research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal and mol­ecular structure of (2Z,5Z)-3-(2-meth­­oxy­phen­yl)-2-[(2-meth­­oxy­phen­yl)imino]-5-(4-nitro­benzyl­­idene)thia­zolidin-4-one

CROSSMARK_Color_square_no_text.svg

aLaboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University, BP 227 Mostaganem 27000, Algeria, bCentre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP 42004, Tipaza, Algeria, cLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205, route de Narbonne, 31077 Toulouse Cedex, France, and dLaboratory of Organic Applied Synthesis (LSOA), Department of Chemistry, Faculty of Sciences, University of Oran 1, Ahmed Ben Bella, 31000 Oran, Algeria
*Correspondence e-mail: achouaih@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 23 February 2017; accepted 27 February 2017; online 14 March 2017)

In the title compound, C24H19N3O5S, the thia­zole ring (r.m.s. deviation = 0.012 Å) displays a planar geometry and is surrounded by three fragments, two meth­oxy­phenyl and one nitro­phenyl. The thia­zole ring is almost in the same plane as the nitro­phenyl ring, making a dihedral angle of 20.92 (6)°. The two meth­oxy­phenyl groups are perpendicular to the thia­zole ring [dihedral angles of 79.29 (6) and 71.31 (7)° and make a dihedral angle of 68.59 (7)°. The mol­ecule exists in an Z,Z conformation with respect to the C=N imine bond. In the crystal, a series of C—H⋯N, C—H⋯O and C—H⋯S hydrogen bonds, augmented by several ππ(ring) inter­actions, produce a three-dimensional architecture of mol­ecules stacked along the b-axis direction. The experimentally derived structure is compered with that calculated theoretically using DFT(B3YLP) methods.

1. Chemical context

There are numerous studies of simple thia­zoles reporting their biological activity (Saeed et al., 2010[Saeed, S., Rachid, N., Jones, P. G., Hussain, R. & Bhatti, M. H. (2010). Cent. Eur. J. Chem. 8, 550-558.]; Shokol et al., 2013[Shokol, T. V., Gorbulenko, N. V., Turov, A. V. & Khilya, V. P. (2013). Chem. Heterocycl. Compd, 49, 325-330.]; Akhtar et al., 2007[Akhtar, J., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316-322.]). As a result of their properties, thia­zole derivatives are inter­esting candidates for obtaining new materials. Thia­zole compounds have been also studied for their non-linear optical properties (Smokal et al., 2009[Smokal, V., Derkowska, B., Czaplicki, R., Krupka, O., Kolendo, A. & Sahraoui, B. (2009). Opt. Mater. 31, 554-557.]). Recently, numerous studies have reported the theoretical and experimental structures of this kind of compound (Boulakoud et al., 2015[Boulakoud, M., Toubal, K., Yahiaoui, S., Chouaih, A., Chita, G., Djafri, A. & Hamzaoui, F. (2015). J. Struct. Chem. 56, 1373-1378.]; Khelloul et al., 2016[Khelloul, N., Toubal, K., Benhalima, N., Rahmani, R., Chouaih, A., Djafri, A. & Hamzaoui, F. (2016). Acta Chim. Slov. 63, 619-626.]). Prompted by these investigations and in a continuation of our research on the development of organic heterocyclic compounds (Toubal et al., 2012[Toubal, K., Djafri, A., Chouaih, A. & Talbi, A. (2012). Molecules, 17, 3501-3509.]; Rahmani et al., 2016[Rahmani, R., Djafri, A., Daran, J.-C., Djafri, A., Chouaih, A. & Hamzaoui, F. (2016). Acta Cryst. E72, 155-157.]; Bahoussi et al., 2017[Bahoussi, R. I., Djafri, A., Chouaih, A., Djafri, A. & Hamzaoui, F. (2017). Acta Cryst. E73, 173-176.]), we report in this paper the synthesis and crystal structure of the compound (2Z,5Z)-5-(4-nitro­benzyl­idene)-3-(2-meth­oxy­phen­yl)-2-[(2-meth­oxy­phenyl)imino]­thia­zolidin-4-one. The experimental geometric parameters are compared with those optimized by density functional theory (DFT).

2. Structural commentary

The mol­ecular structure of the title compound with the atomic numbering scheme is shown in Fig. 1[link]. All of the bond lengths are within normal ranges. Bond lengths and angles for the 5-(4-nitro­benzyl­idene)-3-(2-meth­oxy­phen­yl) moiety are consistent with those in related structures (Benhalima et al., 2011[Benhalima, N., Toubal, K., Chouaih, A., Chita, G., Maggi, S., Djafri, A. & Hamzaoui, F. (2011). J. Chem. Crystallogr. 41, 1729-1736.]). As always, the thiazole ring is close to planar (r.m.s. deviation = 0.012 Å) and is surrounded by three fragments, two meth­oxy­phenyl and nitro­phenyl. The central thia­zole ring is twisted by −2.9 (2)° (C4—C7—C8—S1) to the nitro­phenyl ring, by −71.58 (18) (C10—N3—C17—C18) to the first meth­oxy­phenyl group and by −80.62 (15)° (C10—N2—C11—C16) to the second meth­oxy­phenyl group. The dihedral angles between the thia­zole ring and these three phenyl rings are 20.92 (6), 79.29 (6) and 71.31 (7)°, respectively. The mol­ecule exists in an Z,Z conformation with respect to the C10=N3 imine bond. Some bond angles of the aromatic rings are slightly out of normal range due to the presence of the meth­oxy and nitro substituents, viz. C4—C5 = 1.4040 (17), C12—C11 = 1.3724 (19), C22—C17 = 1.4046 (19) Å; C2—C1—C6 = 122.26 (12), C3—C4—C5 = 118.42 (12), C12—C13—C14 = 118.78 (14), C13—C14—C15 = 121.52 (14), C19—C20—C21 = 121.28 (14)°.

[Scheme 1]
[Figure 1]
Figure 1
Crystal structure of the title compound, with the atom-numbering scheme (displacement ellipsoids are drawn at the 50% probability level). H atoms are shown as small spheres of arbitrary radii.

3. Supra­molecular features

In the extended structure of the title compound, weak C—H⋯N, C—H⋯O and C—H⋯S hydrogen bonds (Table 1[link], Fig. 2[link]) connect the mol­ecules into a three-dimensional supra­molecular network. ππ stacking involving the benzene rings is also observed [CgCg(−x, −y, −z) = 3.7664 (8) Å; Cg is the centroid of the C1–C6 ring].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯S1 0.95 2.58 3.2594 (14) 128
C3—H3⋯O1i 0.95 2.57 3.3320 (18) 138
C5—H5⋯O3ii 0.95 2.58 3.3938 (17) 145
C7—H7⋯O3ii 0.95 2.40 3.1982 (15) 142
C21—H21⋯N3iii 0.95 2.52 3.4576 (19) 170
C23—H23C⋯O1iv 0.98 2.55 3.238 (2) 127
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing viewed along the c axis.

4. Quantum-chemical calculations

Geometry optimization has been performed using DFT(B3YLP) methods with the 6-31G(d,p) basis set (Becke, 1997[Becke, A. D. (1997). J. Chem. Phys. 107, 8554-8560.]; Rauhut & Pulay, 1995[Rauhut, G. & Pulay, P. (1995). J. Phys. Chem. 99, 3093-3100.]). All calculations were carried out by using Gaussian package (Frisch et al., 2004[Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]) and the obtained data visualized by means of GaussView 4.1 (Dennington et al., 2007[Dennington, R., Keith, T. & Millam, J. (2007). GAUSSVIEW4.1. Semichem Inc., Shawnee Mission, KS, USA.]). The optimized structure is shown in Fig. 3[link]. The calculated geometrical parameters such as bond lengths, bond angles and torsion angles (given in the Supporting information) are in good agreement with experimental values on basis of the diffraction study. The torsion angle between the first meth­oxy­phenyl ring and the thia­zole ring is −67.40° [experimental: −71.58 (18)°] and between the second meth­oxy­phenyl ring and the thia­zole ring is −84.61° [experimental: −80.62 (15)°].

[Figure 3]
Figure 3
Optimized structure of the title compound, calculated at the B3LYP/6–31 G(d,p) level.

5. Synthesis and crystallization

The synthesis of the title compound was performed according to the scheme in Fig. 4[link]. To a solution of o-anisidine (0.02 mol) in ethanol (10 mL) was added carbon di­sulfide (0.01 mol) and the resulting solution was refluxed for 6 h to gave N,N′ diaryl thio­uria. (0.01 mol) of the compound and (0.01 mol) of ethyl bromo­acetate were refluxed in 40 mL of absolute ethanol in the presence of (0.04 mol) of anhydrous CH3COONa for 2 h. The precipitate thus obtained was filtered, dried and recrystallized from ethanol to formed 3-N-(2-meth­oxy­phen­yl)-2-N′-(2-meth­oxy­phenyl­imino)-thia­zolidin-4-one. 4-Nitro­benz­alde­hyde (0.01 mol) was added to a solution of the latter compound in 10 mL of acetic acid containing three equivalents of anhydrous sodium acetate. The reaction mixture was refluxed for 4 h and monitored by TLC on silica gel using di­chloro­methane:ethyl acetate (9:1) as a solvent system. The separated solid was filtered, washed with cold water and dried to give the title compound. Single crystals suitable for X-ray diffraction were obtained from ethanol solution.

[Figure 4]
Figure 4
Chemical pathways showing the formation of the title compound. Reagents and conditions: (a) CS2, EtOH, 346 K; (b) BrAcOEt, EtOH, CH3COONa 348 K; (c) NO2C6H4CHO; CH3COOH; CH3COONa, 365 K.

Spectroscopic data (FT–IR, 1H NMR and 13C NMR). IR (KBr, cm−1): 2941 (C—H), 1723 (C=O), 1516 (C=N), 1023 (C—N), 751 (C—S). 1H NMR, (CDCl3, 300 MHz) δ (ppm) J (Hz): 3.72 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 6.83 (m, 3H, Ar-H), 7.06 (m, 3H, Ar-H), 7.36–7.06 (m, 3H, Ar-H), 7.54 (d, 2H, J = 8.81 Hz, Ar-H), 7.73 (s, 1H, C=CH), 8.18 (d, 2H, J = 8.81 Hz, Ar-H). 13C NMR, (CDCl3, 300 MHz) δ (ppm): 55.90 (OCH3), 55.98 (OCH3), 112.24, 112.59, 120.99, 121.21, 121.85, 123.15, 124.17, 126.07, 126.93, 127.44, 129.85, 130.38, 131.12, 137.33, 140.12, 147.46, 150.09, 150.65, 155.02, 165.69 (C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (C—H = 0.96–1.08 Å) and refined using a riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C24H19N3O5S
Mr 461.48
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 15.6096 (4), 8.8817 (2), 15.8973 (4)
β (°) 98.601 (2)
V3) 2179.21 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.58 × 0.21 × 0.20
 
Data collection
Diffractometer Nonius Kappa CCD
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.856, 0.919
No. of measured, independent and observed [I > 2σ(I)] reflections 29723, 6435, 5119
Rint 0.031
(sin θ/λ)max−1) 0.727
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.03
No. of reflections 6435
No. of parameters 300
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.29
Computer programs: KappaCCD (Nonius, 1998[Nonius (1998). KappaCCD. Nonius BV, Delft. The Netherlands.]), DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276. Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: KappaCCD (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).

(2Z,5Z)-3-(2-Methoxyphenyl)-2-[(2-methoxyphenyl)imino]-5-(4-nitrobenzylidene)thiazolidin-4-one top
Crystal data top
C24H19N3O5SF(000) = 960
Mr = 461.48Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.6096 (4) ÅCell parameters from 100 reflections
b = 8.8817 (2) Åθ = 2–29°
c = 15.8973 (4) ŵ = 0.19 mm1
β = 98.601 (2)°T = 173 K
V = 2179.21 (9) Å3Prism, colourless
Z = 40.58 × 0.21 × 0.20 mm
Data collection top
Nonius Kappa CCD
diffractometer
5119 reflections with I > 2σ(I)
θ/2θ scansRint = 0.031
Absorption correction: ψ scan
(North et al., 1968)
θmax = 31.1°, θmin = 3.0°
Tmin = 0.856, Tmax = 0.919h = 2222
29723 measured reflectionsk = 1211
6435 independent reflectionsl = 2122
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.9373P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6435 reflectionsΔρmax = 0.43 e Å3
300 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18342 (2)0.24406 (4)0.20047 (2)0.02336 (9)
O10.09228 (8)0.40177 (12)0.13728 (8)0.0385 (3)
N10.12541 (8)0.30589 (14)0.08755 (8)0.0284 (3)
C10.08817 (8)0.15360 (15)0.09366 (8)0.0233 (3)
C20.01765 (9)0.12471 (16)0.15533 (9)0.0281 (3)
H20.00600.20150.19350.034*
O20.18878 (8)0.32885 (13)0.03293 (8)0.0398 (3)
N20.21145 (7)0.51326 (12)0.14588 (7)0.0197 (2)
C30.01769 (9)0.01841 (16)0.16020 (9)0.0281 (3)
H30.06560.04020.20270.034*
O30.08023 (6)0.58248 (11)0.07287 (7)0.0285 (2)
N30.33242 (7)0.41049 (12)0.22794 (7)0.0243 (2)
C40.01599 (8)0.13165 (14)0.10343 (8)0.0208 (2)
O40.23121 (8)0.72664 (12)0.26528 (7)0.0359 (3)
C50.08835 (8)0.09794 (15)0.04270 (9)0.0240 (3)
H50.11280.17420.00460.029*
O50.45456 (6)0.24066 (12)0.17337 (7)0.0299 (2)
C60.12451 (9)0.04434 (16)0.03746 (9)0.0263 (3)
H60.17330.06660.00390.032*
C70.02086 (8)0.28231 (14)0.10052 (8)0.0215 (2)
H70.01600.35430.06920.026*
C80.09867 (8)0.33479 (14)0.13522 (8)0.0196 (2)
C100.25405 (8)0.39911 (13)0.19484 (8)0.0186 (2)
C240.52583 (11)0.1648 (2)0.14553 (11)0.0417 (4)
H24A0.57920.18900.18390.063*
H24B0.53130.19740.08770.063*
H24C0.51590.05590.14590.063*
C220.44054 (8)0.21301 (15)0.25472 (9)0.0248 (3)
C210.48700 (9)0.11030 (17)0.30961 (10)0.0320 (3)
H210.53360.05560.29220.038*
C200.46488 (11)0.0882 (2)0.38997 (11)0.0401 (4)
H200.49650.01740.42720.048*
C190.39771 (11)0.1670 (2)0.41689 (11)0.0400 (4)
H190.38290.15020.47200.048*
C170.37238 (8)0.29463 (15)0.28143 (9)0.0240 (3)
C90.12547 (8)0.48965 (14)0.11388 (8)0.0197 (2)
C160.26397 (9)0.76094 (15)0.19277 (9)0.0252 (3)
C230.23024 (13)0.8433 (2)0.32592 (11)0.0458 (4)
H23A0.28990.87300.34790.069*
H23B0.20160.80740.37290.069*
H23C0.19860.93020.29890.069*
C150.30410 (9)0.89616 (16)0.17808 (10)0.0316 (3)
H150.31180.97220.22060.038*
C140.33285 (10)0.91874 (18)0.10035 (12)0.0383 (4)
H140.35931.01180.08980.046*
C130.32383 (10)0.80902 (19)0.03814 (11)0.0374 (3)
H130.34380.82600.01460.045*
C120.28481 (9)0.67286 (16)0.05420 (9)0.0278 (3)
H120.27900.59540.01250.033*
C110.25487 (8)0.65060 (14)0.13014 (8)0.0206 (2)
C180.35185 (9)0.27144 (18)0.36216 (10)0.0324 (3)
H180.30610.32720.38050.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02100 (15)0.01858 (15)0.02879 (17)0.00265 (11)0.00189 (11)0.00798 (12)
O10.0485 (7)0.0222 (5)0.0483 (7)0.0063 (5)0.0185 (5)0.0037 (5)
N10.0334 (6)0.0233 (6)0.0326 (6)0.0093 (5)0.0178 (5)0.0068 (5)
C10.0274 (6)0.0189 (6)0.0256 (6)0.0076 (5)0.0106 (5)0.0033 (5)
C20.0321 (7)0.0236 (7)0.0280 (7)0.0056 (5)0.0027 (5)0.0064 (5)
O20.0416 (6)0.0358 (6)0.0428 (6)0.0193 (5)0.0092 (5)0.0119 (5)
N20.0196 (5)0.0146 (5)0.0239 (5)0.0008 (4)0.0003 (4)0.0028 (4)
C30.0294 (7)0.0260 (7)0.0262 (6)0.0074 (5)0.0044 (5)0.0061 (5)
O30.0240 (4)0.0207 (5)0.0372 (5)0.0010 (4)0.0066 (4)0.0082 (4)
N30.0198 (5)0.0196 (5)0.0324 (6)0.0004 (4)0.0005 (4)0.0051 (4)
C40.0205 (5)0.0201 (6)0.0218 (6)0.0033 (4)0.0031 (4)0.0011 (5)
O40.0530 (7)0.0298 (6)0.0261 (5)0.0006 (5)0.0101 (5)0.0058 (4)
C50.0210 (6)0.0232 (6)0.0268 (6)0.0017 (5)0.0002 (5)0.0019 (5)
O50.0278 (5)0.0295 (5)0.0319 (5)0.0047 (4)0.0031 (4)0.0023 (4)
C60.0230 (6)0.0275 (7)0.0276 (6)0.0062 (5)0.0014 (5)0.0028 (5)
C70.0220 (6)0.0193 (6)0.0224 (6)0.0016 (4)0.0008 (4)0.0027 (5)
C80.0211 (5)0.0171 (6)0.0200 (5)0.0000 (4)0.0008 (4)0.0024 (4)
C100.0199 (5)0.0154 (5)0.0206 (6)0.0003 (4)0.0030 (4)0.0011 (4)
C240.0321 (8)0.0496 (10)0.0443 (9)0.0073 (7)0.0087 (7)0.0022 (8)
C220.0201 (6)0.0221 (6)0.0302 (7)0.0014 (5)0.0026 (5)0.0013 (5)
C210.0251 (6)0.0283 (7)0.0399 (8)0.0060 (5)0.0038 (6)0.0039 (6)
C200.0360 (8)0.0399 (9)0.0407 (9)0.0069 (7)0.0065 (6)0.0145 (7)
C190.0365 (8)0.0484 (10)0.0342 (8)0.0019 (7)0.0019 (6)0.0147 (7)
C170.0179 (5)0.0201 (6)0.0322 (7)0.0014 (4)0.0028 (5)0.0049 (5)
C90.0197 (5)0.0181 (6)0.0204 (6)0.0013 (4)0.0002 (4)0.0005 (4)
C160.0245 (6)0.0209 (6)0.0287 (6)0.0022 (5)0.0003 (5)0.0001 (5)
C230.0633 (11)0.0397 (9)0.0350 (9)0.0094 (8)0.0090 (8)0.0132 (7)
C150.0308 (7)0.0183 (6)0.0430 (8)0.0021 (5)0.0029 (6)0.0033 (6)
C140.0310 (7)0.0261 (7)0.0564 (10)0.0091 (6)0.0025 (7)0.0095 (7)
C130.0379 (8)0.0373 (9)0.0390 (8)0.0073 (7)0.0125 (6)0.0106 (7)
C120.0289 (6)0.0266 (7)0.0291 (7)0.0011 (5)0.0076 (5)0.0032 (5)
C110.0195 (5)0.0167 (6)0.0246 (6)0.0006 (4)0.0003 (4)0.0020 (5)
C180.0246 (6)0.0359 (8)0.0364 (8)0.0016 (6)0.0037 (5)0.0068 (6)
Geometric parameters (Å, º) top
S1—C81.7507 (12)C8—C91.4914 (17)
S1—C101.7747 (12)C24—H24A0.9800
O1—N11.2229 (17)C24—H24B0.9800
N1—O21.2317 (16)C24—H24C0.9800
N1—C11.4696 (17)C22—C211.3893 (18)
C1—C61.3821 (19)C22—C171.4046 (19)
C1—C21.3841 (19)C21—C201.386 (2)
C2—C31.3833 (19)C21—H210.9500
C2—H20.9500C20—C191.381 (3)
N2—C91.3783 (15)C20—H200.9500
N2—C101.3860 (15)C19—C181.394 (2)
N2—C111.4355 (16)C19—H190.9500
C3—C41.4001 (18)C17—C181.384 (2)
C3—H30.9500C16—C111.3891 (18)
O3—C91.2107 (15)C16—C151.3903 (19)
N3—C101.2613 (16)C23—H23A0.9800
N3—C171.4186 (16)C23—H23B0.9800
C4—C51.4040 (17)C23—H23C0.9800
C4—C71.4600 (17)C15—C141.391 (2)
O4—C161.3636 (18)C15—H150.9500
O4—C231.4169 (19)C14—C131.381 (2)
C5—C61.3814 (19)C14—H140.9500
C5—H50.9500C13—C121.395 (2)
O5—C221.3658 (17)C13—H130.9500
O5—C241.4265 (19)C12—C111.3724 (19)
C6—H60.9500C12—H120.9500
C7—C81.3404 (17)C18—H180.9500
C7—H70.9500
C8—S1—C1091.89 (6)O5—C22—C17115.42 (11)
O1—N1—O2123.91 (12)C21—C22—C17119.79 (13)
O1—N1—C1118.25 (12)C20—C21—C22119.56 (14)
O2—N1—C1117.84 (13)C20—C21—H21120.2
C6—C1—C2122.26 (12)C22—C21—H21120.2
C6—C1—N1118.91 (12)C19—C20—C21121.28 (14)
C2—C1—N1118.83 (12)C19—C20—H20119.4
C3—C2—C1118.57 (13)C21—C20—H20119.4
C3—C2—H2120.7C20—C19—C18119.12 (15)
C1—C2—H2120.7C20—C19—H19120.4
C9—N2—C10117.06 (10)C18—C19—H19120.4
C9—N2—C11121.60 (10)C18—C17—C22119.63 (12)
C10—N2—C11121.34 (10)C18—C17—N3121.45 (13)
C2—C3—C4121.06 (12)C22—C17—N3118.57 (12)
C2—C3—H3119.5O3—C9—N2123.54 (11)
C4—C3—H3119.5O3—C9—C8126.13 (11)
C10—N3—C17120.27 (11)N2—C9—C8110.31 (10)
C3—C4—C5118.42 (12)O4—C16—C11115.92 (12)
C3—C4—C7124.55 (11)O4—C16—C15124.77 (13)
C5—C4—C7116.99 (11)C11—C16—C15119.31 (13)
C16—O4—C23117.08 (13)O4—C23—H23A109.5
C6—C5—C4121.06 (12)O4—C23—H23B109.5
C6—C5—H5119.5H23A—C23—H23B109.5
C4—C5—H5119.5O4—C23—H23C109.5
C22—O5—C24116.85 (12)H23A—C23—H23C109.5
C5—C6—C1118.61 (12)H23B—C23—H23C109.5
C5—C6—H6120.7C16—C15—C14119.15 (14)
C1—C6—H6120.7C16—C15—H15120.4
C8—C7—C4130.00 (12)C14—C15—H15120.4
C8—C7—H7115.0C13—C14—C15121.52 (14)
C4—C7—H7115.0C13—C14—H14119.2
C7—C8—C9119.66 (11)C15—C14—H14119.2
C7—C8—S1129.92 (10)C14—C13—C12118.78 (14)
C9—C8—S1110.27 (8)C14—C13—H13120.6
N3—C10—N2121.98 (11)C12—C13—H13120.6
N3—C10—S1127.75 (10)C11—C12—C13120.09 (14)
N2—C10—S1110.27 (8)C11—C12—H12120.0
O5—C24—H24A109.5C13—C12—H12120.0
O5—C24—H24B109.5C12—C11—C16121.13 (12)
H24A—C24—H24B109.5C12—C11—N2120.51 (12)
O5—C24—H24C109.5C16—C11—N2118.35 (12)
H24A—C24—H24C109.5C17—C18—C19120.61 (14)
H24B—C24—H24C109.5C17—C18—H18119.7
O5—C22—C21124.77 (13)C19—C18—H18119.7
O1—N1—C1—C6179.51 (12)O5—C22—C17—C18178.38 (12)
O2—N1—C1—C61.12 (18)C21—C22—C17—C180.3 (2)
O1—N1—C1—C20.23 (18)O5—C22—C17—N38.25 (17)
O2—N1—C1—C2179.14 (13)C21—C22—C17—N3173.07 (12)
C6—C1—C2—C30.4 (2)C10—N3—C17—C1871.58 (18)
N1—C1—C2—C3179.33 (13)C10—N3—C17—C22115.18 (15)
C1—C2—C3—C40.9 (2)C10—N2—C9—O3177.23 (12)
C2—C3—C4—C51.8 (2)C11—N2—C9—O32.1 (2)
C2—C3—C4—C7175.75 (13)C10—N2—C9—C84.25 (15)
C3—C4—C5—C61.5 (2)C11—N2—C9—C8176.45 (11)
C7—C4—C5—C6176.26 (13)C7—C8—C9—O37.2 (2)
C4—C5—C6—C10.3 (2)S1—C8—C9—O3176.77 (12)
C2—C1—C6—C50.7 (2)C7—C8—C9—N2171.26 (12)
N1—C1—C6—C5179.01 (12)S1—C8—C9—N24.76 (13)
C3—C4—C7—C814.9 (2)C23—O4—C16—C11172.66 (13)
C5—C4—C7—C8162.70 (14)C23—O4—C16—C156.8 (2)
C4—C7—C8—C9172.27 (13)O4—C16—C15—C14178.36 (13)
C4—C7—C8—S12.9 (2)C11—C16—C15—C141.1 (2)
C10—S1—C8—C7172.24 (13)C16—C15—C14—C131.2 (2)
C10—S1—C8—C93.25 (9)C15—C14—C13—C120.1 (2)
C17—N3—C10—N2176.56 (12)C14—C13—C12—C111.1 (2)
C17—N3—C10—S14.5 (2)C13—C12—C11—C161.1 (2)
C9—N2—C10—N3179.07 (12)C13—C12—C11—N2177.44 (13)
C11—N2—C10—N30.23 (19)O4—C16—C11—C12179.55 (12)
C9—N2—C10—S11.80 (14)C15—C16—C11—C120.03 (19)
C11—N2—C10—S1178.90 (9)O4—C16—C11—N20.94 (17)
C8—S1—C10—N3178.06 (13)C15—C16—C11—N2178.58 (12)
C8—S1—C10—N21.01 (9)C9—N2—C11—C1279.97 (16)
C24—O5—C22—C214.2 (2)C10—N2—C11—C12100.76 (15)
C24—O5—C22—C17177.21 (13)C9—N2—C11—C1698.65 (14)
O5—C22—C21—C20177.81 (14)C10—N2—C11—C1680.62 (15)
C17—C22—C21—C200.7 (2)C22—C17—C18—C190.5 (2)
C22—C21—C20—C190.4 (2)N3—C17—C18—C19173.70 (14)
C21—C20—C19—C180.5 (3)C20—C19—C18—C170.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···S10.952.583.2594 (14)128
C3—H3···O1i0.952.573.3320 (18)138
C5—H5···O3ii0.952.583.3938 (17)145
C7—H7···O3ii0.952.403.1982 (15)142
C21—H21···N3iii0.952.523.4576 (19)170
C23—H23C···O1iv0.982.553.238 (2)127
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x, y+3/2, z+1/2.
 

Funding information

Funding for this research was provided by: Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, CNEPRU project.

References

First citationAkhtar, J., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316–322.  Web of Science CrossRef CAS Google Scholar
First citationBahoussi, R. I., Djafri, A., Chouaih, A., Djafri, A. & Hamzaoui, F. (2017). Acta Cryst. E73, 173–176.  CSD CrossRef IUCr Journals Google Scholar
First citationBecke, A. D. (1997). J. Chem. Phys. 107, 8554–8560.  CrossRef CAS Web of Science Google Scholar
First citationBenhalima, N., Toubal, K., Chouaih, A., Chita, G., Maggi, S., Djafri, A. & Hamzaoui, F. (2011). J. Chem. Crystallogr. 41, 1729–1736.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoulakoud, M., Toubal, K., Yahiaoui, S., Chouaih, A., Chita, G., Djafri, A. & Hamzaoui, F. (2015). J. Struct. Chem. 56, 1373–1378.  Web of Science CSD CrossRef CAS Google Scholar
First citationDennington, R., Keith, T. & Millam, J. (2007). GAUSSVIEW4.1. Semichem Inc., Shawnee Mission, KS, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationKhelloul, N., Toubal, K., Benhalima, N., Rahmani, R., Chouaih, A., Djafri, A. & Hamzaoui, F. (2016). Acta Chim. Slov. 63, 619–626.  Web of Science CrossRef PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). KappaCCD. Nonius BV, Delft. The Netherlands.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276. Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRahmani, R., Djafri, A., Daran, J.-C., Djafri, A., Chouaih, A. & Hamzaoui, F. (2016). Acta Cryst. E72, 155–157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRauhut, G. & Pulay, P. (1995). J. Phys. Chem. 99, 3093–3100.  CrossRef CAS Web of Science Google Scholar
First citationSaeed, S., Rachid, N., Jones, P. G., Hussain, R. & Bhatti, M. H. (2010). Cent. Eur. J. Chem. 8, 550–558.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShokol, T. V., Gorbulenko, N. V., Turov, A. V. & Khilya, V. P. (2013). Chem. Heterocycl. Compd, 49, 325–330.  Web of Science CrossRef CAS Google Scholar
First citationSmokal, V., Derkowska, B., Czaplicki, R., Krupka, O., Kolendo, A. & Sahraoui, B. (2009). Opt. Mater. 31, 554–557.  Web of Science CrossRef CAS Google Scholar
First citationToubal, K., Djafri, A., Chouaih, A. & Talbi, A. (2012). Molecules, 17, 3501–3509.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds