research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bromido-fac-tricarbon­yl[5-(3,4,5-tri­meth­­oxy­phen­yl)-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N2,N3]rhenium(I) methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, Dnipro 49005, Ukraine, and bInorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Street 64/13, Kyiv 01601, Ukraine
*Correspondence e-mail: kharlovamargarita@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 February 2017; accepted 28 February 2017; online 10 March 2017)

In the title compound, [ReBr(C16H16N4O3)(CO)3]·CH3OH, the ReI atom adopts a distorted octa­hedral coordination sphere with a facial arrangement of the three carbonyl ligands. Two N atoms of the chelating 5-(3,4,5-tri­meth­oxy­phen­yl)-3-(pyridin-2-yl)-1H-1,2,4-triazole ligand and two carbonyl ligands define the equatorial plane of the complex, with the third carbonyl ligand and the bromide ligand in axial positions. Conventional hydrogen bonds including the methanol solvent mol­ecules assemble the complex mol­ecules through mutual N—H⋯O—H⋯Br links [N⋯O = 2.703 (3) Å and O⋯Br = 3.255 (2) Å] into centrosymmetric dimers, whereas weaker C—H⋯O and C—H⋯Br hydrogen bonds [C⋯O = 3.215 (3)–3.390 (4) Å and C⋯Br = 3.927 (3) Å] connect the dimers into double layers parallel to the (111) plane.

1. Chemical context

Rhenium(I) metal complexes have attracted attention because of their chemical characteristics exhibiting increased potentials for biochemical applications (Fernández-Moreira et al., 2010[Fernández-Moreira, V., Thorp-Greenwood, F. L. & Coogan, M. P. (2010). Chem. Commun. 46, 186-202.]; Lo et al., 2012[Lo, K. K.-W., Choi, A. W.-T. & Law, W. H.-T. (2012). Dalton Trans. 41, 6021-6047.]). Rhenium tricarbonyl complexes with the general formula fac-[Re(CO)3(N^N)] (where N^N is an N,N′-chelating ligand) are kinetically stable and have luminescence properties with long life times (Kowalski et al., 2015[Kowalski, K., Szczupak, Ł., Bernaś, T. & Czerwieniec, R. (2015). J. Organomet. Chem. 782, 124-130.]; Guo et al., 1997[Guo, X., Castellano, F. N., Li, L., Szmacinski, H., Lakowicz, J. R. & Sipior, J. (1997). Anal. Biochem. 254, 179-186.]), high photostability (Lo, 2015[Lo, K. K.-W. (2015). Acc. Chem. Res. 48, 2985-2995.]) and large Stokes shifts (Lo, 2015[Lo, K. K.-W. (2015). Acc. Chem. Res. 48, 2985-2995.]; Stephenson et al., 2004[Stephenson, K. A., Banerjee, S. R., Besanger, T., Sogbein, O. O., Levadala, M. K., McFarlane, N., Lemon, J. A., Boreham, D. R., Maresca, K. P., Brennan, J. D., Babich, J. W., Zubieta, J. & Valliant, J. F. (2004). J. Am. Chem. Soc. 126, 8598-8599.]), which makes these compounds ideal candidates for either in vitro or in vivo visualization of biological processes (Shen et al., 2001[Shen, Y., Maliwal, B. P. & Lakowicz, J. R. (2001). J. Fluoresc. 11, 315-318.]; Thorp-Greenwood, 2012[Thorp-Greenwood, F. L. (2012). Organometallics, 31, 5686-5692.]).

Triazole derivatives are an inter­esting type of ligand. 1,2,4-Triazoles have biological relevance since they show anti­viral (Abdullah et al., 2012[Abdullah, H. M., Jassim, I. K. & Safi, M. N. (2012). Karbala J. Pharm. Sci, 4, 115-135.]), anti­bacterial (Varvarason et al., 2000[Varvarason, A., Tantili-Kakoulidou, A., Siatra-Papastasikoudi, T. & Tiligada, E. (2000). Arzneim.-Forsch. 50, 48-54.]; Jassim et al., 2011[Jassim, I. K., Fayad, A. A. & Jassim, W. K. (2011). Karbala J. Pharm. Sci. 2, 228-240.]), anti­fungal (Luo et al., 2009[Luo, Y., Lu, Y.-H., Gan, L.-L., Zhou, C.-H., Wu, J., Geng, R.-X. & Zhang, Y.-Y. (2009). Arch. Pharm. Chem. Life Sci. 342, 386-393.]), anti­cancer (Sztanke et al., 2008[Sztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem. 43, 404-419.]) and anti­tuberculous (Mandal et al., 2010[Mandal, S. K., Saha, D., Jain, V. K. & Jain, B. (2010). Int. J. Pharm. Sci. Res. 1, 465-472.]) activities. Moreover, metal complexes containing triazole derivatives have inter­esting photophysical and photochemical properties (Piletska et al., 2015[Piletska, K. O., Domasevitch, K. V., Gusev, A. N., Shul'gin, V. F. & Shtemenko, A. V. (2015). Polyhedron, 102, 699-704.]; Chen et al., 2013[Chen, J.-L., Cao, X.-F., Wang, J.-Y., He, L.-H., Liu, Z.-Y., Wen, H.-R. & Chen, Z.-N. (2013). Inorg. Chem. 52, 9727-9740.]), and this class of complexes, apart from their biological activity (Chohan & Hanif, 2010[Chohan, Z. H. & Hanif, M. (2010). J. Enzyme Inhib. Med. Chem. 25, 737-749.]), is used for fluorescent probing in addition to their potential use in radio-imaging. Introduction of substituents in the triazole derivatives affects the σ-donor and π-acceptor properties (Van Diemen et al., 1991[Van Diemen, J. H., Haasnoot, J. G., Hage, R., Reedijk, J., Vos, J. G. & Wang, R. (1991). Inorg. Chem. 30, 4038-4043.]), and consequently affects the photophysical properties of an organometallic compounds in which they are incorporated. In this context, we report here the synthesis and crystal structure analysis of a novel ReI complex, i.e. [ReBr(C16H16N4O3)(CO)3]·CH3OH (Fig. 1[link]), which contains the triazole ligand 5-(3,4,5-tri­meth­oxy­phen­yl)-3-(pyridin-2-yl)-1H-1,2,4-triazole.

[Scheme 1]
[Figure 1]
Figure 1
The structures of the mol­ecular entities in the solvated title complex. Displacement ellipsoids are drawn at the 40% probability level and the dashed line indicates hydrogen bonding involving the methanol solvent mol­ecule.

2. Structural commentary

The three carbonyl ligands bonded to the ReI atom are arranged in a fac configuration. The distances of atoms C1, C2 and C3 to the ReI atom are 1.902 (4), 1.910 (2) and 1.907 (2) Å, respectively, and the Re—N bond lengths involving the chelating organic ligand are 2.151 (2) and 2.205 (2) Å. The two N atoms and two carbonyl C atoms define the equatorial plane, while the octa­hedral coordination sphere is completed by the third carbonyl C atom and the Br atom [Re—Br = 2.6222 (3) Å] in axial positions. The CO ligands are almost linearly coordinated, with O—C—Re bond angles of 178.2 (3), 177.8 (3) and 177.8 (3)°. The C—Re—C bond angles between carbonyl C atoms are 90.6 (1), 90.2 (1) and 88.7 (1)°, close to ideal values, whereas the cis equatorial bite angle of the chelating ligand (N1—Re1—N4) is 73.42 (8)°.

3. Supra­molecular features

In the crystal, the packing of the mol­ecules is influenced by a set of weak inter­actions, including conventional hydrogen bonding with common NH and OH donor groups and weaker hydrogen bonds formed by CH groups (Table 1[link]). Two pairs of relatively short hydrogen bonds (O7—H⋯Br1 and N2—H⋯O7), both involving the methanol solvent mol­ecules, assemble the complex mol­ecules into centrosymmetric dimers (Fig. 2[link]). As may be compared with the closely related complex [ReBr(L)(CO)3] [L = 5-phenyl-3-(pyridin-2-yl)-1H-1,2,4-triazole; Piletska et al., 2014[Piletska, K., Domasevitch, K. V. & Shtemenko, A. V. (2014). Acta Cryst. E70, 587-589.]], a key prerequisite for the formation of dimers is the presence of acidic NH functions and sterically accessible Br sites. In the latter, they afford two mutual N—H⋯Br hydrogen bonds, whereas in the present case, these links appear to be extended by the inclusion of methanol, resulting in an N—H⋯O(Me)—H⋯Br motif.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H1O⋯Br1 0.85 2.41 3.255 (2) 172
N2—H1N⋯O7i 0.87 1.89 2.703 (3) 154
C7—H7⋯Br1ii 0.94 3.01 3.927 (3) 165
C8—H8⋯O2iii 0.94 2.52 3.390 (4) 153
C9—H9⋯O6iv 0.94 2.49 3.278 (3) 142
C10—H10⋯O3v 0.94 2.39 3.215 (3) 146
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y+1, -z; (iii) x-1, y+1, z; (iv) x-1, y, z+1; (v) -x, -y, -z+1.
[Figure 2]
Figure 2
(a) Part of the crystal structure of the title complex, showing dimers formed by conventional hydrogen bonding involving the methanol solvent mol­ecules and weak C—H⋯O inter­actions providing inter­connection of the dimers into chains. (b) A partial view of the double layer in a projection approximately on the (111) plane; individual chains are marked in blue and grey and the dotted lines indicate hydrogen bonding within a layer. [Symmetry codes: (i) 1 − x, −y, −z; (ii) −x, −y, 1 − z; (iii) −1 + x, y, 1 + z; (iv) −1 + x, 1 + y, z; (v) −x, 1 − y, −z.]

Each of the four pyridine CH groups functions as a donor of weak hydrogen bonds (Fig. 2[link]). These groups establish hydrogen bonds to two carbonyl O atoms (C8⋯O2iv and C10⋯O3ii), a meth­oxy O atom (C9⋯O6iii) and a very weak bond with bromine as acceptor (C7⋯Brv) (for symmetry codes, see Table 1[link]). These distal yet directional inter­actions (the hydrogen-bonding angles are in the range 142–165°; Table 1[link]) unite the above dimers into flat double layers, which extend parallel to the (111) plane. Within a layer, the pyridine and triazole moieties of adjacent mol­ecules are actually parallel, with shortest contacts of C7⋯N3v = 3.430 (4) Å [symmetry code: (v) −x, 1 − y, −z]. However, this situation is unlikely to be a consequence of slipped ππ inter­actions, since the corresponding slippage angle exceeds 56° and the inter­centroid distance is as long as Cg(C6–C10/N4)⋯Cg(C4/C5/N1–N3)v = 4.090 (3) Å [for the lack of an overlap between heteroaromatic planes, see Fig. 2[link], part (B)]. At the same time, successive double layers are turned towards one another by methyl groups of the tri­meth­oxy­phenyl and methanol entities (Fig. 3[link]). Thus, the inter­layer inter­actions are very weak and the only remarkable contact is found between two inversion-related carbonyl groups [O1⋯C1vi = 3.295 (3) Å and O1⋯Cg(C1=O1)vi = 3.226 (3) Å; symmetry code (vi) −x, −y, −z]. Although such weak inter­actions are characteristic of related metal–carbonyl structures (Sparkes et al., 2006[Sparkes, H. A., Raithby, P. R., Clot, E., Shields, G. P., Chisholm, J. A. & Allen, F. H. (2006). CrystEngComm, 8, 563-570.]), in the present case, their significance is relatively minor.

[Figure 3]
Figure 3
Packing of successive double layers, which are turned towards one another by the methyl and carbonyl groups (the view is along the direction of the hydrogen-bonded chains indicated with blue and grey bonds). [Symmetry codes: (iv) −1 + x, 1 + y, z; (v) −x, 1 − y, −z.]

4. Synthesis and crystallization

Penta­carbonyl­rhenium(I) bromide (0.15 g, 0.369 mmol) was mixed with 5-(3,4,5-tri­meth­oxy­phen­yl)-3-(pyridin-2-yl)-1H-1,2,4-triazole (0.138 g, 0.442 mmol) in benzene (30 ml). The mixture was refluxed for 4 h under a stream of argon and then allowed to cool to room temperature. The yellow product was collected by suction filtration, washed with hexane and dried (yield 0.138 g, 77%). Crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a methanol–di­chloro­methane solution of the complex. IR (KBr, cm−1): νas(CO) 2028 (s), νs(CO) 1894 (s). 1H NMR (400 MHz, d6-DMSO): δ 9.02 (d, 1H, CH=N, Py), 8.39 (d, 1H, CH=C, Py), 8.35 (dd, 1H, CH, Py), 7.75 (dd, 1H, CH, Py), 7.44 [s, 2H, 2 CH, Ph(OCH3)3], 3.93 [s, 9H, 3 O-CH3, Ph(OCH3)3].

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C- and N-bound H atoms were positioned with idealized geometry and were refined with aryl C—H = 0.94 Å, methyl C—H = 0.97 Å and N—H = 0.87 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) otherwise. The O-bound H atom of the methanol solvent mol­ecule was found from a difference map and was refined with O—H = 0.95 Å and Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [ReBr(C16H16N4O3)(CO)3]·CH4O
Mr 694.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 213
a, b, c (Å) 10.9569 (6), 11.0012 (6), 11.9738 (7)
α, β, γ (°) 69.073 (6), 75.593 (7), 61.409 (6)
V3) 1178.37 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.90
Crystal size (mm) 0.21 × 0.18 × 0.15
 
Data collection
Diffractometer Stoe IPDS
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 1999[Stoe & Cie (1999). X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.325, 0.424
No. of measured, independent and observed [I > 2σ(I)] reflections 22150, 5649, 4658
Rint 0.054
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.034, 0.84
No. of reflections 5649
No. of parameters 302
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.98
Computer programs: IPDS (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: IPDS (Stoe & Cie, 2000); cell refinement: IPDS (Stoe & Cie, 2000); data reduction: IPDS (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bromido-fac-tricarbonyl[5-(3,4,5-trimethoxyphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N2,N3]rhenium(I) methanol monosolvate top
Crystal data top
[ReBr(C16H16N4O3)(CO)3]·CH4OZ = 2
Mr = 694.51F(000) = 668
Triclinic, P1Dx = 1.957 Mg m3
a = 10.9569 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0012 (6) ÅCell parameters from 8000 reflections
c = 11.9738 (7) Åθ = 2.4–28.0°
α = 69.073 (6)°µ = 6.90 mm1
β = 75.593 (7)°T = 213 K
γ = 61.409 (6)°Prism, yellow
V = 1178.37 (14) Å30.21 × 0.18 × 0.15 mm
Data collection top
Stoe IPDS
diffractometer
5649 independent reflections
Radiation source: fine-focus sealed tube4658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
φ oscillation scansθmax = 28.0°, θmin = 2.4°
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 1999)
h = 1414
Tmin = 0.325, Tmax = 0.424k = 1414
22150 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.034H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.007P)2]
where P = (Fo2 + 2Fc2)/3
5649 reflections(Δ/σ)max = 0.002
302 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.98 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.154206 (13)0.050031 (12)0.169575 (9)0.02510 (3)
Br10.25284 (3)0.20300 (3)0.21180 (2)0.03551 (7)
O10.0338 (3)0.1259 (3)0.1269 (2)0.0619 (7)
O20.4513 (3)0.1785 (3)0.1342 (2)0.0647 (7)
O30.1502 (3)0.1065 (3)0.43714 (17)0.0564 (6)
O40.0599 (2)0.6925 (2)0.58379 (15)0.0424 (5)
O50.3238 (2)0.5465 (3)0.66521 (15)0.0496 (6)
O60.4851 (2)0.2842 (3)0.53647 (19)0.0588 (7)
O70.5906 (2)0.0402 (3)0.1603 (2)0.0607 (6)
H1O0.50220.07430.17400.091*
N10.1308 (2)0.1987 (2)0.00751 (16)0.0251 (5)
N20.2059 (2)0.2076 (2)0.11623 (17)0.0277 (5)
H1N0.28700.14220.13410.042*
N30.0134 (2)0.4101 (2)0.13551 (17)0.0276 (5)
N40.0517 (2)0.2340 (2)0.17886 (16)0.0261 (5)
C10.0776 (3)0.0582 (3)0.1415 (2)0.0372 (7)
C20.3389 (3)0.0940 (3)0.1465 (2)0.0374 (7)
C30.1518 (3)0.0502 (3)0.3364 (2)0.0337 (6)
C40.0180 (3)0.3209 (3)0.02390 (19)0.0236 (5)
C50.1328 (3)0.3353 (3)0.1915 (2)0.0258 (5)
C60.0881 (3)0.3444 (3)0.0779 (2)0.0256 (5)
C70.2134 (3)0.4647 (3)0.0716 (2)0.0330 (6)
H70.23490.53950.00040.040*
C80.3074 (3)0.4739 (3)0.1731 (3)0.0393 (7)
H80.39440.55470.17120.047*
C90.2715 (3)0.3632 (3)0.2763 (2)0.0402 (7)
H90.33350.36750.34650.048*
C100.1442 (3)0.2460 (3)0.2766 (2)0.0346 (6)
H100.12090.17090.34820.042*
C110.1808 (3)0.3865 (3)0.3176 (2)0.0292 (6)
C120.0921 (3)0.5169 (3)0.3878 (2)0.0311 (6)
H120.00190.56970.35570.037*
C130.1380 (3)0.5683 (3)0.5059 (2)0.0335 (6)
C140.2732 (3)0.4897 (3)0.5527 (2)0.0374 (7)
C150.3585 (3)0.3574 (3)0.4825 (2)0.0392 (7)
C160.3131 (3)0.3051 (3)0.3641 (2)0.0363 (7)
H160.37130.21560.31600.044*
C170.0765 (4)0.7778 (3)0.5387 (3)0.0465 (8)
H17A0.13130.72290.51120.070*
H17B0.12120.86420.60190.070*
H17C0.07010.80460.47210.070*
C180.2920 (4)0.5205 (4)0.7592 (3)0.0544 (9)
H18A0.33990.41810.75250.082*
H18B0.32210.57330.83580.082*
H18C0.19200.55210.75380.082*
C190.5582 (4)0.1362 (5)0.4788 (4)0.0857 (14)
H19A0.58770.12540.40450.128*
H19B0.63950.09280.53090.128*
H19C0.49770.08880.46130.128*
C200.6343 (5)0.1423 (5)0.1534 (5)0.0861 (14)
H20A0.60440.16850.22820.129*
H20B0.59360.22720.08780.129*
H20C0.73530.10240.13950.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02840 (6)0.02390 (6)0.02089 (5)0.01144 (4)0.00314 (3)0.00318 (3)
Br10.03337 (16)0.03401 (17)0.04178 (14)0.01567 (13)0.00360 (12)0.01181 (12)
O10.088 (2)0.0571 (16)0.0582 (14)0.0442 (15)0.0299 (13)0.0010 (12)
O20.0457 (15)0.0503 (16)0.0727 (16)0.0050 (13)0.0118 (12)0.0217 (12)
O30.0822 (18)0.0659 (16)0.0272 (10)0.0472 (15)0.0099 (10)0.0052 (10)
O40.0561 (14)0.0372 (12)0.0284 (9)0.0229 (11)0.0026 (9)0.0001 (8)
O50.0627 (15)0.0786 (16)0.0239 (9)0.0539 (14)0.0066 (9)0.0060 (9)
O60.0325 (12)0.0807 (19)0.0418 (11)0.0187 (13)0.0098 (9)0.0108 (11)
O70.0342 (13)0.0493 (15)0.0909 (17)0.0084 (12)0.0067 (12)0.0335 (13)
N10.0260 (12)0.0283 (12)0.0190 (9)0.0126 (10)0.0005 (8)0.0049 (8)
N20.0231 (11)0.0347 (13)0.0223 (10)0.0118 (10)0.0026 (8)0.0090 (9)
N30.0268 (12)0.0283 (12)0.0256 (10)0.0136 (10)0.0001 (9)0.0045 (9)
N40.0261 (12)0.0302 (12)0.0223 (9)0.0149 (10)0.0005 (8)0.0057 (8)
C10.055 (2)0.0295 (16)0.0275 (13)0.0215 (15)0.0095 (12)0.0000 (11)
C20.0396 (18)0.0311 (17)0.0327 (14)0.0084 (15)0.0097 (12)0.0050 (12)
C30.0403 (17)0.0340 (16)0.0288 (13)0.0204 (14)0.0052 (11)0.0036 (11)
C40.0228 (13)0.0272 (14)0.0210 (10)0.0123 (11)0.0026 (9)0.0042 (9)
C50.0245 (13)0.0302 (15)0.0245 (11)0.0156 (12)0.0021 (10)0.0042 (10)
C60.0267 (14)0.0281 (14)0.0252 (11)0.0151 (12)0.0013 (10)0.0071 (10)
C70.0294 (15)0.0302 (16)0.0363 (13)0.0111 (13)0.0043 (11)0.0075 (11)
C80.0273 (15)0.0377 (18)0.0515 (16)0.0126 (14)0.0053 (13)0.0190 (14)
C90.0362 (17)0.049 (2)0.0382 (14)0.0234 (16)0.0148 (12)0.0212 (14)
C100.0394 (17)0.0419 (18)0.0258 (12)0.0254 (15)0.0047 (11)0.0070 (11)
C110.0306 (15)0.0369 (16)0.0239 (11)0.0202 (13)0.0006 (10)0.0062 (10)
C120.0366 (16)0.0359 (16)0.0246 (11)0.0220 (13)0.0003 (11)0.0054 (11)
C130.0464 (18)0.0344 (16)0.0251 (12)0.0260 (15)0.0045 (12)0.0012 (11)
C140.0446 (18)0.056 (2)0.0238 (12)0.0368 (16)0.0029 (12)0.0070 (12)
C150.0284 (15)0.062 (2)0.0294 (13)0.0249 (15)0.0052 (11)0.0125 (13)
C160.0296 (15)0.0466 (18)0.0267 (12)0.0179 (14)0.0026 (11)0.0015 (12)
C170.053 (2)0.0380 (19)0.0382 (15)0.0163 (16)0.0077 (14)0.0012 (13)
C180.064 (2)0.075 (3)0.0333 (15)0.039 (2)0.0008 (15)0.0156 (16)
C190.045 (2)0.098 (4)0.087 (3)0.021 (2)0.031 (2)0.036 (3)
C200.060 (3)0.086 (3)0.134 (4)0.029 (3)0.005 (3)0.062 (3)
Geometric parameters (Å, º) top
Re1—C11.902 (3)C7—C81.383 (4)
Re1—C31.907 (3)C7—H70.9400
Re1—C21.910 (3)C8—C91.369 (4)
Re1—N12.1515 (18)C8—H80.9400
Re1—N42.205 (2)C9—C101.373 (4)
Re1—Br12.6222 (3)C9—H90.9400
O1—C11.137 (3)C10—H100.9400
O2—C21.146 (4)C11—C121.385 (4)
O3—C31.142 (3)C11—C161.388 (4)
O4—C131.355 (3)C12—C131.386 (3)
O4—C171.423 (4)C12—H120.9400
O5—C141.368 (3)C13—C141.401 (4)
O5—C181.410 (4)C14—C151.383 (4)
O6—C151.359 (4)C15—C161.389 (4)
O6—C191.412 (5)C16—H160.9400
O7—C201.388 (5)C17—H17A0.9700
O7—H1O0.8500C17—H17B0.9700
N1—C41.310 (3)C17—H17C0.9700
N1—N21.354 (3)C18—H18A0.9700
N2—C51.344 (3)C18—H18B0.9700
N2—H1N0.8700C18—H18C0.9700
N3—C51.329 (3)C19—H19A0.9700
N3—C41.342 (3)C19—H19B0.9700
N4—C101.344 (3)C19—H19C0.9700
N4—C61.350 (3)C20—H20A0.9700
C4—C61.462 (3)C20—H20B0.9700
C5—C111.468 (3)C20—H20C0.9700
C6—C71.372 (4)
C1—Re1—C390.15 (11)C8—C9—H9120.2
C1—Re1—C290.62 (13)C10—C9—H9120.2
C3—Re1—C288.74 (12)N4—C10—C9122.8 (2)
C1—Re1—N195.06 (9)N4—C10—H10118.6
C3—Re1—N1169.20 (10)C9—C10—H10118.6
C2—Re1—N1100.64 (10)C12—C11—C16121.3 (2)
C1—Re1—N492.83 (11)C12—C11—C5118.7 (2)
C3—Re1—N496.92 (10)C16—C11—C5120.0 (2)
C2—Re1—N4173.36 (10)C11—C12—C13119.2 (3)
N1—Re1—N473.41 (7)C11—C12—H12120.4
C1—Re1—Br1178.32 (9)C13—C12—H12120.4
C3—Re1—Br189.23 (8)O4—C13—C12124.5 (3)
C2—Re1—Br190.92 (9)O4—C13—C14115.4 (2)
N1—Re1—Br185.31 (6)C12—C13—C14120.1 (3)
N4—Re1—Br185.70 (6)O5—C14—C15119.8 (3)
C13—O4—C17117.1 (2)O5—C14—C13120.3 (3)
C14—O5—C18114.9 (2)C15—C14—C13119.9 (2)
C15—O6—C19117.1 (2)O6—C15—C14116.3 (2)
C20—O7—H1O109.6O6—C15—C16123.4 (3)
C4—N1—N2104.04 (18)C14—C15—C16120.3 (3)
C4—N1—Re1118.20 (15)C11—C16—C15119.2 (3)
N2—N1—Re1137.71 (17)C11—C16—H16120.4
C5—N2—N1107.9 (2)C15—C16—H16120.4
C5—N2—H1N126.1O4—C17—H17A109.5
N1—N2—H1N126.1O4—C17—H17B109.5
C5—N3—C4102.6 (2)H17A—C17—H17B109.5
C10—N4—C6117.0 (2)O4—C17—H17C109.5
C10—N4—Re1125.62 (18)H17A—C17—H17C109.5
C6—N4—Re1117.35 (15)H17B—C17—H17C109.5
O1—C1—Re1178.2 (3)O5—C18—H18A109.5
O2—C2—Re1177.9 (3)O5—C18—H18B109.5
O3—C3—Re1177.7 (3)H18A—C18—H18B109.5
N1—C4—N3114.7 (2)O5—C18—H18C109.5
N1—C4—C6117.8 (2)H18A—C18—H18C109.5
N3—C4—C6127.5 (2)H18B—C18—H18C109.5
N3—C5—N2110.8 (2)O6—C19—H19A109.5
N3—C5—C11124.8 (2)O6—C19—H19B109.5
N2—C5—C11124.4 (2)H19A—C19—H19B109.5
N4—C6—C7123.1 (2)O6—C19—H19C109.5
N4—C6—C4113.1 (2)H19A—C19—H19C109.5
C7—C6—C4123.8 (2)H19B—C19—H19C109.5
C6—C7—C8118.8 (3)O7—C20—H20A109.5
C6—C7—H7120.6O7—C20—H20B109.5
C8—C7—H7120.6H20A—C20—H20B109.5
C9—C8—C7118.7 (3)O7—C20—H20C109.5
C9—C8—H8120.6H20A—C20—H20C109.5
C7—C8—H8120.6H20B—C20—H20C109.5
C8—C9—C10119.5 (2)
C1—Re1—N1—C494.2 (2)N1—C4—C6—C7177.2 (3)
C3—Re1—N1—C424.3 (7)N3—C4—C6—C71.7 (4)
C2—Re1—N1—C4174.2 (2)N4—C6—C7—C80.1 (4)
N4—Re1—N1—C42.79 (18)C4—C6—C7—C8178.5 (2)
Br1—Re1—N1—C484.12 (18)C6—C7—C8—C90.6 (4)
C1—Re1—N1—N288.8 (3)C7—C8—C9—C100.4 (4)
C3—Re1—N1—N2152.7 (5)C6—N4—C10—C90.6 (4)
C2—Re1—N1—N22.8 (3)Re1—N4—C10—C9179.5 (2)
N4—Re1—N1—N2179.8 (3)C8—C9—C10—N40.2 (5)
Br1—Re1—N1—N292.9 (2)N3—C5—C11—C125.7 (4)
C4—N1—N2—C50.1 (3)N2—C5—C11—C12176.3 (2)
Re1—N1—N2—C5177.32 (19)N3—C5—C11—C16174.0 (3)
C1—Re1—N4—C1083.7 (2)N2—C5—C11—C164.0 (4)
C3—Re1—N4—C106.7 (2)C16—C11—C12—C131.6 (4)
N1—Re1—N4—C10178.2 (2)C5—C11—C12—C13178.1 (2)
Br1—Re1—N4—C1095.4 (2)C17—O4—C13—C122.6 (4)
C1—Re1—N4—C696.34 (19)C17—O4—C13—C14178.0 (3)
C3—Re1—N4—C6173.17 (19)C11—C12—C13—O4178.6 (3)
N1—Re1—N4—C61.90 (18)C11—C12—C13—C140.8 (4)
Br1—Re1—N4—C684.47 (18)C18—O5—C14—C1596.3 (3)
N2—N1—C4—N30.3 (3)C18—O5—C14—C1387.1 (4)
Re1—N1—C4—N3177.60 (16)O4—C13—C14—O57.0 (4)
N2—N1—C4—C6178.8 (2)C12—C13—C14—O5173.6 (2)
Re1—N1—C4—C63.3 (3)O4—C13—C14—C15176.4 (3)
C5—N3—C4—N10.5 (3)C12—C13—C14—C153.0 (4)
C5—N3—C4—C6178.4 (2)C19—O6—C15—C14164.1 (3)
C4—N3—C5—N20.6 (3)C19—O6—C15—C1615.2 (5)
C4—N3—C5—C11178.8 (2)O5—C14—C15—O66.9 (4)
N1—N2—C5—N30.4 (3)C13—C14—C15—O6176.4 (3)
N1—N2—C5—C11178.7 (2)O5—C14—C15—C16173.7 (3)
C10—N4—C6—C70.4 (4)C13—C14—C15—C162.9 (4)
Re1—N4—C6—C7179.7 (2)C12—C11—C16—C151.7 (4)
C10—N4—C6—C4179.2 (2)C5—C11—C16—C15178.0 (3)
Re1—N4—C6—C40.9 (3)O6—C15—C16—C11178.7 (3)
N1—C4—C6—N41.6 (3)C14—C15—C16—C110.6 (4)
N3—C4—C6—N4179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H1O···Br10.852.413.255 (2)172
N2—H1N···O7i0.871.892.703 (3)154
C7—H7···Br1ii0.943.013.927 (3)165
C8—H8···O2iii0.942.523.390 (4)153
C9—H9···O6iv0.942.493.278 (3)142
C10—H10···O3v0.942.393.215 (3)146
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x1, y+1, z; (iv) x1, y, z+1; (v) x, y, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine, Grant for Science Research (award No. 0114U002488).

References

First citationAbdullah, H. M., Jassim, I. K. & Safi, M. N. (2012). Karbala J. Pharm. Sci, 4, 115–135.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationChen, J.-L., Cao, X.-F., Wang, J.-Y., He, L.-H., Liu, Z.-Y., Wen, H.-R. & Chen, Z.-N. (2013). Inorg. Chem. 52, 9727–9740.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChohan, Z. H. & Hanif, M. (2010). J. Enzyme Inhib. Med. Chem. 25, 737–749.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFernández-Moreira, V., Thorp-Greenwood, F. L. & Coogan, M. P. (2010). Chem. Commun. 46, 186–202.  Google Scholar
First citationGuo, X., Castellano, F. N., Li, L., Szmacinski, H., Lakowicz, J. R. & Sipior, J. (1997). Anal. Biochem. 254, 179–186.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJassim, I. K., Fayad, A. A. & Jassim, W. K. (2011). Karbala J. Pharm. Sci. 2, 228–240.  Google Scholar
First citationKowalski, K., Szczupak, Ł., Bernaś, T. & Czerwieniec, R. (2015). J. Organomet. Chem. 782, 124–130.  Web of Science CrossRef CAS Google Scholar
First citationLo, K. K.-W. (2015). Acc. Chem. Res. 48, 2985–2995.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLo, K. K.-W., Choi, A. W.-T. & Law, W. H.-T. (2012). Dalton Trans. 41, 6021–6047.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLuo, Y., Lu, Y.-H., Gan, L.-L., Zhou, C.-H., Wu, J., Geng, R.-X. & Zhang, Y.-Y. (2009). Arch. Pharm. Chem. Life Sci. 342, 386–393.  Web of Science CrossRef CAS Google Scholar
First citationMandal, S. K., Saha, D., Jain, V. K. & Jain, B. (2010). Int. J. Pharm. Sci. Res. 1, 465–472.  CAS Google Scholar
First citationPiletska, K. O., Domasevitch, K. V., Gusev, A. N., Shul'gin, V. F. & Shtemenko, A. V. (2015). Polyhedron, 102, 699–704.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiletska, K., Domasevitch, K. V. & Shtemenko, A. V. (2014). Acta Cryst. E70, 587–589.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y., Maliwal, B. P. & Lakowicz, J. R. (2001). J. Fluoresc. 11, 315–318.  Web of Science CrossRef CAS Google Scholar
First citationSparkes, H. A., Raithby, P. R., Clot, E., Shields, G. P., Chisholm, J. A. & Allen, F. H. (2006). CrystEngComm, 8, 563–570.  Web of Science CSD CrossRef CAS Google Scholar
First citationStephenson, K. A., Banerjee, S. R., Besanger, T., Sogbein, O. O., Levadala, M. K., McFarlane, N., Lemon, J. A., Boreham, D. R., Maresca, K. P., Brennan, J. D., Babich, J. W., Zubieta, J. & Valliant, J. F. (2004). J. Am. Chem. Soc. 126, 8598–8599.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (1999). X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2000). IPDS. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem. 43, 404–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThorp-Greenwood, F. L. (2012). Organometallics, 31, 5686–5692.  CAS Google Scholar
First citationVan Diemen, J. H., Haasnoot, J. G., Hage, R., Reedijk, J., Vos, J. G. & Wang, R. (1991). Inorg. Chem. 30, 4038–4043.  CSD CrossRef CAS Web of Science Google Scholar
First citationVarvarason, A., Tantili-Kakoulidou, A., Siatra-Papastasikoudi, T. & Tiligada, E. (2000). Arzneim.-Forsch. 50, 48–54.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds