material for publication: JANA2006 (Petříček et al., 2014) and publCIF (Westrip, 2010).

Thallium penta(indium/chromium) octaselenide top
Crystal data top
TlIn4.811Cr0.189Se8F(000) = 1187
Mr = 1398.3Dx = 6.274 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 2692 reflections
a = 19.8257 (18) Åθ = 2.7–32.8°
b = 3.9754 (4) ŵ = 37.98 mm1
c = 9.5881 (9) ÅT = 293 K
β = 101.645 (5)°Irregular, black
V = 740.13 (12) Å30.13 × 0.11 × 0.10 mm
Z = 2
Data collection top
Bruker APEXII CCD area detector
diffractometer
1537 independent reflections
Radiation source: X-ray tube1181 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.3333 pixels mm-1θmax = 33.2°, θmin = 2.1°
ω and φ scansh = 3026
Absorption correction: numerical
(SADABS; Bruker, 2004)
k = 56
Tmin = 0.405, Tmax = 0.747l = 1214
5647 measured reflections
Refinement top
Refinement on F0 restraints
R[F > 3σ(F)] = 0.0304 constraints
wR(F) = 0.031Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 1.34(Δ/σ)max = 0.003
1537 reflectionsΔρmax = 1.41 e Å3
50 parametersΔρmin = 1.69 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tl10.46491 (5)00.52551 (8)0.0407 (3)0.4631 (16)
Tl200.50.50.032 (2)*0.074 (3)
In10000.0155 (2)0.811 (5)
Cr0000.0155 (2)0.189 (5)
In20.28034 (3)00.66298 (5)0.02131 (15)
In30.36250 (2)00.10972 (5)0.02052 (15)
Se10.24067 (3)00.15323 (6)0.01295 (17)
Se20.16279 (4)00.47058 (7)0.0197 (2)
Se30.58556 (3)00.11945 (6)0.01640 (19)
Se40.06189 (3)00.76833 (7)0.01829 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tl10.0434 (6)0.0352 (4)0.0376 (4)00.0058 (3)0
In10.0110 (4)0.0129 (4)0.0240 (4)00.0069 (3)0
Cr0.0110 (4)0.0129 (4)0.0240 (4)00.0069 (3)0
In20.0346 (3)0.0138 (2)0.01692 (19)00.00868 (19)0
In30.0158 (2)0.0166 (2)0.0327 (3)00.01323 (19)0
Se10.0129 (3)0.0129 (3)0.0142 (3)00.0053 (2)0
Se20.0256 (4)0.0174 (3)0.0183 (3)00.0094 (2)0
Se30.0121 (3)0.0179 (3)0.0187 (3)00.0019 (2)0
Se40.0189 (3)0.0153 (3)0.0204 (3)00.0035 (2)0
Geometric parameters (Å, º) top
Tl1—Tl1i3.9754 (8)Cr—Se3xiii2.7122 (5)
Tl1—Tl1ii3.9754 (8)Cr—Se4xiv2.7460 (8)
Tl1—Tl1iii1.5654 (15)Cr—Se4viii2.7460 (8)
Tl1—Tl2iv0.7827 (11)In2—In2i3.9754 (8)
Tl1—Se2v3.2249 (11)In2—In2ii3.9754 (8)
Tl1—Se2vi3.2249 (11)In2—In2v3.6944 (8)
Tl1—Se3iii3.7369 (13)In2—In2vi3.6944 (8)
Tl1—Se4iv3.3558 (9)In2—Se1v2.7433 (6)
Tl1—Se4vii3.3558 (9)In2—Se1vi2.7433 (6)
Tl1—Se4v3.4010 (9)In2—Se22.6644 (9)
Tl1—Se4vi3.4010 (9)In2—Se2v2.7286 (7)
Tl2—Tl2i3.9754 (8)In2—Se2vi2.7286 (7)
Tl2—Tl2ii3.9754 (8)In2—Se3iii3.0300 (9)
Tl2—Se23.8489 (8)In3—In3i3.9754 (8)
Tl2—Se2ii3.8489 (8)In3—In3ii3.9754 (8)
Tl2—Se2viii3.8489 (8)In3—Se12.5328 (9)
Tl2—Se2ix3.8489 (8)In3—Se1xii3.5227 (7)
Tl2—Se43.2865 (7)In3—Se1xiii3.5227 (7)
Tl2—Se4ii3.2865 (7)In3—Se3xv2.6080 (9)
Tl2—Se4viii3.2865 (7)In3—Se4v2.6186 (6)
Tl2—Se4ix3.2865 (7)In3—Se4vi2.6186 (6)
In1—In1i3.9754 (8)Se1—Se1i3.9754 (8)
In1—In1ii3.9754 (8)Se1—Se1ii3.9754 (8)
In1—Cri3.9754 (8)Se1—Se1xii3.6278 (9)
In1—Cr0Se1—Se1xiii3.6278 (9)
In1—Crii3.9754 (8)Se1—Se23.6795 (11)
In1—In3x3.6941 (6)Se1—Se3x3.6207 (9)
In1—In3xi3.6941 (6)Se1—Se3xi3.6207 (9)
In1—In3xii3.6941 (6)Se2—Se2i3.9754 (8)
In1—In3xiii3.6941 (6)Se2—Se2ii3.9754 (8)
In1—Se3x2.7122 (5)Se2—Se2v3.9294 (10)
In1—Se3xi2.7122 (5)Se2—Se2vi3.9294 (10)
In1—Se3xii2.7122 (5)Se2—Se3x3.9432 (9)
In1—Se3xiii2.7122 (5)Se2—Se3xi3.9432 (9)
In1—Se4xiv2.7460 (8)Se2—Se43.8022 (11)
In1—Se4viii2.7460 (8)Se3—Se3i3.9754 (8)
Cr—Cri3.9754 (8)Se3—Se3ii3.9754 (8)
Cr—Crii3.9754 (8)Se3—Se3xv3.6905 (11)
Cr—In3x3.6941 (6)Se3—Se4xvi3.8558 (10)
Cr—In3xi3.6941 (6)Se3—Se4xvii3.8558 (10)
Cr—In3xii3.6941 (6)Se3—Se4v3.8633 (10)
Cr—In3xiii3.6941 (6)Se3—Se4vi3.8633 (10)
Cr—Se3x2.7122 (5)Se4—Se4i3.9754 (8)
Cr—Se3xi2.7122 (5)Se4—Se4ii3.9754 (8)
Cr—Se3xii2.7122 (5)
Tl1i—Tl1—Tl1ii180.0 (5)In3xii—Se1—Se1xiii82.466 (16)
Tl1i—Tl1—Tl1iii90.00 (2)In3xii—Se1—Se2108.174 (19)
Tl1i—Tl1—Tl2iv90.00 (2)In3xii—Se1—Se3x42.799 (14)
Tl1i—Tl1—Se2v51.949 (18)In3xii—Se1—Se3xi83.442 (16)
Tl1i—Tl1—Se2vi128.05 (3)In3xiii—Se1—Se1i124.351 (15)
Tl1i—Tl1—Se3iii90.000 (18)In3xiii—Se1—Se1ii55.649 (10)
Tl1i—Tl1—Se4iv53.678 (14)In3xiii—Se1—Se1xii82.466 (16)
Tl1i—Tl1—Se4vii126.32 (2)In3xiii—Se1—Se1xiii41.459 (14)
Tl1i—Tl1—Se4v54.236 (14)In3xiii—Se1—Se2108.174 (19)
Tl1i—Tl1—Se4vi125.76 (2)In3xiii—Se1—Se3x83.442 (16)
Tl1ii—Tl1—Tl1iii90.00 (2)In3xiii—Se1—Se3xi42.799 (14)
Tl1ii—Tl1—Tl2iv90.00 (2)Se1i—Se1—Se1xii56.776 (11)
Tl1ii—Tl1—Se2v128.05 (3)Se1i—Se1—Se1xiii123.224 (17)
Tl1ii—Tl1—Se2vi51.949 (18)Se1i—Se1—Se3x56.703 (11)
Tl1ii—Tl1—Se3iii90.000 (18)Se1i—Se1—Se3xi123.297 (17)
Tl1ii—Tl1—Se4iv126.32 (2)Se1ii—Se1—Se1xii123.224 (17)
Tl1ii—Tl1—Se4vii53.678 (14)Se1ii—Se1—Se1xiii56.776 (11)
Tl1ii—Tl1—Se4v125.76 (2)Se1ii—Se1—Se3x123.297 (17)
Tl1ii—Tl1—Se4vi54.236 (14)Se1ii—Se1—Se3xi56.703 (11)
Tl1iii—Tl1—Se2v138.86 (2)Se1xii—Se1—Se1xiii66.448 (14)
Tl1iii—Tl1—Se2vi138.86 (2)Se1xii—Se1—Se2142.961 (13)
Tl1iii—Tl1—Se3iii134.67 (5)Se1xii—Se1—Se3x81.396 (15)
Tl1iii—Tl1—Se4iv78.22 (4)Se1xii—Se1—Se3xi116.871 (19)
Tl1iii—Tl1—Se4vii78.22 (4)Se1xiii—Se1—Se2142.961 (13)
Tl1iii—Tl1—Se4v75.00 (4)Se1xiii—Se1—Se3x116.871 (19)
Tl1iii—Tl1—Se4vi75.00 (4)Se1xiii—Se1—Se3xi81.396 (15)
Tl2iv—Tl1—Se2v138.86 (3)Se2—Se1—Se3x65.381 (17)
Tl2iv—Tl1—Se2vi138.86 (3)Se2—Se1—Se3xi65.381 (17)
Tl2iv—Tl1—Se3iii134.67 (7)Se3x—Se1—Se3xi66.594 (15)
Tl2iv—Tl1—Se4iv78.22 (5)Tl1v—Se2—Tl1vi76.10 (2)
Tl2iv—Tl1—Se4vii78.22 (5)Tl1v—Se2—Tl2i7.689 (13)
Tl2iv—Tl1—Se4v75.00 (5)Tl1v—Se2—Tl269.244 (19)
Tl2iv—Tl1—Se4vi75.00 (5)Tl1v—Se2—In2124.82 (2)
Se2v—Tl1—Se2vi76.10 (3)Tl1v—Se2—In2v87.489 (18)
Se2v—Tl1—Se3iii68.55 (2)Tl1v—Se2—In2vi148.67 (3)
Se2v—Tl1—Se4iv88.171 (18)Tl1v—Se2—Se1118.10 (2)
Se2v—Tl1—Se4vii134.29 (3)Tl1v—Se2—Se2i51.949 (16)
Se2v—Tl1—Se4v69.98 (2)Tl1v—Se2—Se2ii128.05 (2)
Se2v—Tl1—Se4vi112.22 (3)Tl1v—Se2—Se2v110.899 (15)
Se2vi—Tl1—Se3iii68.55 (2)Tl1v—Se2—Se2vi168.61 (2)
Se2vi—Tl1—Se4iv134.29 (3)Tl1v—Se2—Se3x61.888 (19)
Se2vi—Tl1—Se4vii88.171 (18)Tl1v—Se2—Se3xi98.64 (2)
Se2vi—Tl1—Se4v112.22 (3)Tl1v—Se2—Se457.184 (19)
Se2vi—Tl1—Se4vi69.98 (2)Tl1vi—Se2—Tl2i69.244 (19)
Se3iii—Tl1—Se4iv65.75 (2)Tl1vi—Se2—Tl27.689 (13)
Se3iii—Tl1—Se4vii65.75 (2)Tl1vi—Se2—In2124.82 (2)
Se3iii—Tl1—Se4v136.79 (2)Tl1vi—Se2—In2v148.67 (3)
Se3iii—Tl1—Se4vi136.79 (2)Tl1vi—Se2—In2vi87.489 (18)
Se4iv—Tl1—Se4vii72.64 (2)Tl1vi—Se2—Se1118.10 (2)
Se4iv—Tl1—Se4v101.558 (16)Tl1vi—Se2—Se2i128.05 (2)
Se4iv—Tl1—Se4vi153.22 (4)Tl1vi—Se2—Se2ii51.949 (16)
Se4vii—Tl1—Se4v153.22 (4)Tl1vi—Se2—Se2v168.61 (2)
Se4vii—Tl1—Se4vi101.558 (16)Tl1vi—Se2—Se2vi110.899 (15)
Se4v—Tl1—Se4vi71.529 (19)Tl1vi—Se2—Se3x98.64 (2)
Tl1xi—Tl2—Tl1vi180.0 (5)Tl1vi—Se2—Se3xi61.888 (19)
Tl1xi—Tl2—Tl2i90Tl1vi—Se2—Se457.184 (19)
Tl1xi—Tl2—Tl2ii90Tl2i—Se2—Tl262.186 (13)
Tl1xi—Tl2—Se2146.55 (2)Tl2i—Se2—In2125.34 (2)
Tl1xi—Tl2—Se2ii146.55 (2)Tl2i—Se2—In2v95.178 (13)
Tl1xi—Tl2—Se2viii33.45 (2)Tl2i—Se2—In2vi147.42 (2)
Tl1xi—Tl2—Se2ix33.45 (2)Tl2i—Se2—Se1123.962 (15)
Tl1xi—Tl2—Se488.30 (5)Tl2i—Se2—Se2i58.907 (12)
Tl1xi—Tl2—Se4ii88.30 (5)Tl2i—Se2—Se2ii121.093 (19)
Tl1xi—Tl2—Se4viii91.70 (5)Tl2i—Se2—Se2v117.058 (10)
Tl1xi—Tl2—Se4ix91.70 (5)Tl2i—Se2—Se2vi167.79 (2)
Tl1vi—Tl2—Tl2i90Tl2i—Se2—Se3x67.384 (13)
Tl1vi—Tl2—Tl2ii90Tl2i—Se2—Se3xi97.822 (17)
Tl1vi—Tl2—Se233.45 (2)Tl2i—Se2—Se450.873 (12)
Tl1vi—Tl2—Se2ii33.45 (2)Tl2—Se2—In2125.34 (2)
Tl1vi—Tl2—Se2viii146.55 (2)Tl2—Se2—In2v147.42 (2)
Tl1vi—Tl2—Se2ix146.55 (2)Tl2—Se2—In2vi95.178 (13)
Tl1vi—Tl2—Se491.70 (5)Tl2—Se2—Se1123.962 (15)
Tl1vi—Tl2—Se4ii91.70 (5)Tl2—Se2—Se2i121.093 (19)
Tl1vi—Tl2—Se4viii88.30 (5)Tl2—Se2—Se2ii58.907 (12)
Tl1vi—Tl2—Se4ix88.30 (5)Tl2—Se2—Se2v167.79 (2)
Tl2i—Tl2—Tl2ii180.0 (5)Tl2—Se2—Se2vi117.058 (10)
Tl2i—Tl2—Se258.907 (6)Tl2—Se2—Se3x97.822 (17)
Tl2i—Tl2—Se2ii121.093 (6)Tl2—Se2—Se3xi67.384 (13)
Tl2i—Tl2—Se2viii58.907 (6)Tl2—Se2—Se450.873 (12)
Tl2i—Tl2—Se2ix121.093 (6)In2—Se2—In2v86.47 (2)
Tl2i—Tl2—Se452.785 (7)In2—Se2—In2vi86.47 (2)
Tl2i—Tl2—Se4ii127.215 (7)In2—Se2—Se196.79 (3)
Tl2i—Tl2—Se4viii52.785 (7)In2—Se2—Se2v43.875 (14)
Tl2i—Tl2—Se4ix127.215 (7)In2—Se2—Se2vi43.875 (14)
Tl2ii—Tl2—Se2121.093 (6)In2—Se2—Se3x136.53 (2)
Tl2ii—Tl2—Se2ii58.907 (6)In2—Se2—Se3xi136.53 (2)
Tl2ii—Tl2—Se2viii121.093 (6)In2—Se2—Se489.96 (2)
Tl2ii—Tl2—Se2ix58.907 (6)In2v—Se2—In2vi93.52 (3)
Tl2ii—Tl2—Se4127.215 (7)In2v—Se2—Se147.915 (14)
Tl2ii—Tl2—Se4ii52.785 (7)In2v—Se2—Se2i43.241 (14)
Tl2ii—Tl2—Se4viii127.215 (7)In2v—Se2—Se2ii136.76 (3)
Tl2ii—Tl2—Se4ix52.785 (7)In2v—Se2—Se2v42.593 (15)
Se2—Tl2—Se2ii62.186 (10)In2v—Se2—Se2vi90.05 (2)
Se2—Tl2—Se2viii117.814 (10)In2v—Se2—Se3x50.066 (15)
Se2—Tl2—Se2ix180.0 (5)In2v—Se2—Se3xi95.31 (2)
Se2—Tl2—Se463.828 (16)In2v—Se2—Se4133.020 (14)
Se2—Tl2—Se4ii100.580 (14)In2vi—Se2—Se147.915 (14)
Se2—Tl2—Se4viii79.420 (14)In2vi—Se2—Se2i136.76 (3)
Se2—Tl2—Se4ix116.172 (16)In2vi—Se2—Se2ii43.241 (14)
Se2ii—Tl2—Se2viii180.0 (5)In2vi—Se2—Se2v90.05 (2)
Se2ii—Tl2—Se2ix117.814 (10)In2vi—Se2—Se2vi42.593 (15)
Se2ii—Tl2—Se4100.580 (14)In2vi—Se2—Se3x95.31 (2)
Se2ii—Tl2—Se4ii63.828 (16)In2vi—Se2—Se3xi50.066 (15)
Se2ii—Tl2—Se4viii116.172 (16)In2vi—Se2—Se4133.020 (14)
Se2ii—Tl2—Se4ix79.420 (14)Se1—Se2—Se2v67.339 (17)
Se2viii—Tl2—Se2ix62.186 (10)Se1—Se2—Se2vi67.339 (17)
Se2viii—Tl2—Se479.420 (14)Se1—Se2—Se3x56.591 (16)
Se2viii—Tl2—Se4ii116.172 (16)Se1—Se2—Se3xi56.591 (16)
Se2viii—Tl2—Se4viii63.828 (16)Se1—Se2—Se4173.25 (2)
Se2viii—Tl2—Se4ix100.580 (14)Se2i—Se2—Se2ii180.0 (5)
Se2ix—Tl2—Se4116.172 (16)Se2i—Se2—Se2v59.612 (13)
Se2ix—Tl2—Se4ii79.420 (14)Se2i—Se2—Se2vi120.388 (19)
Se2ix—Tl2—Se4viii100.580 (14)Se2i—Se2—Se3x59.729 (11)
Se2ix—Tl2—Se4ix63.828 (16)Se2i—Se2—Se3xi120.271 (16)
Se4—Tl2—Se4ii74.429 (12)Se2ii—Se2—Se2v120.388 (19)
Se4—Tl2—Se4viii105.571 (12)Se2ii—Se2—Se2vi59.612 (13)
Se4—Tl2—Se4ix180.0 (5)Se2ii—Se2—Se3x120.271 (16)
Se4ii—Tl2—Se4viii180.0 (5)Se2ii—Se2—Se3xi59.729 (11)
Se4ii—Tl2—Se4ix105.571 (12)Se2v—Se2—Se2vi60.777 (14)
Se4viii—Tl2—Se4ix74.429 (12)Se2v—Se2—Se3x92.659 (16)
In1i—In1—In1ii180.0 (5)Se2v—Se2—Se3xi123.81 (2)
In1i—In1—In3x57.447 (5)Se2v—Se2—Se4118.249 (18)
In1i—In1—In3xi122.553 (5)Se2vi—Se2—Se3x123.81 (2)
In1i—In1—In3xii57.447 (5)Se2vi—Se2—Se3xi92.659 (16)
In1i—In1—In3xiii122.553 (5)Se2vi—Se2—Se4118.249 (18)
In1i—In1—Se3x42.872 (10)Se3x—Se2—Se3xi60.542 (13)
In1i—In1—Se3xi137.128 (10)Se3x—Se2—Se4117.94 (2)
In1i—In1—Se3xii42.872 (10)Se3xi—Se2—Se4117.94 (2)
In1i—In1—Se3xiii137.128 (10)Tl1iii—Se3—In1iv97.18 (2)
In1i—In1—Se4xiv90Tl1iii—Se3—In1vii97.18 (2)
In1i—In1—Se4viii90Tl1iii—Se3—Criv97.18 (2)
In1ii—In1—Cri180.0 (5)Tl1iii—Se3—Crvii97.18 (2)
In1ii—In1—In3x122.553 (5)Tl1iii—Se3—In2iii74.45 (2)
In1ii—In1—In3xi57.447 (5)Tl1iii—Se3—In3xv172.46 (3)
In1ii—In1—In3xii122.553 (5)Tl1iii—Se3—Se1iv107.29 (2)
In1ii—In1—In3xiii57.447 (5)Tl1iii—Se3—Se1vii107.29 (2)
In1ii—In1—Se3x137.128 (10)Tl1iii—Se3—Se2iv49.567 (17)
In1ii—In1—Se3xi42.872 (10)Tl1iii—Se3—Se2vii49.567 (17)
In1ii—In1—Se3xii137.128 (10)Tl1iii—Se3—Se3xv100.59 (3)
In1ii—In1—Se3xiii42.872 (10)Tl1iii—Se3—Se4xvi141.961 (17)
In1ii—In1—Se4xiv90Tl1iii—Se3—Se4xvii141.961 (17)
In1ii—In1—Se4viii90Tl1iii—Se3—Se4v52.372 (17)
Cri—In1—Crii180.0 (5)Tl1iii—Se3—Se4vi52.372 (17)
Cri—In1—In3x57.447 (5)In1iv—Se3—In1vii94.256 (19)
Cri—In1—In3xi122.553 (5)In1iv—Se3—Crvii94.256 (19)
Cri—In1—In3xii57.447 (5)In1iv—Se3—In2iii132.673 (10)
Cri—In1—In3xiii122.553 (5)In1iv—Se3—In3xv87.929 (17)
Cri—In1—Se3x42.872 (10)In1iv—Se3—Se1iv94.758 (12)
Cri—In1—Se3xi137.128 (10)In1iv—Se3—Se1vii152.58 (2)
Cri—In1—Se3xii42.872 (10)In1iv—Se3—Se2iv95.340 (12)
Cri—In1—Se3xiii137.128 (10)In1iv—Se3—Se2vii146.30 (2)
Crii—In1—In3x122.553 (5)In1iv—Se3—Se3i42.872 (9)
Crii—In1—In3xi57.447 (5)In1iv—Se3—Se3ii137.128 (19)
Crii—In1—In3xii122.553 (5)In1iv—Se3—Se3xv47.128 (10)
Crii—In1—In3xiii57.447 (5)In1iv—Se3—Se4xvi45.411 (12)
Crii—In1—Se3x137.128 (10)In1iv—Se3—Se4xvii93.072 (18)
Crii—In1—Se3xi42.872 (10)In1iv—Se3—Se4v45.298 (13)
Crii—In1—Se3xii137.128 (10)In1iv—Se3—Se4vi92.907 (19)
Crii—In1—Se3xiii42.872 (10)In1vii—Se3—Criv94.256 (19)
In3x—In1—In3xi65.105 (9)In1vii—Se3—Crvii0.0 (5)
In3x—In1—In3xii114.895 (9)In1vii—Se3—In2iii132.673 (10)
In3x—In1—In3xiii180.0 (5)In1vii—Se3—In3xv87.929 (17)
In3x—In1—Se3x85.411 (15)In1vii—Se3—Se1iv152.58 (2)
In3x—In1—Se3xi135.128 (16)In1vii—Se3—Se1vii94.758 (12)
In3x—In1—Se3xii44.872 (16)In1vii—Se3—Se2iv146.30 (2)
In3x—In1—Se3xiii94.589 (15)In1vii—Se3—Se2vii95.340 (12)
In3x—In1—Se4xiv134.936 (11)In1vii—Se3—Se3i137.128 (19)
In3x—In1—Se4viii45.064 (11)In1vii—Se3—Se3ii42.872 (9)
In3xi—In1—In3xii180.0 (5)In1vii—Se3—Se3xv47.128 (10)
In3xi—In1—In3xiii114.895 (9)In1vii—Se3—Se4xvi93.072 (18)
In3xi—In1—Se3x135.128 (16)In1vii—Se3—Se4xvii45.411 (12)
In3xi—In1—Se3xi85.411 (15)In1vii—Se3—Se4v92.907 (19)
In3xi—In1—Se3xii94.589 (15)In1vii—Se3—Se4vi45.298 (13)
In3xi—In1—Se3xiii44.872 (16)Criv—Se3—Crvii94.256 (19)
In3xi—In1—Se4xiv134.936 (11)Criv—Se3—In2iii132.673 (10)
In3xi—In1—Se4viii45.064 (11)Criv—Se3—In3xv87.929 (17)
In3xii—In1—In3xiii65.105 (9)Criv—Se3—Se1iv94.758 (12)
In3xii—In1—Se3x44.872 (16)Criv—Se3—Se1vii152.58 (2)
In3xii—In1—Se3xi94.589 (15)Criv—Se3—Se2iv95.340 (12)
In3xii—In1—Se3xii85.411 (15)Criv—Se3—Se2vii146.30 (2)
In3xii—In1—Se3xiii135.128 (16)Criv—Se3—Se3i42.872 (9)
In3xii—In1—Se4xiv45.064 (11)Criv—Se3—Se3ii137.128 (19)
In3xii—In1—Se4viii134.936 (11)Criv—Se3—Se3xv47.128 (10)
In3xiii—In1—Se3x94.589 (15)Criv—Se3—Se4xvi45.411 (12)
In3xiii—In1—Se3xi44.872 (16)Criv—Se3—Se4xvii93.072 (18)
In3xiii—In1—Se3xii135.128 (16)Criv—Se3—Se4v45.298 (13)
In3xiii—In1—Se3xiii85.411 (15)Criv—Se3—Se4vi92.907 (19)
In3xiii—In1—Se4xiv45.064 (11)Crvii—Se3—In2iii132.673 (10)
In3xiii—In1—Se4viii134.936 (11)Crvii—Se3—In3xv87.929 (17)
Se3x—In1—Se3xi94.256 (15)Crvii—Se3—Se1iv152.58 (2)
Se3x—In1—Se3xii85.744 (15)Crvii—Se3—Se1vii94.758 (12)
Se3x—In1—Se3xiii180.0 (5)Crvii—Se3—Se2iv146.30 (2)
Se3x—In1—Se4xiv89.889 (17)Crvii—Se3—Se2vii95.340 (12)
Se3x—In1—Se4viii90.111 (17)Crvii—Se3—Se3i137.128 (19)
Se3xi—In1—Se3xii180.0 (5)Crvii—Se3—Se3ii42.872 (9)
Se3xi—In1—Se3xiii85.744 (15)Crvii—Se3—Se3xv47.128 (10)
Se3xi—In1—Se4xiv89.889 (17)Crvii—Se3—Se4xvi93.072 (18)
Se3xi—In1—Se4viii90.111 (17)Crvii—Se3—Se4xvii45.411 (12)
Se3xii—In1—Se3xiii94.256 (15)Crvii—Se3—Se4v92.907 (19)
Se3xii—In1—Se4xiv90.111 (17)Crvii—Se3—Se4vi45.298 (13)
Se3xii—In1—Se4viii89.889 (17)In2iii—Se3—In3xv98.01 (3)
Se3xiii—In1—Se4xiv90.111 (17)In2iii—Se3—Se1iv47.708 (13)
Se3xiii—In1—Se4viii89.889 (17)In2iii—Se3—Se1vii47.708 (13)
In1i—Cr—In3x57.447 (5)In2iii—Se3—Se2iv43.670 (13)
In1i—Cr—In3xi122.553 (5)In2iii—Se3—Se2vii43.670 (13)
In1i—Cr—In3xii57.447 (5)In2iii—Se3—Se3i90.000 (11)
In1i—Cr—In3xiii122.553 (5)In2iii—Se3—Se3ii90.000 (11)
In1i—Cr—Se3x42.872 (10)In2iii—Se3—Se3xv175.04 (3)
In1i—Cr—Se3xi137.128 (10)In2iii—Se3—Se4xvi122.44 (2)
In1i—Cr—Se3xii42.872 (10)In2iii—Se3—Se4xvii122.44 (2)
In1i—Cr—Se3xiii137.128 (10)In2iii—Se3—Se4v114.61 (2)
In1ii—Cr—In3x122.553 (5)In2iii—Se3—Se4vi114.61 (2)
In1ii—Cr—In3xi57.447 (5)In3xv—Se3—Se1iv66.595 (18)
In1ii—Cr—In3xii122.553 (5)In3xv—Se3—Se1vii66.595 (18)
In1ii—Cr—In3xiii57.447 (5)In3xv—Se3—Se2iv124.62 (2)
In1ii—Cr—Se3x137.128 (10)In3xv—Se3—Se2vii124.62 (2)
In1ii—Cr—Se3xi42.872 (10)In3xv—Se3—Se3i90.000 (14)
In1ii—Cr—Se3xii137.128 (10)In3xv—Se3—Se3ii90.000 (14)
In1ii—Cr—Se3xiii42.872 (10)In3xv—Se3—Se3xv86.96 (2)
Cri—Cr—Crii180.0 (5)In3xv—Se3—Se4xvi42.569 (14)
Cri—Cr—In3x57.447 (5)In3xv—Se3—Se4xvii42.569 (14)
Cri—Cr—In3xi122.553 (5)In3xv—Se3—Se4v133.180 (18)
Cri—Cr—In3xii57.447 (5)In3xv—Se3—Se4vi133.180 (18)
Cri—Cr—In3xiii122.553 (5)Se1iv—Se3—Se1vii66.594 (15)
Cri—Cr—Se3x42.872 (10)Se1iv—Se3—Se2iv58.029 (16)
Cri—Cr—Se3xi137.128 (10)Se1iv—Se3—Se2vii91.374 (18)
Cri—Cr—Se3xii42.872 (10)Se1iv—Se3—Se3i56.703 (12)
Cri—Cr—Se3xiii137.128 (10)Se1iv—Se3—Se3ii123.297 (18)
Crii—Cr—In3x122.553 (5)Se1iv—Se3—Se3xv135.502 (16)
Crii—Cr—In3xi57.447 (5)Se1iv—Se3—Se4xvi75.321 (16)
Crii—Cr—In3xii122.553 (5)Se1iv—Se3—Se4xvii108.22 (2)
Crii—Cr—In3xiii57.447 (5)Se1iv—Se3—Se4v111.678 (12)
Crii—Cr—Se3x137.128 (10)Se1iv—Se3—Se4vi159.11 (2)
Crii—Cr—Se3xi42.872 (10)Se1vii—Se3—Se2iv91.374 (18)
Crii—Cr—Se3xii137.128 (10)Se1vii—Se3—Se2vii58.029 (16)
Crii—Cr—Se3xiii42.872 (10)Se1vii—Se3—Se3i123.297 (18)
In3x—Cr—In3xi65.105 (9)Se1vii—Se3—Se3ii56.703 (12)
In3x—Cr—In3xii114.895 (9)Se1vii—Se3—Se3xv135.502 (16)
In3x—Cr—In3xiii180.0 (5)Se1vii—Se3—Se4xvi108.22 (2)
In3x—Cr—Se3x85.411 (15)Se1vii—Se3—Se4xvii75.321 (16)
In3x—Cr—Se3xi135.128 (16)Se1vii—Se3—Se4v159.11 (2)
In3x—Cr—Se3xii44.872 (16)Se1vii—Se3—Se4vi111.678 (12)
In3x—Cr—Se3xiii94.589 (15)Se2iv—Se3—Se2vii60.542 (13)
In3x—Cr—Se4xiv134.936 (11)Se2iv—Se3—Se3i59.729 (11)
In3x—Cr—Se4viii45.064 (11)Se2iv—Se3—Se3ii120.271 (16)
In3xi—Cr—In3xii180.0 (5)Se2iv—Se3—Se3xv132.827 (19)
In3xi—Cr—In3xiii114.895 (9)Se2iv—Se3—Se4xvi116.325 (11)
In3xi—Cr—Se3x135.128 (16)Se2iv—Se3—Se4xvii164.40 (2)
In3xi—Cr—Se3xi85.411 (15)Se2iv—Se3—Se4v71.825 (16)
In3xi—Cr—Se3xii94.589 (15)Se2iv—Se3—Se4vi101.93 (2)
In3xi—Cr—Se3xiii44.872 (16)Se2vii—Se3—Se3i120.271 (16)
In3xi—Cr—Se4xiv134.936 (11)Se2vii—Se3—Se3ii59.729 (11)
In3xi—Cr—Se4viii45.064 (11)Se2vii—Se3—Se3xv132.827 (19)
In3xii—Cr—In3xiii65.105 (9)Se2vii—Se3—Se4xvi164.40 (2)
In3xii—Cr—Se3x44.872 (16)Se2vii—Se3—Se4xvii116.325 (11)
In3xii—Cr—Se3xi94.589 (15)Se2vii—Se3—Se4v101.93 (2)
In3xii—Cr—Se3xii85.411 (15)Se2vii—Se3—Se4vi71.825 (16)
In3xii—Cr—Se3xiii135.128 (16)Se3i—Se3—Se3ii180.0 (5)
In3xii—Cr—Se4xiv45.064 (11)Se3i—Se3—Se3xv90.000 (12)
In3xii—Cr—Se4viii134.936 (11)Se3i—Se3—Se4xvi58.969 (11)
In3xiii—Cr—Se3x94.589 (15)Se3i—Se3—Se4xvii121.031 (17)
In3xiii—Cr—Se3xi44.872 (16)Se3i—Se3—Se4v59.036 (12)
In3xiii—Cr—Se3xii135.128 (16)Se3i—Se3—Se4vi120.964 (19)
In3xiii—Cr—Se3xiii85.411 (15)Se3ii—Se3—Se3xv90.000 (12)
In3xiii—Cr—Se4xiv45.064 (11)Se3ii—Se3—Se4xvi121.031 (17)
In3xiii—Cr—Se4viii134.936 (11)Se3ii—Se3—Se4xvii58.969 (11)
Se3x—Cr—Se3xi94.256 (15)Se3ii—Se3—Se4v120.964 (19)
Se3x—Cr—Se3xii85.744 (15)Se3ii—Se3—Se4vi59.036 (12)
Se3x—Cr—Se3xiii180.0 (5)Se3xv—Se3—Se4xvi61.541 (16)
Se3x—Cr—Se4xiv89.889 (17)Se3xv—Se3—Se4xvii61.541 (16)
Se3x—Cr—Se4viii90.111 (17)Se3xv—Se3—Se4v61.336 (16)
Se3xi—Cr—Se3xii180.0 (5)Se3xv—Se3—Se4vi61.336 (16)
Se3xi—Cr—Se3xiii85.744 (15)Se4xvi—Se3—Se4xvii62.063 (14)
Se3xi—Cr—Se4xiv89.889 (17)Se4xvi—Se3—Se4v90.709 (15)
Se3xi—Cr—Se4viii90.111 (17)Se4xvi—Se3—Se4vi122.88 (2)
Se3xii—Cr—Se3xiii94.256 (15)Se4xvii—Se3—Se4v122.88 (2)
Se3xii—Cr—Se4xiv90.111 (17)Se4xvii—Se3—Se4vi90.709 (15)
Se3xii—Cr—Se4viii89.889 (17)Se4v—Se3—Se4vi61.929 (14)
Se3xiii—Cr—Se4xiv90.111 (17)Tl1x—Se4—Tl1xi72.644 (18)
Se3xiii—Cr—Se4viii89.889 (17)Tl1x—Se4—Tl1v26.78 (3)
In2i—In2—In2v57.450 (8)Tl1x—Se4—Tl1vi78.44 (2)
In2i—In2—In2vi122.550 (12)Tl1x—Se4—Tl2i13.482 (18)
In2i—In2—Se1v43.568 (12)Tl1x—Se4—Tl275.169 (16)
In2i—In2—Se1vi136.432 (19)Tl1x—Se4—In1xviii105.91 (3)
In2i—In2—Se2v43.241 (14)Tl1x—Se4—Crxviii105.91 (3)
In2i—In2—Se2vi136.76 (2)Tl1x—Se4—In3v93.230 (15)
In2i—In2—Se3iii90.000 (9)Tl1x—Se4—In3vi162.86 (3)
In2ii—In2—In2v122.550 (12)Tl1x—Se4—Se278.09 (2)
In2ii—In2—In2vi57.450 (8)Tl1x—Se4—Se3xix104.602 (16)
In2ii—In2—Se1v136.432 (19)Tl1x—Se4—Se3xx149.63 (3)
In2ii—In2—Se1vi43.568 (12)Tl1x—Se4—Se3v61.88 (2)
In2ii—In2—Se2v136.76 (2)Tl1x—Se4—Se3vi97.94 (2)
In2ii—In2—Se2vi43.241 (14)Tl1x—Se4—Se4i53.678 (12)
In2v—In2—In2vi65.100 (11)Tl1x—Se4—Se4ii126.322 (19)
In2v—In2—Se1v95.040 (13)Tl1xi—Se4—Tl1v78.44 (2)
In2v—In2—Se1vi150.17 (2)Tl1xi—Se4—Tl1vi26.78 (3)
In2v—In2—Se247.491 (14)Tl1xi—Se4—Tl2i75.169 (16)
In2v—In2—Se2v46.041 (16)Tl1xi—Se4—Tl213.482 (18)
In2v—In2—Se2vi95.149 (19)Tl1xi—Se4—In1xviii105.91 (3)
In2v—In2—Se3iii132.304 (17)Tl1xi—Se4—Crxviii105.91 (3)
In2vi—In2—Se1v150.17 (2)Tl1xi—Se4—In3v162.86 (3)
In2vi—In2—Se1vi95.040 (13)Tl1xi—Se4—In3vi93.230 (15)
In2vi—In2—Se247.491 (14)Tl1xi—Se4—Se278.09 (2)
In2vi—In2—Se2v95.149 (19)Tl1xi—Se4—Se3xix149.63 (3)
In2vi—In2—Se2vi46.041 (16)Tl1xi—Se4—Se3xx104.602 (16)
In2vi—In2—Se3iii132.304 (17)Tl1xi—Se4—Se3v97.94 (2)
Se1v—In2—Se1vi92.86 (2)Tl1xi—Se4—Se3vi61.88 (2)
Se1v—In2—Se2102.70 (2)Tl1xi—Se4—Se4i126.322 (19)
Se1v—In2—Se2v84.510 (16)Tl1xi—Se4—Se4ii53.678 (12)
Se1v—In2—Se2vi163.74 (3)Tl1v—Se4—Tl1vi71.529 (18)
Se1v—In2—Se3iii77.503 (18)Tl1v—Se4—Tl2i13.300 (18)
Se1vi—In2—Se2102.70 (2)Tl1v—Se4—Tl274.560 (17)
Se1vi—In2—Se2v163.74 (3)Tl1v—Se4—In1xviii130.51 (2)
Se1vi—In2—Se2vi84.510 (16)Tl1v—Se4—Crxviii130.51 (2)
Se1vi—In2—Se3iii77.503 (18)Tl1v—Se4—In3v84.600 (17)
Se2—In2—Se2v93.53 (2)Tl1v—Se4—In3vi142.48 (3)
Se2—In2—Se2vi93.53 (2)Tl1v—Se4—Se252.84 (2)
Se2—In2—Se3iii179.70 (3)Tl1v—Se4—Se3xix113.150 (12)
Se2v—In2—Se2vi93.52 (2)Tl1v—Se4—Se3xx174.69 (2)
Se2v—In2—Se3iii86.26 (2)Tl1v—Se4—Se3v85.96 (2)
Se2vi—In2—Se3iii86.26 (2)Tl1v—Se4—Se3vi122.07 (3)
In1iv—In3—In1vii65.105 (11)Tl1v—Se4—Se4i54.236 (13)
In1iv—In3—Criv0.0 (5)Tl1v—Se4—Se4ii125.764 (19)
In1iv—In3—Crvii65.105 (11)Tl1vi—Se4—Tl2i74.560 (17)
In1iv—In3—In3i57.447 (8)Tl1vi—Se4—Tl213.300 (18)
In1iv—In3—In3ii122.553 (14)Tl1vi—Se4—In1xviii130.51 (2)
In1iv—In3—Se1146.097 (7)Tl1vi—Se4—Crxviii130.51 (2)
In1iv—In3—Se1xii81.246 (13)Tl1vi—Se4—In3v142.48 (3)
In1iv—In3—Se1xiii117.067 (18)Tl1vi—Se4—In3vi84.600 (17)
In1iv—In3—Se3xv47.199 (12)Tl1vi—Se4—Se252.84 (2)
In1iv—In3—Se4v47.930 (17)Tl1vi—Se4—Se3xix174.69 (2)
In1iv—In3—Se4vi98.44 (2)Tl1vi—Se4—Se3xx113.150 (12)
In1vii—In3—Criv65.105 (11)Tl1vi—Se4—Se3v122.07 (3)
In1vii—In3—Crvii0.0 (5)Tl1vi—Se4—Se3vi85.96 (2)
In1vii—In3—In3i122.553 (14)Tl1vi—Se4—Se4i125.764 (19)
In1vii—In3—In3ii57.447 (8)Tl1vi—Se4—Se4ii54.236 (13)
In1vii—In3—Se1146.097 (7)Tl2i—Se4—Tl274.429 (15)
In1vii—In3—Se1xii117.067 (18)Tl2i—Se4—In1xviii118.427 (18)
In1vii—In3—Se1xiii81.246 (13)Tl2i—Se4—Crxviii118.427 (18)
In1vii—In3—Se3xv47.199 (12)Tl2i—Se4—In3v88.858 (13)
In1vii—In3—Se4v98.44 (2)Tl2i—Se4—In3vi153.93 (3)
In1vii—In3—Se4vi47.930 (17)Tl2i—Se4—Se265.299 (14)
Criv—In3—Crvii65.105 (11)Tl2i—Se4—Se3xix109.398 (10)
Criv—In3—In3i57.447 (8)Tl2i—Se4—Se3xx162.88 (2)
Criv—In3—In3ii122.553 (14)Tl2i—Se4—Se3v73.913 (13)
Criv—In3—Se1146.097 (7)Tl2i—Se4—Se3vi110.197 (19)
Criv—In3—Se1xii81.246 (13)Tl2i—Se4—Se4i52.785 (10)
Criv—In3—Se1xiii117.067 (18)Tl2i—Se4—Se4ii127.215 (17)
Criv—In3—Se3xv47.199 (12)Tl2—Se4—In1xviii118.427 (18)
Criv—In3—Se4v47.930 (17)Tl2—Se4—Crxviii118.427 (18)
Criv—In3—Se4vi98.44 (2)Tl2—Se4—In3v153.93 (3)
Crvii—In3—In3i122.553 (14)Tl2—Se4—In3vi88.858 (13)
Crvii—In3—In3ii57.447 (8)Tl2—Se4—Se265.299 (14)
Crvii—In3—Se1146.097 (7)Tl2—Se4—Se3xix162.88 (2)
Crvii—In3—Se1xii117.067 (18)Tl2—Se4—Se3xx109.398 (10)
Crvii—In3—Se1xiii81.246 (13)Tl2—Se4—Se3v110.197 (19)
Crvii—In3—Se3xv47.199 (12)Tl2—Se4—Se3vi73.913 (13)
Crvii—In3—Se4v98.44 (2)Tl2—Se4—Se4i127.215 (17)
Crvii—In3—Se4vi47.930 (17)Tl2—Se4—Se4ii52.785 (10)
In3i—In3—In3ii180.0 (5)In1xviii—Se4—Crxviii0.0 (5)
In3i—In3—Se1xii55.649 (9)In1xviii—Se4—In3v87.01 (2)
In3i—In3—Se1xiii124.351 (13)In1xviii—Se4—In3vi87.01 (2)
In3i—In3—Se4v40.619 (12)In1xviii—Se4—Se2174.94 (2)
In3i—In3—Se4vi139.381 (18)In1xviii—Se4—Se3xix44.701 (13)
In3ii—In3—Se1xii124.351 (13)In1xviii—Se4—Se3xx44.701 (13)
In3ii—In3—Se1xiii55.649 (9)In1xviii—Se4—Se3v44.590 (12)
In3ii—In3—Se4v139.381 (18)In1xviii—Se4—Se3vi44.590 (12)
In3ii—In3—Se4vi40.619 (12)In1xviii—Se4—Se4i90.000 (14)
Se1—In3—Se1xii71.494 (18)In1xviii—Se4—Se4ii90.000 (14)
Se1—In3—Se1xiii71.494 (18)Crxviii—Se4—In3v87.01 (2)
Se1—In3—Se3xv133.67 (3)Crxviii—Se4—In3vi87.01 (2)
Se1—In3—Se4v113.92 (2)Crxviii—Se4—Se2174.94 (2)
Se1—In3—Se4vi113.92 (2)Crxviii—Se4—Se3xix44.701 (13)
Se1xii—In3—Se1xiii68.701 (13)Crxviii—Se4—Se3xx44.701 (13)
Se1xii—In3—Se3xv70.606 (18)Crxviii—Se4—Se3v44.590 (12)
Se1xii—In3—Se4v95.083 (14)Crxviii—Se4—Se3vi44.590 (12)
Se1xii—In3—Se4vi160.95 (2)Crxviii—Se4—Se4i90.000 (14)
Se1xiii—In3—Se3xv70.606 (18)Crxviii—Se4—Se4ii90.000 (14)
Se1xiii—In3—Se4v160.95 (2)In3v—Se4—In3vi98.76 (2)
Se1xiii—In3—Se4vi95.083 (14)In3v—Se4—Se289.70 (2)
Se3xv—In3—Se4v95.08 (2)In3v—Se4—Se3xix42.356 (17)
Se3xv—In3—Se4vi95.08 (2)In3v—Se4—Se3xx92.50 (2)
Se4v—In3—Se4vi98.76 (2)In3v—Se4—Se3v83.236 (17)
In2v—Se1—In2vi92.86 (2)In3v—Se4—Se3vi131.55 (3)
In2v—Se1—In3112.287 (19)In3v—Se4—Se4i40.619 (12)
In2v—Se1—In3xii84.802 (14)In3v—Se4—Se4ii139.38 (2)
In2v—Se1—In3xiii136.64 (2)In3vi—Se4—Se289.70 (2)
In2v—Se1—Se1i43.568 (12)In3vi—Se4—Se3xix92.50 (2)
In2v—Se1—Se1ii136.43 (2)In3vi—Se4—Se3xx42.356 (17)
In2v—Se1—Se1xii100.184 (12)In3vi—Se4—Se3v131.55 (3)
In2v—Se1—Se1xiii166.119 (16)In3vi—Se4—Se3vi83.236 (17)
In2v—Se1—Se247.575 (13)In3vi—Se4—Se4i139.38 (2)
In2v—Se1—Se3x54.788 (16)In3vi—Se4—Se4ii40.619 (12)
In2v—Se1—Se3xi102.65 (2)Se2—Se4—Se3xix131.745 (18)
In2vi—Se1—In3112.287 (19)Se2—Se4—Se3xx131.745 (18)
In2vi—Se1—In3xii136.64 (2)Se2—Se4—Se3v138.720 (15)
In2vi—Se1—In3xiii84.802 (14)Se2—Se4—Se3vi138.720 (15)
In2vi—Se1—Se1i136.43 (2)Se2—Se4—Se4i90.000 (14)
In2vi—Se1—Se1ii43.568 (12)Se2—Se4—Se4ii90.000 (14)
In2vi—Se1—Se1xii166.119 (16)Se3xix—Se4—Se3xx62.063 (14)
In2vi—Se1—Se1xiii100.184 (12)Se3xix—Se4—Se3v57.123 (15)
In2vi—Se1—Se247.575 (13)Se3xix—Se4—Se3vi89.291 (19)
In2vi—Se1—Se3x102.65 (2)Se3xix—Se4—Se4i58.969 (12)
In2vi—Se1—Se3xi54.788 (16)Se3xix—Se4—Se4ii121.031 (18)
In3—Se1—In3xii108.51 (2)Se3xx—Se4—Se3v89.291 (19)
In3—Se1—In3xiii108.51 (2)Se3xx—Se4—Se3vi57.123 (15)
In3—Se1—Se1xiii67.047 (18)Se3xx—Se4—Se4i121.031 (18)
In3—Se1—Se2135.19 (2)Se3xx—Se4—Se4ii58.969 (12)
In3—Se1—Se3x143.728 (13)Se3v—Se4—Se3vi61.929 (14)
In3—Se1—Se3xi143.728 (13)Se3v—Se4—Se4i59.036 (13)
In3xii—Se1—In3xiii68.701 (13)Se3v—Se4—Se4ii120.964 (19)
In3xii—Se1—Se1i55.649 (10)Se3vi—Se4—Se4i120.964 (19)
In3xii—Se1—Se1ii124.351 (15)Se3vi—Se4—Se4ii59.036 (13)
In3xii—Se1—Se1xii41.459 (14)Se4i—Se4—Se4ii180.0 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x+1/2, y1/2, z; (v) x+1/2, y1/2, z+1; (vi) x+1/2, y+1/2, z+1; (vii) x+1/2, y+1/2, z; (viii) x, y, z+1; (ix) x, y+1, z+1; (x) x1/2, y1/2, z; (xi) x1/2, y+1/2, z; (xii) x+1/2, y1/2, z; (xiii) x+1/2, y+1/2, z; (xiv) x, y, z1; (xv) x+1, y, z; (xvi) x+1/2, y1/2, z1; (xvii) x+1/2, y+1/2, z1; (xviii) x, y, z+1; (xix) x1/2, y1/2, z+1; (xx) x1/2, y+1/2, z+1.
 

Funding information

Funding for this research was provided by: Agence Nationale de la Recherche, program Investissements d'Avenir, LabEx EMC3 (award No. ANR-10-LABX-09–01).

References

First citationBrandenburg, K. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKlepp, K. & Boller, H. (1983). J. Solid State Chem. 48, 388–395.  CrossRef CAS Web of Science Google Scholar
First citationLefèvre, R., Berthebaud, D., Bux, S., Hébert, S. & Gascoin, F. (2016). Dalton Trans. 45, 12119–12126.  Web of Science PubMed Google Scholar
First citationLefèvre, R., Berthebaud, D., Perez, O., Pelloquin, D., Hébert, S. & Gascoin, F. (2015). Chem. Mater. 27, 7110–7118.  Google Scholar
First citationMaier, S., Lefèvre, R., Lin, X., Nunna, R., Berthebaud, D., Hèbert, S., Mar, A. & Gascoin, F. (2015). J. Mater. Chem. C. 3, 10509–10517.  Web of Science CrossRef CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPanalytical (2009). X'Pert HighScore plus 3.0. Panalytical B. V., Almelo, The Netherlands.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationTakahashi, H., Raghavendra, N., Gascoin, F., Pelloquin, D., Hébert, S. & Guilmeau, E. (2013). Chem. Mater. 25, 1809–1815.  Web of Science CrossRef CAS Google Scholar
First citationWalther, R. & Deiseroth, H. J. (1998). Z. Krist. New Cryst. Struct. 212, 293.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds