research communications
fac-tricarbonyl[5-(3,4,5-trimethoxyphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole-κ2N2,N3]rhenium(I) methanol monosolvate
of bromido-aDepartment of Inorganic Chemistry, Ukrainian State University of Chemical Technology, Gagarin Ave. 8, Dnipro 49005, Ukraine, and bInorganic Chemistry Department, National Taras Shevchenko University of Kyiv, Volodymyrska Street 64/13, Kyiv 01601, Ukraine
*Correspondence e-mail: kharlovamargarita@gmail.com
In the title compound, [ReBr(C16H16N4O3)(CO)3]·CH3OH, the ReI atom adopts a distorted octahedral coordination sphere with a facial arrangement of the three carbonyl ligands. Two N atoms of the chelating 5-(3,4,5-trimethoxyphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole ligand and two carbonyl ligands define the equatorial plane of the complex, with the third carbonyl ligand and the bromide ligand in axial positions. Conventional hydrogen bonds including the methanol solvent molecules assemble the complex molecules through mutual N—H⋯O—H⋯Br links [N⋯O = 2.703 (3) Å and O⋯Br = 3.255 (2) Å] into centrosymmetric dimers, whereas weaker C—H⋯O and C—H⋯Br hydrogen bonds [C⋯O = 3.215 (3)–3.390 (4) Å and C⋯Br = 3.927 (3) Å] connect the dimers into double layers parallel to the (111) plane.
Keywords: crystal structure; rhenium(I) carbonyl complex; 5-(3,4,5-trimethoxyphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole.
CCDC reference: 1535292
1. Chemical context
Rhenium(I) metal complexes have attracted attention because of their chemical characteristics exhibiting increased potentials for biochemical applications (Fernández-Moreira et al., 2010; Lo et al., 2012). Rhenium tricarbonyl complexes with the general formula fac-[Re(CO)3(N^N)] (where N^N is an N,N′-chelating ligand) are kinetically stable and have luminescence properties with long life times (Kowalski et al., 2015; Guo et al., 1997), high photostability (Lo, 2015) and large Stokes shifts (Lo, 2015; Stephenson et al., 2004), which makes these compounds ideal candidates for either in vitro or in vivo visualization of biological processes (Shen et al., 2001; Thorp-Greenwood, 2012).
Triazole derivatives are an interesting type of ligand. 1,2,4-Triazoles have biological relevance since they show antiviral (Abdullah et al., 2012), antibacterial (Varvarason et al., 2000; Jassim et al., 2011), antifungal (Luo et al., 2009), anticancer (Sztanke et al., 2008) and antituberculous (Mandal et al., 2010) activities. Moreover, metal complexes containing triazole derivatives have interesting photophysical and photochemical properties (Piletska et al., 2015; Chen et al., 2013), and this class of complexes, apart from their biological activity (Chohan & Hanif, 2010), is used for fluorescent probing in addition to their potential use in radio-imaging. Introduction of substituents in the triazole derivatives affects the σ-donor and π-acceptor properties (Van Diemen et al., 1991), and consequently affects the photophysical properties of an organometallic compounds in which they are incorporated. In this context, we report here the synthesis and analysis of a novel ReI complex, i.e. [ReBr(C16H16N4O3)(CO)3]·CH3OH (Fig. 1), which contains the triazole ligand 5-(3,4,5-trimethoxyphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole.
2. Structural commentary
The three carbonyl ligands bonded to the ReI atom are arranged in a fac configuration. The distances of atoms C1, C2 and C3 to the ReI atom are 1.902 (4), 1.910 (2) and 1.907 (2) Å, respectively, and the Re—N bond lengths involving the chelating organic ligand are 2.151 (2) and 2.205 (2) Å. The two N atoms and two carbonyl C atoms define the equatorial plane, while the octahedral coordination sphere is completed by the third carbonyl C atom and the Br atom [Re—Br = 2.6222 (3) Å] in axial positions. The CO ligands are almost linearly coordinated, with O—C—Re bond angles of 178.2 (3), 177.8 (3) and 177.8 (3)°. The C—Re—C bond angles between carbonyl C atoms are 90.6 (1), 90.2 (1) and 88.7 (1)°, close to ideal values, whereas the cis equatorial bite angle of the chelating ligand (N1—Re1—N4) is 73.42 (8)°.
3. Supramolecular features
In the crystal, the packing of the molecules is influenced by a set of weak interactions, including conventional hydrogen bonding with common NH and OH donor groups and weaker hydrogen bonds formed by CH groups (Table 1). Two pairs of relatively short hydrogen bonds (O7—H⋯Br1 and N2—H⋯O7), both involving the methanol solvent molecules, assemble the complex molecules into centrosymmetric dimers (Fig. 2). As may be compared with the closely related complex [ReBr(L)(CO)3] [L = 5-phenyl-3-(pyridin-2-yl)-1H-1,2,4-triazole; Piletska et al., 2014], a key prerequisite for the formation of dimers is the presence of acidic NH functions and sterically accessible Br sites. In the latter, they afford two mutual N—H⋯Br hydrogen bonds, whereas in the present case, these links appear to be extended by the inclusion of methanol, resulting in an N—H⋯O(Me)—H⋯Br motif.
Each of the four pyridine CH groups functions as a donor of weak hydrogen bonds (Fig. 2). These groups establish hydrogen bonds to two carbonyl O atoms (C8⋯O2iv and C10⋯O3ii), a methoxy O atom (C9⋯O6iii) and a very weak bond with bromine as acceptor (C7⋯Brv) (for symmetry codes, see Table 1). These distal yet directional interactions (the hydrogen-bonding angles are in the range 142–165°; Table 1) unite the above dimers into flat double layers, which extend parallel to the (111) plane. Within a layer, the pyridine and triazole moieties of adjacent molecules are actually parallel, with shortest contacts of C7⋯N3v = 3.430 (4) Å [symmetry code: (v) −x, 1 − y, −z]. However, this situation is unlikely to be a consequence of slipped π–π interactions, since the corresponding slippage angle exceeds 56° and the intercentroid distance is as long as Cg(C6–C10/N4)⋯Cg(C4/C5/N1–N3)v = 4.090 (3) Å [for the lack of an overlap between heteroaromatic planes, see Fig. 2, part (B)]. At the same time, successive double layers are turned towards one another by methyl groups of the trimethoxyphenyl and methanol entities (Fig. 3). Thus, the interlayer interactions are very weak and the only remarkable contact is found between two inversion-related carbonyl groups [O1⋯C1vi = 3.295 (3) Å and O1⋯Cg(C1=O1)vi = 3.226 (3) Å; symmetry code (vi) −x, −y, −z]. Although such weak interactions are characteristic of related metal–carbonyl structures (Sparkes et al., 2006), in the present case, their significance is relatively minor.
4. Synthesis and crystallization
Pentacarbonylrhenium(I) bromide (0.15 g, 0.369 mmol) was mixed with 5-(3,4,5-trimethoxyphenyl)-3-(pyridin-2-yl)-1H-1,2,4-triazole (0.138 g, 0.442 mmol) in benzene (30 ml). The mixture was refluxed for 4 h under a stream of argon and then allowed to cool to room temperature. The yellow product was collected by suction filtration, washed with hexane and dried (yield 0.138 g, 77%). Crystals suitable for X-ray diffraction were obtained by slow diffusion of hexane into a methanol–dichloromethane solution of the complex. IR (KBr, cm−1): νas(CO) 2028 (s), νs(CO) 1894 (s). 1H NMR (400 MHz, d6-DMSO): δ 9.02 (d, 1H, CH=N, Py), 8.39 (d, 1H, CH=C, Py), 8.35 (dd, 1H, CH, Py), 7.75 (dd, 1H, CH, Py), 7.44 [s, 2H, 2 CH, Ph(OCH3)3], 3.93 [s, 9H, 3 O-CH3, Ph(OCH3)3].
5. Refinement
Crystal data, data collection and structure . C- and N-bound H atoms were positioned with idealized geometry and were refined with aryl C—H = 0.94 Å, methyl C—H = 0.97 Å and N—H = 0.87 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) otherwise. The O-bound H atom of the methanol solvent molecule was found from a difference map and was refined with O—H = 0.95 Å and Uiso(H) = 1.5Ueq(O).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1535292
https://doi.org/10.1107/S2056989017003371/wm5372sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017003371/wm5372Isup2.hkl
Data collection: IPDS (Stoe & Cie, 2000); cell
IPDS (Stoe & Cie, 2000); data reduction: IPDS (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).[ReBr(C16H16N4O3)(CO)3]·CH4O | Z = 2 |
Mr = 694.51 | F(000) = 668 |
Triclinic, P1 | Dx = 1.957 Mg m−3 |
a = 10.9569 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.0012 (6) Å | Cell parameters from 8000 reflections |
c = 11.9738 (7) Å | θ = 2.4–28.0° |
α = 69.073 (6)° | µ = 6.90 mm−1 |
β = 75.593 (7)° | T = 213 K |
γ = 61.409 (6)° | Prism, yellow |
V = 1178.37 (14) Å3 | 0.21 × 0.18 × 0.15 mm |
Stoe IPDS diffractometer | 5649 independent reflections |
Radiation source: fine-focus sealed tube | 4658 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
φ oscillation scans | θmax = 28.0°, θmin = 2.4° |
Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 1999) | h = −14→14 |
Tmin = 0.325, Tmax = 0.424 | k = −14→14 |
22150 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.019 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.034 | H-atom parameters constrained |
S = 0.84 | w = 1/[σ2(Fo2) + (0.007P)2] where P = (Fo2 + 2Fc2)/3 |
5649 reflections | (Δ/σ)max = 0.002 |
302 parameters | Δρmax = 0.77 e Å−3 |
0 restraints | Δρmin = −0.98 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Re1 | 0.154206 (13) | 0.050031 (12) | 0.169575 (9) | 0.02510 (3) | |
Br1 | 0.25284 (3) | 0.20300 (3) | 0.21180 (2) | 0.03551 (7) | |
O1 | 0.0338 (3) | −0.1259 (3) | 0.1269 (2) | 0.0619 (7) | |
O2 | 0.4513 (3) | −0.1785 (3) | 0.1342 (2) | 0.0647 (7) | |
O3 | 0.1502 (3) | −0.1065 (3) | 0.43714 (17) | 0.0564 (6) | |
O4 | 0.0599 (2) | 0.6925 (2) | −0.58379 (15) | 0.0424 (5) | |
O5 | 0.3238 (2) | 0.5465 (3) | −0.66521 (15) | 0.0496 (6) | |
O6 | 0.4851 (2) | 0.2842 (3) | −0.53647 (19) | 0.0588 (7) | |
O7 | 0.5906 (2) | 0.0402 (3) | 0.1603 (2) | 0.0607 (6) | |
H1O | 0.5022 | 0.0743 | 0.1740 | 0.091* | |
N1 | 0.1308 (2) | 0.1987 (2) | −0.00751 (16) | 0.0251 (5) | |
N2 | 0.2059 (2) | 0.2076 (2) | −0.11623 (17) | 0.0277 (5) | |
H1N | 0.2870 | 0.1422 | −0.1341 | 0.042* | |
N3 | 0.0134 (2) | 0.4101 (2) | −0.13551 (17) | 0.0276 (5) | |
N4 | −0.0517 (2) | 0.2340 (2) | 0.17886 (16) | 0.0261 (5) | |
C1 | 0.0776 (3) | −0.0582 (3) | 0.1415 (2) | 0.0372 (7) | |
C2 | 0.3389 (3) | −0.0940 (3) | 0.1465 (2) | 0.0374 (7) | |
C3 | 0.1518 (3) | −0.0502 (3) | 0.3364 (2) | 0.0337 (6) | |
C4 | 0.0180 (3) | 0.3209 (3) | −0.02390 (19) | 0.0236 (5) | |
C5 | 0.1328 (3) | 0.3353 (3) | −0.1915 (2) | 0.0258 (5) | |
C6 | −0.0881 (3) | 0.3444 (3) | 0.0779 (2) | 0.0256 (5) | |
C7 | −0.2134 (3) | 0.4647 (3) | 0.0716 (2) | 0.0330 (6) | |
H7 | −0.2349 | 0.5395 | −0.0004 | 0.040* | |
C8 | −0.3074 (3) | 0.4739 (3) | 0.1731 (3) | 0.0393 (7) | |
H8 | −0.3944 | 0.5547 | 0.1712 | 0.047* | |
C9 | −0.2715 (3) | 0.3632 (3) | 0.2763 (2) | 0.0402 (7) | |
H9 | −0.3335 | 0.3675 | 0.3465 | 0.048* | |
C10 | −0.1442 (3) | 0.2460 (3) | 0.2766 (2) | 0.0346 (6) | |
H10 | −0.1209 | 0.1709 | 0.3482 | 0.042* | |
C11 | 0.1808 (3) | 0.3865 (3) | −0.3176 (2) | 0.0292 (6) | |
C12 | 0.0921 (3) | 0.5169 (3) | −0.3878 (2) | 0.0311 (6) | |
H12 | 0.0019 | 0.5697 | −0.3557 | 0.037* | |
C13 | 0.1380 (3) | 0.5683 (3) | −0.5059 (2) | 0.0335 (6) | |
C14 | 0.2732 (3) | 0.4897 (3) | −0.5527 (2) | 0.0374 (7) | |
C15 | 0.3585 (3) | 0.3574 (3) | −0.4825 (2) | 0.0392 (7) | |
C16 | 0.3131 (3) | 0.3051 (3) | −0.3641 (2) | 0.0363 (7) | |
H16 | 0.3713 | 0.2156 | −0.3160 | 0.044* | |
C17 | −0.0765 (4) | 0.7778 (3) | −0.5387 (3) | 0.0465 (8) | |
H17A | −0.1313 | 0.7229 | −0.5112 | 0.070* | |
H17B | −0.1212 | 0.8642 | −0.6019 | 0.070* | |
H17C | −0.0701 | 0.8046 | −0.4721 | 0.070* | |
C18 | 0.2920 (4) | 0.5205 (4) | −0.7592 (3) | 0.0544 (9) | |
H18A | 0.3399 | 0.4181 | −0.7525 | 0.082* | |
H18B | 0.3221 | 0.5733 | −0.8358 | 0.082* | |
H18C | 0.1920 | 0.5521 | −0.7538 | 0.082* | |
C19 | 0.5582 (4) | 0.1362 (5) | −0.4788 (4) | 0.0857 (14) | |
H19A | 0.5877 | 0.1254 | −0.4045 | 0.128* | |
H19B | 0.6395 | 0.0928 | −0.5309 | 0.128* | |
H19C | 0.4977 | 0.0888 | −0.4613 | 0.128* | |
C20 | 0.6343 (5) | 0.1423 (5) | 0.1534 (5) | 0.0861 (14) | |
H20A | 0.6044 | 0.1685 | 0.2282 | 0.129* | |
H20B | 0.5936 | 0.2272 | 0.0878 | 0.129* | |
H20C | 0.7353 | 0.1024 | 0.1395 | 0.129* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re1 | 0.02840 (6) | 0.02390 (6) | 0.02089 (5) | −0.01144 (4) | −0.00314 (3) | −0.00318 (3) |
Br1 | 0.03337 (16) | 0.03401 (17) | 0.04178 (14) | −0.01567 (13) | −0.00360 (12) | −0.01181 (12) |
O1 | 0.088 (2) | 0.0571 (16) | 0.0582 (14) | −0.0442 (15) | −0.0299 (13) | −0.0010 (12) |
O2 | 0.0457 (15) | 0.0503 (16) | 0.0727 (16) | 0.0050 (13) | −0.0118 (12) | −0.0217 (12) |
O3 | 0.0822 (18) | 0.0659 (16) | 0.0272 (10) | −0.0472 (15) | −0.0099 (10) | 0.0052 (10) |
O4 | 0.0561 (14) | 0.0372 (12) | 0.0284 (9) | −0.0229 (11) | −0.0026 (9) | −0.0001 (8) |
O5 | 0.0627 (15) | 0.0786 (16) | 0.0239 (9) | −0.0539 (14) | 0.0066 (9) | −0.0060 (9) |
O6 | 0.0325 (12) | 0.0807 (19) | 0.0418 (11) | −0.0187 (13) | 0.0098 (9) | −0.0108 (11) |
O7 | 0.0342 (13) | 0.0493 (15) | 0.0909 (17) | −0.0084 (12) | 0.0067 (12) | −0.0335 (13) |
N1 | 0.0260 (12) | 0.0283 (12) | 0.0190 (9) | −0.0126 (10) | 0.0005 (8) | −0.0049 (8) |
N2 | 0.0231 (11) | 0.0347 (13) | 0.0223 (10) | −0.0118 (10) | 0.0026 (8) | −0.0090 (9) |
N3 | 0.0268 (12) | 0.0283 (12) | 0.0256 (10) | −0.0136 (10) | 0.0001 (9) | −0.0045 (9) |
N4 | 0.0261 (12) | 0.0302 (12) | 0.0223 (9) | −0.0149 (10) | 0.0005 (8) | −0.0057 (8) |
C1 | 0.055 (2) | 0.0295 (16) | 0.0275 (13) | −0.0215 (15) | −0.0095 (12) | 0.0000 (11) |
C2 | 0.0396 (18) | 0.0311 (17) | 0.0327 (14) | −0.0084 (15) | −0.0097 (12) | −0.0050 (12) |
C3 | 0.0403 (17) | 0.0340 (16) | 0.0288 (13) | −0.0204 (14) | −0.0052 (11) | −0.0036 (11) |
C4 | 0.0228 (13) | 0.0272 (14) | 0.0210 (10) | −0.0123 (11) | −0.0026 (9) | −0.0042 (9) |
C5 | 0.0245 (13) | 0.0302 (15) | 0.0245 (11) | −0.0156 (12) | −0.0021 (10) | −0.0042 (10) |
C6 | 0.0267 (14) | 0.0281 (14) | 0.0252 (11) | −0.0151 (12) | −0.0013 (10) | −0.0071 (10) |
C7 | 0.0294 (15) | 0.0302 (16) | 0.0363 (13) | −0.0111 (13) | −0.0043 (11) | −0.0075 (11) |
C8 | 0.0273 (15) | 0.0377 (18) | 0.0515 (16) | −0.0126 (14) | 0.0053 (13) | −0.0190 (14) |
C9 | 0.0362 (17) | 0.049 (2) | 0.0382 (14) | −0.0234 (16) | 0.0148 (12) | −0.0212 (14) |
C10 | 0.0394 (17) | 0.0419 (18) | 0.0258 (12) | −0.0254 (15) | 0.0047 (11) | −0.0070 (11) |
C11 | 0.0306 (15) | 0.0369 (16) | 0.0239 (11) | −0.0202 (13) | −0.0006 (10) | −0.0062 (10) |
C12 | 0.0366 (16) | 0.0359 (16) | 0.0246 (11) | −0.0220 (13) | −0.0003 (11) | −0.0054 (11) |
C13 | 0.0464 (18) | 0.0344 (16) | 0.0251 (12) | −0.0260 (15) | −0.0045 (12) | −0.0012 (11) |
C14 | 0.0446 (18) | 0.056 (2) | 0.0238 (12) | −0.0368 (16) | 0.0029 (12) | −0.0070 (12) |
C15 | 0.0284 (15) | 0.062 (2) | 0.0294 (13) | −0.0249 (15) | 0.0052 (11) | −0.0125 (13) |
C16 | 0.0296 (15) | 0.0466 (18) | 0.0267 (12) | −0.0179 (14) | −0.0026 (11) | −0.0015 (12) |
C17 | 0.053 (2) | 0.0380 (19) | 0.0382 (15) | −0.0163 (16) | −0.0077 (14) | −0.0012 (13) |
C18 | 0.064 (2) | 0.075 (3) | 0.0333 (15) | −0.039 (2) | 0.0008 (15) | −0.0156 (16) |
C19 | 0.045 (2) | 0.098 (4) | 0.087 (3) | −0.021 (2) | 0.031 (2) | −0.036 (3) |
C20 | 0.060 (3) | 0.086 (3) | 0.134 (4) | −0.029 (3) | −0.005 (3) | −0.062 (3) |
Re1—C1 | 1.902 (3) | C7—C8 | 1.383 (4) |
Re1—C3 | 1.907 (3) | C7—H7 | 0.9400 |
Re1—C2 | 1.910 (3) | C8—C9 | 1.369 (4) |
Re1—N1 | 2.1515 (18) | C8—H8 | 0.9400 |
Re1—N4 | 2.205 (2) | C9—C10 | 1.373 (4) |
Re1—Br1 | 2.6222 (3) | C9—H9 | 0.9400 |
O1—C1 | 1.137 (3) | C10—H10 | 0.9400 |
O2—C2 | 1.146 (4) | C11—C12 | 1.385 (4) |
O3—C3 | 1.142 (3) | C11—C16 | 1.388 (4) |
O4—C13 | 1.355 (3) | C12—C13 | 1.386 (3) |
O4—C17 | 1.423 (4) | C12—H12 | 0.9400 |
O5—C14 | 1.368 (3) | C13—C14 | 1.401 (4) |
O5—C18 | 1.410 (4) | C14—C15 | 1.383 (4) |
O6—C15 | 1.359 (4) | C15—C16 | 1.389 (4) |
O6—C19 | 1.412 (5) | C16—H16 | 0.9400 |
O7—C20 | 1.388 (5) | C17—H17A | 0.9700 |
O7—H1O | 0.8500 | C17—H17B | 0.9700 |
N1—C4 | 1.310 (3) | C17—H17C | 0.9700 |
N1—N2 | 1.354 (3) | C18—H18A | 0.9700 |
N2—C5 | 1.344 (3) | C18—H18B | 0.9700 |
N2—H1N | 0.8700 | C18—H18C | 0.9700 |
N3—C5 | 1.329 (3) | C19—H19A | 0.9700 |
N3—C4 | 1.342 (3) | C19—H19B | 0.9700 |
N4—C10 | 1.344 (3) | C19—H19C | 0.9700 |
N4—C6 | 1.350 (3) | C20—H20A | 0.9700 |
C4—C6 | 1.462 (3) | C20—H20B | 0.9700 |
C5—C11 | 1.468 (3) | C20—H20C | 0.9700 |
C6—C7 | 1.372 (4) | ||
C1—Re1—C3 | 90.15 (11) | C8—C9—H9 | 120.2 |
C1—Re1—C2 | 90.62 (13) | C10—C9—H9 | 120.2 |
C3—Re1—C2 | 88.74 (12) | N4—C10—C9 | 122.8 (2) |
C1—Re1—N1 | 95.06 (9) | N4—C10—H10 | 118.6 |
C3—Re1—N1 | 169.20 (10) | C9—C10—H10 | 118.6 |
C2—Re1—N1 | 100.64 (10) | C12—C11—C16 | 121.3 (2) |
C1—Re1—N4 | 92.83 (11) | C12—C11—C5 | 118.7 (2) |
C3—Re1—N4 | 96.92 (10) | C16—C11—C5 | 120.0 (2) |
C2—Re1—N4 | 173.36 (10) | C11—C12—C13 | 119.2 (3) |
N1—Re1—N4 | 73.41 (7) | C11—C12—H12 | 120.4 |
C1—Re1—Br1 | 178.32 (9) | C13—C12—H12 | 120.4 |
C3—Re1—Br1 | 89.23 (8) | O4—C13—C12 | 124.5 (3) |
C2—Re1—Br1 | 90.92 (9) | O4—C13—C14 | 115.4 (2) |
N1—Re1—Br1 | 85.31 (6) | C12—C13—C14 | 120.1 (3) |
N4—Re1—Br1 | 85.70 (6) | O5—C14—C15 | 119.8 (3) |
C13—O4—C17 | 117.1 (2) | O5—C14—C13 | 120.3 (3) |
C14—O5—C18 | 114.9 (2) | C15—C14—C13 | 119.9 (2) |
C15—O6—C19 | 117.1 (2) | O6—C15—C14 | 116.3 (2) |
C20—O7—H1O | 109.6 | O6—C15—C16 | 123.4 (3) |
C4—N1—N2 | 104.04 (18) | C14—C15—C16 | 120.3 (3) |
C4—N1—Re1 | 118.20 (15) | C11—C16—C15 | 119.2 (3) |
N2—N1—Re1 | 137.71 (17) | C11—C16—H16 | 120.4 |
C5—N2—N1 | 107.9 (2) | C15—C16—H16 | 120.4 |
C5—N2—H1N | 126.1 | O4—C17—H17A | 109.5 |
N1—N2—H1N | 126.1 | O4—C17—H17B | 109.5 |
C5—N3—C4 | 102.6 (2) | H17A—C17—H17B | 109.5 |
C10—N4—C6 | 117.0 (2) | O4—C17—H17C | 109.5 |
C10—N4—Re1 | 125.62 (18) | H17A—C17—H17C | 109.5 |
C6—N4—Re1 | 117.35 (15) | H17B—C17—H17C | 109.5 |
O1—C1—Re1 | 178.2 (3) | O5—C18—H18A | 109.5 |
O2—C2—Re1 | 177.9 (3) | O5—C18—H18B | 109.5 |
O3—C3—Re1 | 177.7 (3) | H18A—C18—H18B | 109.5 |
N1—C4—N3 | 114.7 (2) | O5—C18—H18C | 109.5 |
N1—C4—C6 | 117.8 (2) | H18A—C18—H18C | 109.5 |
N3—C4—C6 | 127.5 (2) | H18B—C18—H18C | 109.5 |
N3—C5—N2 | 110.8 (2) | O6—C19—H19A | 109.5 |
N3—C5—C11 | 124.8 (2) | O6—C19—H19B | 109.5 |
N2—C5—C11 | 124.4 (2) | H19A—C19—H19B | 109.5 |
N4—C6—C7 | 123.1 (2) | O6—C19—H19C | 109.5 |
N4—C6—C4 | 113.1 (2) | H19A—C19—H19C | 109.5 |
C7—C6—C4 | 123.8 (2) | H19B—C19—H19C | 109.5 |
C6—C7—C8 | 118.8 (3) | O7—C20—H20A | 109.5 |
C6—C7—H7 | 120.6 | O7—C20—H20B | 109.5 |
C8—C7—H7 | 120.6 | H20A—C20—H20B | 109.5 |
C9—C8—C7 | 118.7 (3) | O7—C20—H20C | 109.5 |
C9—C8—H8 | 120.6 | H20A—C20—H20C | 109.5 |
C7—C8—H8 | 120.6 | H20B—C20—H20C | 109.5 |
C8—C9—C10 | 119.5 (2) | ||
C1—Re1—N1—C4 | 94.2 (2) | N1—C4—C6—C7 | −177.2 (3) |
C3—Re1—N1—C4 | −24.3 (7) | N3—C4—C6—C7 | 1.7 (4) |
C2—Re1—N1—C4 | −174.2 (2) | N4—C6—C7—C8 | −0.1 (4) |
N4—Re1—N1—C4 | 2.79 (18) | C4—C6—C7—C8 | 178.5 (2) |
Br1—Re1—N1—C4 | −84.12 (18) | C6—C7—C8—C9 | 0.6 (4) |
C1—Re1—N1—N2 | −88.8 (3) | C7—C8—C9—C10 | −0.4 (4) |
C3—Re1—N1—N2 | 152.7 (5) | C6—N4—C10—C9 | 0.6 (4) |
C2—Re1—N1—N2 | 2.8 (3) | Re1—N4—C10—C9 | −179.5 (2) |
N4—Re1—N1—N2 | 179.8 (3) | C8—C9—C10—N4 | −0.2 (5) |
Br1—Re1—N1—N2 | 92.9 (2) | N3—C5—C11—C12 | −5.7 (4) |
C4—N1—N2—C5 | −0.1 (3) | N2—C5—C11—C12 | 176.3 (2) |
Re1—N1—N2—C5 | −177.32 (19) | N3—C5—C11—C16 | 174.0 (3) |
C1—Re1—N4—C10 | 83.7 (2) | N2—C5—C11—C16 | −4.0 (4) |
C3—Re1—N4—C10 | −6.7 (2) | C16—C11—C12—C13 | −1.6 (4) |
N1—Re1—N4—C10 | 178.2 (2) | C5—C11—C12—C13 | 178.1 (2) |
Br1—Re1—N4—C10 | −95.4 (2) | C17—O4—C13—C12 | 2.6 (4) |
C1—Re1—N4—C6 | −96.34 (19) | C17—O4—C13—C14 | −178.0 (3) |
C3—Re1—N4—C6 | 173.17 (19) | C11—C12—C13—O4 | 178.6 (3) |
N1—Re1—N4—C6 | −1.90 (18) | C11—C12—C13—C14 | −0.8 (4) |
Br1—Re1—N4—C6 | 84.47 (18) | C18—O5—C14—C15 | 96.3 (3) |
N2—N1—C4—N3 | −0.3 (3) | C18—O5—C14—C13 | −87.1 (4) |
Re1—N1—C4—N3 | 177.60 (16) | O4—C13—C14—O5 | 7.0 (4) |
N2—N1—C4—C6 | 178.8 (2) | C12—C13—C14—O5 | −173.6 (2) |
Re1—N1—C4—C6 | −3.3 (3) | O4—C13—C14—C15 | −176.4 (3) |
C5—N3—C4—N1 | 0.5 (3) | C12—C13—C14—C15 | 3.0 (4) |
C5—N3—C4—C6 | −178.4 (2) | C19—O6—C15—C14 | −164.1 (3) |
C4—N3—C5—N2 | −0.6 (3) | C19—O6—C15—C16 | 15.2 (5) |
C4—N3—C5—C11 | −178.8 (2) | O5—C14—C15—O6 | −6.9 (4) |
N1—N2—C5—N3 | 0.4 (3) | C13—C14—C15—O6 | 176.4 (3) |
N1—N2—C5—C11 | 178.7 (2) | O5—C14—C15—C16 | 173.7 (3) |
C10—N4—C6—C7 | −0.4 (4) | C13—C14—C15—C16 | −2.9 (4) |
Re1—N4—C6—C7 | 179.7 (2) | C12—C11—C16—C15 | 1.7 (4) |
C10—N4—C6—C4 | −179.2 (2) | C5—C11—C16—C15 | −178.0 (3) |
Re1—N4—C6—C4 | 0.9 (3) | O6—C15—C16—C11 | −178.7 (3) |
N1—C4—C6—N4 | 1.6 (3) | C14—C15—C16—C11 | 0.6 (4) |
N3—C4—C6—N4 | −179.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H1O···Br1 | 0.85 | 2.41 | 3.255 (2) | 172 |
N2—H1N···O7i | 0.87 | 1.89 | 2.703 (3) | 154 |
C7—H7···Br1ii | 0.94 | 3.01 | 3.927 (3) | 165 |
C8—H8···O2iii | 0.94 | 2.52 | 3.390 (4) | 153 |
C9—H9···O6iv | 0.94 | 2.49 | 3.278 (3) | 142 |
C10—H10···O3v | 0.94 | 2.39 | 3.215 (3) | 146 |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y+1, −z; (iii) x−1, y+1, z; (iv) x−1, y, z+1; (v) −x, −y, −z+1. |
Funding information
Funding for this research was provided by: Ministry of Education and Science of Ukraine, Grant for Science Research (award No. 0114U002488).
References
Abdullah, H. M., Jassim, I. K. & Safi, M. N. (2012). Karbala J. Pharm. Sci, 4, 115–135. Google Scholar
Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany. Google Scholar
Chen, J.-L., Cao, X.-F., Wang, J.-Y., He, L.-H., Liu, Z.-Y., Wen, H.-R. & Chen, Z.-N. (2013). Inorg. Chem. 52, 9727–9740. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chohan, Z. H. & Hanif, M. (2010). J. Enzyme Inhib. Med. Chem. 25, 737–749. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fernández-Moreira, V., Thorp-Greenwood, F. L. & Coogan, M. P. (2010). Chem. Commun. 46, 186–202. Google Scholar
Guo, X., Castellano, F. N., Li, L., Szmacinski, H., Lakowicz, J. R. & Sipior, J. (1997). Anal. Biochem. 254, 179–186. Web of Science CrossRef CAS PubMed Google Scholar
Jassim, I. K., Fayad, A. A. & Jassim, W. K. (2011). Karbala J. Pharm. Sci. 2, 228–240. Google Scholar
Kowalski, K., Szczupak, Ł., Bernaś, T. & Czerwieniec, R. (2015). J. Organomet. Chem. 782, 124–130. Web of Science CrossRef CAS Google Scholar
Lo, K. K.-W. (2015). Acc. Chem. Res. 48, 2985–2995. Web of Science CrossRef CAS PubMed Google Scholar
Lo, K. K.-W., Choi, A. W.-T. & Law, W. H.-T. (2012). Dalton Trans. 41, 6021–6047. Web of Science CrossRef CAS PubMed Google Scholar
Luo, Y., Lu, Y.-H., Gan, L.-L., Zhou, C.-H., Wu, J., Geng, R.-X. & Zhang, Y.-Y. (2009). Arch. Pharm. Chem. Life Sci. 342, 386–393. Web of Science CrossRef CAS Google Scholar
Mandal, S. K., Saha, D., Jain, V. K. & Jain, B. (2010). Int. J. Pharm. Sci. Res. 1, 465–472. CAS Google Scholar
Piletska, K. O., Domasevitch, K. V., Gusev, A. N., Shul'gin, V. F. & Shtemenko, A. V. (2015). Polyhedron, 102, 699–704. Web of Science CSD CrossRef CAS Google Scholar
Piletska, K., Domasevitch, K. V. & Shtemenko, A. V. (2014). Acta Cryst. E70, 587–589. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shen, Y., Maliwal, B. P. & Lakowicz, J. R. (2001). J. Fluoresc. 11, 315–318. Web of Science CrossRef CAS Google Scholar
Sparkes, H. A., Raithby, P. R., Clot, E., Shields, G. P., Chisholm, J. A. & Allen, F. H. (2006). CrystEngComm, 8, 563–570. Web of Science CSD CrossRef CAS Google Scholar
Stephenson, K. A., Banerjee, S. R., Besanger, T., Sogbein, O. O., Levadala, M. K., McFarlane, N., Lemon, J. A., Boreham, D. R., Maresca, K. P., Brennan, J. D., Babich, J. W., Zubieta, J. & Valliant, J. F. (2004). J. Am. Chem. Soc. 126, 8598–8599. Web of Science CrossRef PubMed CAS Google Scholar
Stoe & Cie (1999). X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2000). IPDS. Stoe & Cie, Darmstadt, Germany. Google Scholar
Sztanke, K., Tuzimski, T., Rzymowska, J., Pasternak, K. & Kandefer-Szerszeń, M. (2008). Eur. J. Med. Chem. 43, 404–419. Web of Science CrossRef PubMed CAS Google Scholar
Thorp-Greenwood, F. L. (2012). Organometallics, 31, 5686–5692. CAS Google Scholar
Van Diemen, J. H., Haasnoot, J. G., Hage, R., Reedijk, J., Vos, J. G. & Wang, R. (1991). Inorg. Chem. 30, 4038–4043. CSD CrossRef CAS Web of Science Google Scholar
Varvarason, A., Tantili-Kakoulidou, A., Siatra-Papastasikoudi, T. & Tiligada, E. (2000). Arzneim.-Forsch. 50, 48–54. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.