research communications
Crystal and molecular structure of (2Z,5Z)-3-(2-methoxyphenyl)-2-[(2-methoxyphenyl)imino]-5-(4-nitrobenzylidene)thiazolidin-4-one
aLaboratory of Technology and Solid Properties (LTPS), Abdelhamid Ibn Badis University, BP 227 Mostaganem 27000, Algeria, bCentre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP 384-Bou-Ismail-RP 42004, Tipaza, Algeria, cLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205, route de Narbonne, 31077 Toulouse Cedex, France, and dLaboratory of Organic Applied Synthesis (LSOA), Department of Chemistry, Faculty of Sciences, University of Oran 1, Ahmed Ben Bella, 31000 Oran, Algeria
*Correspondence e-mail: achouaih@gmail.com
In the title compound, C24H19N3O5S, the thiazole ring (r.m.s. deviation = 0.012 Å) displays a planar geometry and is surrounded by three fragments, two methoxyphenyl and one nitrophenyl. The thiazole ring is almost in the same plane as the nitrophenyl ring, making a dihedral angle of 20.92 (6)°. The two methoxyphenyl groups are perpendicular to the thiazole ring [dihedral angles of 79.29 (6) and 71.31 (7)° and make a dihedral angle of 68.59 (7)°. The molecule exists in an Z,Z conformation with respect to the C=N imine bond. In the crystal, a series of C—H⋯N, C—H⋯O and C—H⋯S hydrogen bonds, augmented by several π–π(ring) interactions, produce a three-dimensional architecture of molecules stacked along the b-axis direction. The experimentally derived structure is compered with that calculated theoretically using DFT(B3YLP) methods.
Keywords: crystal structure; thiazolidin-4-one; DFT calculations; hydrogen bonding; π–π interactions.
CCDC reference: 1534261
1. Chemical context
There are numerous studies of simple thiazoles reporting their biological activity (Saeed et al., 2010; Shokol et al., 2013; Akhtar et al., 2007). As a result of their properties, thiazole derivatives are interesting candidates for obtaining new materials. Thiazole compounds have been also studied for their non-linear optical properties (Smokal et al., 2009). Recently, numerous studies have reported the theoretical and experimental structures of this kind of compound (Boulakoud et al., 2015; Khelloul et al., 2016). Prompted by these investigations and in a continuation of our research on the development of organic (Toubal et al., 2012; Rahmani et al., 2016; Bahoussi et al., 2017), we report in this paper the synthesis and of the compound (2Z,5Z)-5-(4-nitrobenzylidene)-3-(2-methoxyphenyl)-2-[(2-methoxyphenyl)imino]thiazolidin-4-one. The experimental geometric parameters are compared with those optimized by density functional theory (DFT).
2. Structural commentary
The molecular structure of the title compound with the atomic numbering scheme is shown in Fig. 1. All of the bond lengths are within normal ranges. Bond lengths and angles for the 5-(4-nitrobenzylidene)-3-(2-methoxyphenyl) moiety are consistent with those in related structures (Benhalima et al., 2011). As always, the thiazole ring is close to planar (r.m.s. deviation = 0.012 Å) and is surrounded by three fragments, two methoxyphenyl and nitrophenyl. The central thiazole ring is twisted by −2.9 (2)° (C4—C7—C8—S1) to the nitrophenyl ring, by −71.58 (18) (C10—N3—C17—C18) to the first methoxyphenyl group and by −80.62 (15)° (C10—N2—C11—C16) to the second methoxyphenyl group. The dihedral angles between the thiazole ring and these three phenyl rings are 20.92 (6), 79.29 (6) and 71.31 (7)°, respectively. The molecule exists in an Z,Z conformation with respect to the C10=N3 imine bond. Some bond angles of the aromatic rings are slightly out of normal range due to the presence of the methoxy and nitro substituents, viz. C4—C5 = 1.4040 (17), C12—C11 = 1.3724 (19), C22—C17 = 1.4046 (19) Å; C2—C1—C6 = 122.26 (12), C3—C4—C5 = 118.42 (12), C12—C13—C14 = 118.78 (14), C13—C14—C15 = 121.52 (14), C19—C20—C21 = 121.28 (14)°.
3. Supramolecular features
In the extended structure of the title compound, weak C—H⋯N, C—H⋯O and C—H⋯S hydrogen bonds (Table 1, Fig. 2) connect the molecules into a three-dimensional supramolecular network. π–π stacking involving the benzene rings is also observed [Cg⋯Cg(−x, −y, −z) = 3.7664 (8) Å; Cg is the centroid of the C1–C6 ring].
4. Quantum-chemical calculations
Geometry optimization has been performed using DFT(B3YLP) methods with the 6-31G(d,p) basis set (Becke, 1997; Rauhut & Pulay, 1995). All calculations were carried out by using Gaussian package (Frisch et al., 2004) and the obtained data visualized by means of GaussView 4.1 (Dennington et al., 2007). The optimized structure is shown in Fig. 3. The calculated geometrical parameters such as bond lengths, bond angles and torsion angles (given in the Supporting information) are in good agreement with experimental values on basis of the diffraction study. The torsion angle between the first methoxyphenyl ring and the thiazole ring is −67.40° [experimental: −71.58 (18)°] and between the second methoxyphenyl ring and the thiazole ring is −84.61° [experimental: −80.62 (15)°].
5. Synthesis and crystallization
The synthesis of the title compound was performed according to the scheme in Fig. 4. To a solution of o-anisidine (0.02 mol) in ethanol (10 mL) was added carbon disulfide (0.01 mol) and the resulting solution was refluxed for 6 h to gave N,N′ diaryl thiouria. (0.01 mol) of the compound and (0.01 mol) of ethyl bromoacetate were refluxed in 40 mL of absolute ethanol in the presence of (0.04 mol) of anhydrous CH3COONa for 2 h. The precipitate thus obtained was filtered, dried and recrystallized from ethanol to formed 3-N-(2-methoxyphenyl)-2-N′-(2-methoxyphenylimino)-thiazolidin-4-one. 4-Nitrobenzaldehyde (0.01 mol) was added to a solution of the latter compound in 10 mL of acetic acid containing three equivalents of anhydrous sodium acetate. The reaction mixture was refluxed for 4 h and monitored by TLC on silica gel using dichloromethane:ethyl acetate (9:1) as a solvent system. The separated solid was filtered, washed with cold water and dried to give the title compound. Single crystals suitable for X-ray diffraction were obtained from ethanol solution.
Spectroscopic data (FT–IR, 1H NMR and 13C NMR). IR (KBr, cm−1): 2941 (C—H), 1723 (C=O), 1516 (C=N), 1023 (C—N), 751 (C—S). 1H NMR, (CDCl3, 300 MHz) δ (ppm) J (Hz): 3.72 (s, 3H, OCH3), 3.82 (s, 3H, OCH3), 6.83 (m, 3H, Ar-H), 7.06 (m, 3H, Ar-H), 7.36–7.06 (m, 3H, Ar-H), 7.54 (d, 2H, J = 8.81 Hz, Ar-H), 7.73 (s, 1H, C=CH), 8.18 (d, 2H, J = 8.81 Hz, Ar-H). 13C NMR, (CDCl3, 300 MHz) δ (ppm): 55.90 (OCH3), 55.98 (OCH3), 112.24, 112.59, 120.99, 121.21, 121.85, 123.15, 124.17, 126.07, 126.93, 127.44, 129.85, 130.38, 131.12, 137.33, 140.12, 147.46, 150.09, 150.65, 155.02, 165.69 (C=O).
6. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions (C—H = 0.96–1.08 Å) and refined using a riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1534261
https://doi.org/10.1107/S2056989017003218/xu5900sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017003218/xu5900Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017003218/xu5900Isup5.cml
Calculated geometric parameters. DOI: https://doi.org/10.1107/S2056989017003218/xu5900sup3.docx
Geometrical parameters calculated theoretically. DOI: https://doi.org/10.1107/S2056989017003218/xu5900sup3.pdf
Data collection: KappaCCD (Nonius, 1998); cell
DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).C24H19N3O5S | F(000) = 960 |
Mr = 461.48 | Dx = 1.407 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.6096 (4) Å | Cell parameters from 100 reflections |
b = 8.8817 (2) Å | θ = 2–29° |
c = 15.8973 (4) Å | µ = 0.19 mm−1 |
β = 98.601 (2)° | T = 173 K |
V = 2179.21 (9) Å3 | Prism, colourless |
Z = 4 | 0.58 × 0.21 × 0.20 mm |
Nonius Kappa CCD diffractometer | 5119 reflections with I > 2σ(I) |
θ/2θ scans | Rint = 0.031 |
Absorption correction: ψ scan (North et al., 1968) | θmax = 31.1°, θmin = 3.0° |
Tmin = 0.856, Tmax = 0.919 | h = −22→22 |
29723 measured reflections | k = −12→11 |
6435 independent reflections | l = −21→22 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0467P)2 + 0.9373P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
6435 reflections | Δρmax = 0.43 e Å−3 |
300 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.18342 (2) | 0.24406 (4) | 0.20047 (2) | 0.02336 (9) | |
O1 | −0.09228 (8) | −0.40177 (12) | 0.13728 (8) | 0.0385 (3) | |
N1 | −0.12541 (8) | −0.30589 (14) | 0.08755 (8) | 0.0284 (3) | |
C1 | −0.08817 (8) | −0.15360 (15) | 0.09366 (8) | 0.0233 (3) | |
C2 | −0.01765 (9) | −0.12471 (16) | 0.15533 (9) | 0.0281 (3) | |
H2 | 0.0060 | −0.2015 | 0.1935 | 0.034* | |
O2 | −0.18878 (8) | −0.32885 (13) | 0.03293 (8) | 0.0398 (3) | |
N2 | 0.21145 (7) | 0.51326 (12) | 0.14588 (7) | 0.0197 (2) | |
C3 | 0.01769 (9) | 0.01841 (16) | 0.16020 (9) | 0.0281 (3) | |
H3 | 0.0656 | 0.0402 | 0.2027 | 0.034* | |
O3 | 0.08023 (6) | 0.58248 (11) | 0.07287 (7) | 0.0285 (2) | |
N3 | 0.33242 (7) | 0.41049 (12) | 0.22794 (7) | 0.0243 (2) | |
C4 | −0.01599 (8) | 0.13165 (14) | 0.10343 (8) | 0.0208 (2) | |
O4 | 0.23121 (8) | 0.72664 (12) | 0.26528 (7) | 0.0359 (3) | |
C5 | −0.08835 (8) | 0.09794 (15) | 0.04270 (9) | 0.0240 (3) | |
H5 | −0.1128 | 0.1742 | 0.0046 | 0.029* | |
O5 | 0.45456 (6) | 0.24066 (12) | 0.17337 (7) | 0.0299 (2) | |
C6 | −0.12451 (9) | −0.04434 (16) | 0.03746 (9) | 0.0263 (3) | |
H6 | −0.1733 | −0.0666 | −0.0039 | 0.032* | |
C7 | 0.02086 (8) | 0.28231 (14) | 0.10052 (8) | 0.0215 (2) | |
H7 | −0.0160 | 0.3543 | 0.0692 | 0.026* | |
C8 | 0.09867 (8) | 0.33479 (14) | 0.13522 (8) | 0.0196 (2) | |
C10 | 0.25405 (8) | 0.39911 (13) | 0.19484 (8) | 0.0186 (2) | |
C24 | 0.52583 (11) | 0.1648 (2) | 0.14553 (11) | 0.0417 (4) | |
H24A | 0.5792 | 0.1890 | 0.1839 | 0.063* | |
H24B | 0.5313 | 0.1974 | 0.0877 | 0.063* | |
H24C | 0.5159 | 0.0559 | 0.1459 | 0.063* | |
C22 | 0.44054 (8) | 0.21301 (15) | 0.25472 (9) | 0.0248 (3) | |
C21 | 0.48700 (9) | 0.11030 (17) | 0.30961 (10) | 0.0320 (3) | |
H21 | 0.5336 | 0.0556 | 0.2922 | 0.038* | |
C20 | 0.46488 (11) | 0.0882 (2) | 0.38997 (11) | 0.0401 (4) | |
H20 | 0.4965 | 0.0174 | 0.4272 | 0.048* | |
C19 | 0.39771 (11) | 0.1670 (2) | 0.41689 (11) | 0.0400 (4) | |
H19 | 0.3829 | 0.1502 | 0.4720 | 0.048* | |
C17 | 0.37238 (8) | 0.29463 (15) | 0.28143 (9) | 0.0240 (3) | |
C9 | 0.12547 (8) | 0.48965 (14) | 0.11388 (8) | 0.0197 (2) | |
C16 | 0.26397 (9) | 0.76094 (15) | 0.19277 (9) | 0.0252 (3) | |
C23 | 0.23024 (13) | 0.8433 (2) | 0.32592 (11) | 0.0458 (4) | |
H23A | 0.2899 | 0.8730 | 0.3479 | 0.069* | |
H23B | 0.2016 | 0.8074 | 0.3729 | 0.069* | |
H23C | 0.1986 | 0.9302 | 0.2989 | 0.069* | |
C15 | 0.30410 (9) | 0.89616 (16) | 0.17808 (10) | 0.0316 (3) | |
H15 | 0.3118 | 0.9722 | 0.2206 | 0.038* | |
C14 | 0.33285 (10) | 0.91874 (18) | 0.10035 (12) | 0.0383 (4) | |
H14 | 0.3593 | 1.0118 | 0.0898 | 0.046* | |
C13 | 0.32383 (10) | 0.80902 (19) | 0.03814 (11) | 0.0374 (3) | |
H13 | 0.3438 | 0.8260 | −0.0146 | 0.045* | |
C12 | 0.28481 (9) | 0.67286 (16) | 0.05420 (9) | 0.0278 (3) | |
H12 | 0.2790 | 0.5954 | 0.0125 | 0.033* | |
C11 | 0.25487 (8) | 0.65060 (14) | 0.13014 (8) | 0.0206 (2) | |
C18 | 0.35185 (9) | 0.27144 (18) | 0.36216 (10) | 0.0324 (3) | |
H18 | 0.3061 | 0.3272 | 0.3805 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.02100 (15) | 0.01858 (15) | 0.02879 (17) | −0.00265 (11) | −0.00189 (11) | 0.00798 (12) |
O1 | 0.0485 (7) | 0.0222 (5) | 0.0483 (7) | −0.0063 (5) | 0.0185 (5) | 0.0037 (5) |
N1 | 0.0334 (6) | 0.0233 (6) | 0.0326 (6) | −0.0093 (5) | 0.0178 (5) | −0.0068 (5) |
C1 | 0.0274 (6) | 0.0189 (6) | 0.0256 (6) | −0.0076 (5) | 0.0106 (5) | −0.0033 (5) |
C2 | 0.0321 (7) | 0.0236 (7) | 0.0280 (7) | −0.0056 (5) | 0.0027 (5) | 0.0064 (5) |
O2 | 0.0416 (6) | 0.0358 (6) | 0.0428 (6) | −0.0193 (5) | 0.0092 (5) | −0.0119 (5) |
N2 | 0.0196 (5) | 0.0146 (5) | 0.0239 (5) | −0.0008 (4) | −0.0003 (4) | 0.0028 (4) |
C3 | 0.0294 (7) | 0.0260 (7) | 0.0262 (6) | −0.0074 (5) | −0.0044 (5) | 0.0061 (5) |
O3 | 0.0240 (4) | 0.0207 (5) | 0.0372 (5) | −0.0010 (4) | −0.0066 (4) | 0.0082 (4) |
N3 | 0.0198 (5) | 0.0196 (5) | 0.0324 (6) | 0.0004 (4) | 0.0005 (4) | 0.0051 (4) |
C4 | 0.0205 (5) | 0.0201 (6) | 0.0218 (6) | −0.0033 (4) | 0.0031 (4) | 0.0011 (5) |
O4 | 0.0530 (7) | 0.0298 (6) | 0.0261 (5) | 0.0006 (5) | 0.0101 (5) | −0.0058 (4) |
C5 | 0.0210 (6) | 0.0232 (6) | 0.0268 (6) | −0.0017 (5) | 0.0002 (5) | 0.0019 (5) |
O5 | 0.0278 (5) | 0.0295 (5) | 0.0319 (5) | 0.0047 (4) | 0.0031 (4) | 0.0023 (4) |
C6 | 0.0230 (6) | 0.0275 (7) | 0.0276 (6) | −0.0062 (5) | 0.0014 (5) | −0.0028 (5) |
C7 | 0.0220 (6) | 0.0193 (6) | 0.0224 (6) | −0.0016 (4) | 0.0008 (4) | 0.0027 (5) |
C8 | 0.0211 (5) | 0.0171 (6) | 0.0200 (5) | 0.0000 (4) | 0.0008 (4) | 0.0024 (4) |
C10 | 0.0199 (5) | 0.0154 (5) | 0.0206 (6) | −0.0003 (4) | 0.0030 (4) | 0.0011 (4) |
C24 | 0.0321 (8) | 0.0496 (10) | 0.0443 (9) | 0.0073 (7) | 0.0087 (7) | −0.0022 (8) |
C22 | 0.0201 (6) | 0.0221 (6) | 0.0302 (7) | −0.0014 (5) | −0.0026 (5) | 0.0013 (5) |
C21 | 0.0251 (6) | 0.0283 (7) | 0.0399 (8) | 0.0060 (5) | −0.0038 (6) | 0.0039 (6) |
C20 | 0.0360 (8) | 0.0399 (9) | 0.0407 (9) | 0.0069 (7) | −0.0065 (6) | 0.0145 (7) |
C19 | 0.0365 (8) | 0.0484 (10) | 0.0342 (8) | 0.0019 (7) | 0.0019 (6) | 0.0147 (7) |
C17 | 0.0179 (5) | 0.0201 (6) | 0.0322 (7) | −0.0014 (4) | −0.0028 (5) | 0.0049 (5) |
C9 | 0.0197 (5) | 0.0181 (6) | 0.0204 (6) | −0.0013 (4) | 0.0002 (4) | 0.0005 (4) |
C16 | 0.0245 (6) | 0.0209 (6) | 0.0287 (6) | 0.0022 (5) | −0.0003 (5) | −0.0001 (5) |
C23 | 0.0633 (11) | 0.0397 (9) | 0.0350 (9) | 0.0094 (8) | 0.0090 (8) | −0.0132 (7) |
C15 | 0.0308 (7) | 0.0183 (6) | 0.0430 (8) | −0.0021 (5) | −0.0029 (6) | −0.0033 (6) |
C14 | 0.0310 (7) | 0.0261 (7) | 0.0564 (10) | −0.0091 (6) | 0.0025 (7) | 0.0095 (7) |
C13 | 0.0379 (8) | 0.0373 (9) | 0.0390 (8) | −0.0073 (7) | 0.0125 (6) | 0.0106 (7) |
C12 | 0.0289 (6) | 0.0266 (7) | 0.0291 (7) | −0.0011 (5) | 0.0076 (5) | 0.0032 (5) |
C11 | 0.0195 (5) | 0.0167 (6) | 0.0246 (6) | −0.0006 (4) | 0.0003 (4) | 0.0020 (5) |
C18 | 0.0246 (6) | 0.0359 (8) | 0.0364 (8) | 0.0016 (6) | 0.0037 (5) | 0.0068 (6) |
S1—C8 | 1.7507 (12) | C8—C9 | 1.4914 (17) |
S1—C10 | 1.7747 (12) | C24—H24A | 0.9800 |
O1—N1 | 1.2229 (17) | C24—H24B | 0.9800 |
N1—O2 | 1.2317 (16) | C24—H24C | 0.9800 |
N1—C1 | 1.4696 (17) | C22—C21 | 1.3893 (18) |
C1—C6 | 1.3821 (19) | C22—C17 | 1.4046 (19) |
C1—C2 | 1.3841 (19) | C21—C20 | 1.386 (2) |
C2—C3 | 1.3833 (19) | C21—H21 | 0.9500 |
C2—H2 | 0.9500 | C20—C19 | 1.381 (3) |
N2—C9 | 1.3783 (15) | C20—H20 | 0.9500 |
N2—C10 | 1.3860 (15) | C19—C18 | 1.394 (2) |
N2—C11 | 1.4355 (16) | C19—H19 | 0.9500 |
C3—C4 | 1.4001 (18) | C17—C18 | 1.384 (2) |
C3—H3 | 0.9500 | C16—C11 | 1.3891 (18) |
O3—C9 | 1.2107 (15) | C16—C15 | 1.3903 (19) |
N3—C10 | 1.2613 (16) | C23—H23A | 0.9800 |
N3—C17 | 1.4186 (16) | C23—H23B | 0.9800 |
C4—C5 | 1.4040 (17) | C23—H23C | 0.9800 |
C4—C7 | 1.4600 (17) | C15—C14 | 1.391 (2) |
O4—C16 | 1.3636 (18) | C15—H15 | 0.9500 |
O4—C23 | 1.4169 (19) | C14—C13 | 1.381 (2) |
C5—C6 | 1.3814 (19) | C14—H14 | 0.9500 |
C5—H5 | 0.9500 | C13—C12 | 1.395 (2) |
O5—C22 | 1.3658 (17) | C13—H13 | 0.9500 |
O5—C24 | 1.4265 (19) | C12—C11 | 1.3724 (19) |
C6—H6 | 0.9500 | C12—H12 | 0.9500 |
C7—C8 | 1.3404 (17) | C18—H18 | 0.9500 |
C7—H7 | 0.9500 | ||
C8—S1—C10 | 91.89 (6) | O5—C22—C17 | 115.42 (11) |
O1—N1—O2 | 123.91 (12) | C21—C22—C17 | 119.79 (13) |
O1—N1—C1 | 118.25 (12) | C20—C21—C22 | 119.56 (14) |
O2—N1—C1 | 117.84 (13) | C20—C21—H21 | 120.2 |
C6—C1—C2 | 122.26 (12) | C22—C21—H21 | 120.2 |
C6—C1—N1 | 118.91 (12) | C19—C20—C21 | 121.28 (14) |
C2—C1—N1 | 118.83 (12) | C19—C20—H20 | 119.4 |
C3—C2—C1 | 118.57 (13) | C21—C20—H20 | 119.4 |
C3—C2—H2 | 120.7 | C20—C19—C18 | 119.12 (15) |
C1—C2—H2 | 120.7 | C20—C19—H19 | 120.4 |
C9—N2—C10 | 117.06 (10) | C18—C19—H19 | 120.4 |
C9—N2—C11 | 121.60 (10) | C18—C17—C22 | 119.63 (12) |
C10—N2—C11 | 121.34 (10) | C18—C17—N3 | 121.45 (13) |
C2—C3—C4 | 121.06 (12) | C22—C17—N3 | 118.57 (12) |
C2—C3—H3 | 119.5 | O3—C9—N2 | 123.54 (11) |
C4—C3—H3 | 119.5 | O3—C9—C8 | 126.13 (11) |
C10—N3—C17 | 120.27 (11) | N2—C9—C8 | 110.31 (10) |
C3—C4—C5 | 118.42 (12) | O4—C16—C11 | 115.92 (12) |
C3—C4—C7 | 124.55 (11) | O4—C16—C15 | 124.77 (13) |
C5—C4—C7 | 116.99 (11) | C11—C16—C15 | 119.31 (13) |
C16—O4—C23 | 117.08 (13) | O4—C23—H23A | 109.5 |
C6—C5—C4 | 121.06 (12) | O4—C23—H23B | 109.5 |
C6—C5—H5 | 119.5 | H23A—C23—H23B | 109.5 |
C4—C5—H5 | 119.5 | O4—C23—H23C | 109.5 |
C22—O5—C24 | 116.85 (12) | H23A—C23—H23C | 109.5 |
C5—C6—C1 | 118.61 (12) | H23B—C23—H23C | 109.5 |
C5—C6—H6 | 120.7 | C16—C15—C14 | 119.15 (14) |
C1—C6—H6 | 120.7 | C16—C15—H15 | 120.4 |
C8—C7—C4 | 130.00 (12) | C14—C15—H15 | 120.4 |
C8—C7—H7 | 115.0 | C13—C14—C15 | 121.52 (14) |
C4—C7—H7 | 115.0 | C13—C14—H14 | 119.2 |
C7—C8—C9 | 119.66 (11) | C15—C14—H14 | 119.2 |
C7—C8—S1 | 129.92 (10) | C14—C13—C12 | 118.78 (14) |
C9—C8—S1 | 110.27 (8) | C14—C13—H13 | 120.6 |
N3—C10—N2 | 121.98 (11) | C12—C13—H13 | 120.6 |
N3—C10—S1 | 127.75 (10) | C11—C12—C13 | 120.09 (14) |
N2—C10—S1 | 110.27 (8) | C11—C12—H12 | 120.0 |
O5—C24—H24A | 109.5 | C13—C12—H12 | 120.0 |
O5—C24—H24B | 109.5 | C12—C11—C16 | 121.13 (12) |
H24A—C24—H24B | 109.5 | C12—C11—N2 | 120.51 (12) |
O5—C24—H24C | 109.5 | C16—C11—N2 | 118.35 (12) |
H24A—C24—H24C | 109.5 | C17—C18—C19 | 120.61 (14) |
H24B—C24—H24C | 109.5 | C17—C18—H18 | 119.7 |
O5—C22—C21 | 124.77 (13) | C19—C18—H18 | 119.7 |
O1—N1—C1—C6 | 179.51 (12) | O5—C22—C17—C18 | 178.38 (12) |
O2—N1—C1—C6 | −1.12 (18) | C21—C22—C17—C18 | −0.3 (2) |
O1—N1—C1—C2 | −0.23 (18) | O5—C22—C17—N3 | −8.25 (17) |
O2—N1—C1—C2 | 179.14 (13) | C21—C22—C17—N3 | 173.07 (12) |
C6—C1—C2—C3 | −0.4 (2) | C10—N3—C17—C18 | −71.58 (18) |
N1—C1—C2—C3 | 179.33 (13) | C10—N3—C17—C22 | 115.18 (15) |
C1—C2—C3—C4 | −0.9 (2) | C10—N2—C9—O3 | 177.23 (12) |
C2—C3—C4—C5 | 1.8 (2) | C11—N2—C9—O3 | −2.1 (2) |
C2—C3—C4—C7 | −175.75 (13) | C10—N2—C9—C8 | −4.25 (15) |
C3—C4—C5—C6 | −1.5 (2) | C11—N2—C9—C8 | 176.45 (11) |
C7—C4—C5—C6 | 176.26 (13) | C7—C8—C9—O3 | 7.2 (2) |
C4—C5—C6—C1 | 0.3 (2) | S1—C8—C9—O3 | −176.77 (12) |
C2—C1—C6—C5 | 0.7 (2) | C7—C8—C9—N2 | −171.26 (12) |
N1—C1—C6—C5 | −179.01 (12) | S1—C8—C9—N2 | 4.76 (13) |
C3—C4—C7—C8 | 14.9 (2) | C23—O4—C16—C11 | −172.66 (13) |
C5—C4—C7—C8 | −162.70 (14) | C23—O4—C16—C15 | 6.8 (2) |
C4—C7—C8—C9 | 172.27 (13) | O4—C16—C15—C14 | −178.36 (13) |
C4—C7—C8—S1 | −2.9 (2) | C11—C16—C15—C14 | 1.1 (2) |
C10—S1—C8—C7 | 172.24 (13) | C16—C15—C14—C13 | −1.2 (2) |
C10—S1—C8—C9 | −3.25 (9) | C15—C14—C13—C12 | 0.1 (2) |
C17—N3—C10—N2 | 176.56 (12) | C14—C13—C12—C11 | 1.1 (2) |
C17—N3—C10—S1 | −4.5 (2) | C13—C12—C11—C16 | −1.1 (2) |
C9—N2—C10—N3 | −179.07 (12) | C13—C12—C11—N2 | 177.44 (13) |
C11—N2—C10—N3 | 0.23 (19) | O4—C16—C11—C12 | 179.55 (12) |
C9—N2—C10—S1 | 1.80 (14) | C15—C16—C11—C12 | 0.03 (19) |
C11—N2—C10—S1 | −178.90 (9) | O4—C16—C11—N2 | 0.94 (17) |
C8—S1—C10—N3 | −178.06 (13) | C15—C16—C11—N2 | −178.58 (12) |
C8—S1—C10—N2 | 1.01 (9) | C9—N2—C11—C12 | −79.97 (16) |
C24—O5—C22—C21 | −4.2 (2) | C10—N2—C11—C12 | 100.76 (15) |
C24—O5—C22—C17 | 177.21 (13) | C9—N2—C11—C16 | 98.65 (14) |
O5—C22—C21—C20 | −177.81 (14) | C10—N2—C11—C16 | −80.62 (15) |
C17—C22—C21—C20 | 0.7 (2) | C22—C17—C18—C19 | −0.5 (2) |
C22—C21—C20—C19 | −0.4 (2) | N3—C17—C18—C19 | −173.70 (14) |
C21—C20—C19—C18 | −0.5 (3) | C20—C19—C18—C17 | 0.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···S1 | 0.95 | 2.58 | 3.2594 (14) | 128 |
C3—H3···O1i | 0.95 | 2.57 | 3.3320 (18) | 138 |
C5—H5···O3ii | 0.95 | 2.58 | 3.3938 (17) | 145 |
C7—H7···O3ii | 0.95 | 2.40 | 3.1982 (15) | 142 |
C21—H21···N3iii | 0.95 | 2.52 | 3.4576 (19) | 170 |
C23—H23C···O1iv | 0.98 | 2.55 | 3.238 (2) | 127 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+1, −z; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y+3/2, −z+1/2. |
Funding information
Funding for this research was provided by: Ministère de l'Enseignement Supérieur et de la Recherche Scientifique, CNEPRU projecthttps://doi.org/10.13039/501100002717.
References
Akhtar, J., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316–322. Web of Science CrossRef CAS Google Scholar
Bahoussi, R. I., Djafri, A., Chouaih, A., Djafri, A. & Hamzaoui, F. (2017). Acta Cryst. E73, 173–176. CSD CrossRef IUCr Journals Google Scholar
Becke, A. D. (1997). J. Chem. Phys. 107, 8554–8560. CrossRef CAS Web of Science Google Scholar
Benhalima, N., Toubal, K., Chouaih, A., Chita, G., Maggi, S., Djafri, A. & Hamzaoui, F. (2011). J. Chem. Crystallogr. 41, 1729–1736. Web of Science CSD CrossRef CAS Google Scholar
Boulakoud, M., Toubal, K., Yahiaoui, S., Chouaih, A., Chita, G., Djafri, A. & Hamzaoui, F. (2015). J. Struct. Chem. 56, 1373–1378. Web of Science CSD CrossRef CAS Google Scholar
Dennington, R., Keith, T. & Millam, J. (2007). GAUSSVIEW4.1. Semichem Inc., Shawnee Mission, KS, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Khelloul, N., Toubal, K., Benhalima, N., Rahmani, R., Chouaih, A., Djafri, A. & Hamzaoui, F. (2016). Acta Chim. Slov. 63, 619–626. Web of Science CrossRef PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nonius (1998). KappaCCD. Nonius BV, Delft. The Netherlands. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276. Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rahmani, R., Djafri, A., Daran, J.-C., Djafri, A., Chouaih, A. & Hamzaoui, F. (2016). Acta Cryst. E72, 155–157. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rauhut, G. & Pulay, P. (1995). J. Phys. Chem. 99, 3093–3100. CrossRef CAS Web of Science Google Scholar
Saeed, S., Rachid, N., Jones, P. G., Hussain, R. & Bhatti, M. H. (2010). Cent. Eur. J. Chem. 8, 550–558. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shokol, T. V., Gorbulenko, N. V., Turov, A. V. & Khilya, V. P. (2013). Chem. Heterocycl. Compd, 49, 325–330. Web of Science CrossRef CAS Google Scholar
Smokal, V., Derkowska, B., Czaplicki, R., Krupka, O., Kolendo, A. & Sahraoui, B. (2009). Opt. Mater. 31, 554–557. Web of Science CrossRef CAS Google Scholar
Toubal, K., Djafri, A., Chouaih, A. & Talbi, A. (2012). Molecules, 17, 3501–3509. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.