research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The silver(I) nitrate complex of the ligand N-(pyridin-2-ylmeth­yl)pyrazine-2-carboxamide: a metal–organic framework (MOF) structure

CROSSMARK_Color_square_no_text.svg

aDebiopharm International S.A., Chemin Messidor 5-7, CP 5911, CH-1002 Lausanne, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by M. Zeller, Purdue University, USA (Received 9 March 2017; accepted 10 March 2017; online 21 March 2017)

The reaction of silver(I) nitrate with the mono-substituted pyrazine carboxamide ligand, N-(pyridin-2-ylmeth­yl)pyrazine-2-carboxamide (L), led to the formation of the title compound with a metal–organic framework (MOF) structure, [Ag(C11H10N4O)(NO3)]n, poly[μ-nitrato-[μ-N-(pyridin-2-ylmethyl-κN)pyrazine-2-carboxamide-κN4]silver(I)]. The silver(I) atom is coordinated by a pyrazine N atom, a pyridine N atom, and two O atoms of two symmetry-related nitrate anions. It has a fourfold N2O2 coordination sphere, which can be described as distorted trigonal–pyramidal. The ligands are bridged by the silver atoms forming –Ag–L–Ag–L– zigzag chains along the a-axis direction. The chains are arranged in pairs related by a twofold screw axis. They are linked via the nitrate anions, which bridge the silver(I) atoms in a μ2 fashion, forming the MOF structure. Within the framework there are N—H⋯O and C—H⋯O hydrogen bonds present.

1. Chemical context

We have shown recently that by using silver(I) nitrate and various tetra­kis-substituted pyrazine ligands, one-, two- and three-dimensional coordination polymers can be formed (Assoumatine & Stoeckli-Evans, 2017[Assoumatine, T. & Stoeckli-Evans, H. (2017). Acta Cryst. E73, 434-440.]). In the present report, the mono-substituted pyrazine carboxamide ligand, N-(pyridin-2-ylmeth­yl)pyrazine-2-carboxamide (L), whose crystal structure has been reported (Cati & Stoeckli-Evans, 2014[Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18-22.]), was reacted with silver(I) nitrate and led to the formation of a new compound with a metal–organic framework (MOF) structure, (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the asymmetric unit of compound (I)[link] is illustrated in Fig. 1[link]. Selected bond lengths and angles involving the Ag1 atom are given in Table 1[link]. Atom Ag1 is coordinated by a pyrazine N atom, N2, the pyridine N atom, N4, and two O atoms, O11 and O12, of two symmetry-related nitrate anions (Fig. 1[link] and Table 1[link]). Therefore, atom Ag1 has a fourfold N2O2 coordination sphere and a distorted trigonal–pyramidal geometry with a τ4 parameter = 0.72 (τ4 = 1 for a perfect tetra­hedral geometry, 0 for a perfect square-planar geometry; for inter­mediate structures, including trigonal–pyramidal and seesaw, the values of τ4 fall within the range of 0 to 1.0; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). Atom O13 of the nitrate anion lies above atom Ag1 with a distance Ag1⋯O13 of 2.864 (11) Å. The ligands are bridged by the silver atoms, forming –Ag–L–Ag–L– zigzag chains propagating along the a-axis direction (Fig. 2[link] and Table 1[link]). They are arranged in pairs related by a twofold screw axis (Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Ag1—N2i 2.238 (7) Ag1—O12ii 2.520 (9)
Ag1—N4 2.259 (8) Ag1—O13 2.864 (8)
Ag1—O11 2.498 (9)    
       
N2i—Ag1—N4 140.8 (3) N2i—Ag1—O12ii 115.0 (3)
N2i—Ag1—O11 117.1 (3) N4—Ag1—O12ii 89.9 (4)
N4—Ag1—O11 98.5 (3) O11—Ag1—O12ii 72.6 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y, z]; (ii) [-x, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the asymmetric unit of the title compound (I)[link], with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For this figure, the symmetry codes are: (i) x − [{1\over 2}], −y, z; (ii) −x, −y + 1, z + [{1\over 2}]; (iii) −x, −y + 1, z − [{1\over 2}]; (iv) x + [{1\over 2}], −y, z.
[Figure 2]
Figure 2
A view along the c axis of the –Ag–L–Ag–L zigzag chains propagating along the a-axis direction (silver atoms are grey balls and H atoms have been omitted for clarity).

3. Supra­molecular features

In the crystal of (I)[link], the chains are bridged by the nitrate anions, leading to the formation of the three-dimensional framework structure (Figs. 3[link] and 4[link]). The nitrate anions bridge the silver atoms in a μ2 manner (Fig. 4[link]), one of the many ways in which the nitrate anion inter­acts with silver atoms (Cambridge Structural Database; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Its role here is essential in forming the MOF structure.

[Figure 3]
Figure 3
A view along the c axis of (I)[link]. The H atoms have been omitted for clarity, and the silver atoms and the nitrate anions are shown as balls.
[Figure 4]
Figure 4
A view along the a axis of (I)[link]. The H atoms have been omitted for clarity, and the silver atoms and the nitrate anions are shown as balls.

Within the framework, there is an N—H⋯O hydrogen bond linking the amine group and carbonyl O atom of twofold-screw-related chains. There is also a C—H⋯O hydrogen bond present involving a pyrazine H atom and the third O atom of the nitrate anion, O13 (Table 2[link]). There are small voids of ca 68 Å3 in the framework structure, equivalent to 4.8% of the volume of the unit cell.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1iii 0.87 (3) 2.35 (12) 2.914 (12) 123 (11)
C2—H2⋯O13iv 0.94 2.59 3.330 (15) 136
Symmetry codes: (iii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y, z].

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the title ligand (L) gave 15 hits. These include a report of the crystal structure of (L) (Cati & Stoeckli-Evans, 2014[Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18-22.]), and that of a silver(I) BF4 coordination polymer (PORZOM; Hellyer et al., 2009[Hellyer, R. M., Larsen, D. S. & Brooker, S. (2009). Eur. J. Inorg. Chem. pp. 1162-1171.]). Here the ligand bridges the silver(I) atoms, coordinating in a bidentate (via the pyridine N atom and the carbonyl O atom) and monodentate (to a pyrazine N atom) fashion, forming zigzag chains along [010]. The chains are linked by Ag⋯Ag contacts, of ca 3.32 Å, forming slabs (or metal–organic networks) lying parallel to the bc plane. The remainder of the hits in the above search are mainly first row transition metal complexes or coordination polymers.

5. Synthesis and crystallization

The synthesis of the ligand (L) has been described previously (Cati & Stoeckli-Evans, 2014[Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18-22.]). Ligand (L) (27 mg, 0.126 mmol) and AgNO3 (43 mg, 0.252 mmol) were introduced into 15 ml of aceto­nitrile in a two-necked flask (100 ml), isolated from the light by aluminium foil. The solution was refluxed for 5 h. The resulting limpid solution was filtered and the filtrate allowed to stand at room temperature. Colourless plate-like crystals were obtained in a few days (yield 42 mg, 87%).

Spectroscopic data: IR (KBr disc, cm−1): 3330 (s), 3063 (m), 1670 (vs), 1656 (vs), 1598 (s), 1571 (s), 1538 (vs), 1520 (vs), 1473 (s), 1463 (s), 1386 (b and vs), 1327 (vs), 1289 (vs), 1158 (s), 1101 (m), 1064 (m), 1023 (s), 877 (w), 825 (m), 776 (m), 706 (m), 667 (s), 611 (m), 533 (m), 456 (m). The broad and very strong absorption band at 1386 cm−1 indicates the presence of a coordinating nitrate anion. Elemental Analysis for AgC11H10N5O4 (Mr = 384.10 g mol−1): Calculated: C 34.40; H 2.62; N, 18.23%; found: C 34.58; H 2.55; N 18.05%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The NH H atom was located in a difference-Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.94–0.98 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ag(C11H10N4O)(NO3)]
Mr 384.11
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 223
a, b, c (Å) 17.522 (3), 8.9559 (18), 8.9860 (13)
V3) 1410.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.68 × 0.61 × 0.08
 
Data collection
Diffractometer STOE–Siemens AED2 four-circle
Absorption correction Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.910, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3655, 2628, 2384
Rint 0.022
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.10
No. of reflections 2628
No. of parameters 194
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.04, −1.56
Absolute structure Flack x determined using 1006 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.06 (2)
Computer programs: STADI4 and X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Poly[µ-nitrato-[µ-N-(pyridin-2-ylmethyl-κN)pyrazine-2-carboxamide-κN4]silver(I)] top
Crystal data top
[Ag(C11H10N4O)(NO3)]Dx = 1.809 Mg m3
Mr = 384.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 20 reflections
a = 17.522 (3) Åθ = 10.0–13.4°
b = 8.9559 (18) ŵ = 1.45 mm1
c = 8.9860 (13) ÅT = 223 K
V = 1410.1 (4) Å3Plate, colourles
Z = 40.68 × 0.61 × 0.08 mm
F(000) = 760
Data collection top
STOE–Siemens AED2 four-circle
diffractometer
2384 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Plane graphite monochromatorθmax = 25.5°, θmin = 2.3°
ω/2θ scansh = 2121
Absorption correction: multi-scan
(MULABS; Spek, 2009)
k = 1010
Tmin = 0.910, Tmax = 1.000l = 1010
3655 measured reflections2 standard reflections every 60 min
2628 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0872P)2 + 0.889P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2628 reflectionsΔρmax = 1.04 e Å3
194 parametersΔρmin = 1.56 e Å3
2 restraintsAbsolute structure: Flack x determined using 1006 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.05137 (3)0.36456 (6)0.69187 (15)0.0402 (3)
N10.3810 (5)0.0242 (8)0.9863 (8)0.0371 (16)
N20.4836 (4)0.1928 (9)0.8154 (8)0.0338 (15)
N30.2698 (5)0.1329 (10)0.8498 (9)0.048 (2)
H3N0.279 (8)0.131 (14)0.945 (5)0.08 (5)*
N40.1730 (4)0.4408 (9)0.6583 (9)0.045 (2)
O10.3124 (5)0.0642 (12)0.6234 (8)0.048 (2)
C10.3775 (5)0.0301 (10)0.8352 (9)0.0322 (17)
C20.4271 (6)0.1143 (9)0.7518 (11)0.0336 (18)
H20.4214570.1168330.6477690.040*
C30.4894 (6)0.1818 (12)0.9640 (11)0.039 (2)
H30.5292600.2320961.0130430.047*
C40.4380 (6)0.0979 (12)1.0473 (10)0.038 (2)
H40.4441890.0936861.1511290.045*
C50.3163 (7)0.0593 (13)0.7613 (12)0.039 (3)
C60.2071 (5)0.2203 (12)0.7917 (11)0.044 (2)
H6B0.1719430.2429750.8734080.053*
H6A0.1793170.1597290.7188780.053*
C70.2304 (5)0.3641 (9)0.7190 (11)0.040 (3)
C80.3053 (5)0.4149 (12)0.706 (2)0.057 (3)
H80.3459610.3595200.7458410.068*
C90.3187 (7)0.5463 (16)0.6332 (18)0.074 (4)
H90.3689040.5822810.6252290.088*
C100.2607 (11)0.6256 (14)0.573 (3)0.086 (5)
H100.2694290.7164430.5233710.103*
C110.1881 (7)0.5672 (14)0.5870 (18)0.067 (3)
H110.1472290.6197360.5438690.081*
N100.0058 (5)0.3498 (9)0.3740 (9)0.0390 (18)
O110.0039 (7)0.4610 (9)0.4543 (11)0.072 (3)
O120.0112 (8)0.3691 (9)0.2369 (8)0.074 (3)
O130.0028 (7)0.2247 (10)0.4254 (12)0.085 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0352 (4)0.0473 (4)0.0380 (4)0.0043 (2)0.0034 (4)0.0055 (5)
N10.048 (4)0.039 (4)0.023 (3)0.006 (3)0.003 (3)0.001 (3)
N20.036 (4)0.037 (4)0.028 (4)0.006 (3)0.004 (3)0.001 (3)
N30.043 (5)0.073 (6)0.027 (4)0.021 (4)0.004 (4)0.010 (4)
N40.037 (4)0.046 (4)0.051 (6)0.001 (3)0.004 (3)0.010 (4)
O10.047 (5)0.074 (6)0.024 (5)0.017 (5)0.001 (3)0.006 (4)
C10.031 (4)0.039 (4)0.027 (4)0.002 (3)0.000 (3)0.003 (3)
C20.037 (4)0.036 (4)0.028 (4)0.000 (4)0.006 (4)0.001 (3)
C30.047 (6)0.042 (5)0.029 (5)0.004 (4)0.003 (4)0.006 (4)
C40.043 (5)0.047 (5)0.024 (4)0.002 (4)0.003 (3)0.000 (4)
C50.040 (6)0.043 (6)0.034 (7)0.003 (5)0.001 (5)0.007 (5)
C60.033 (5)0.061 (6)0.039 (5)0.011 (4)0.004 (4)0.006 (4)
C70.036 (5)0.049 (5)0.035 (8)0.000 (3)0.001 (4)0.004 (4)
C80.036 (4)0.057 (5)0.077 (8)0.005 (4)0.001 (7)0.011 (8)
C90.039 (6)0.067 (8)0.115 (13)0.007 (6)0.004 (6)0.015 (7)
C100.079 (10)0.055 (8)0.125 (15)0.016 (7)0.014 (10)0.029 (8)
C110.051 (7)0.053 (7)0.098 (10)0.001 (5)0.005 (6)0.031 (7)
N100.040 (4)0.048 (5)0.029 (4)0.009 (3)0.001 (3)0.002 (3)
O110.106 (7)0.061 (6)0.048 (4)0.025 (6)0.024 (4)0.021 (5)
O120.135 (10)0.064 (6)0.022 (4)0.005 (5)0.012 (4)0.004 (3)
O130.147 (11)0.046 (5)0.062 (6)0.012 (6)0.008 (7)0.011 (5)
Geometric parameters (Å, º) top
Ag1—N2i2.238 (7)C3—C41.392 (16)
Ag1—N42.259 (8)C3—H30.9400
Ag1—O112.498 (9)C4—H40.9400
Ag1—O12ii2.520 (9)C6—C71.500 (13)
Ag1—O132.864 (8)C6—H6B0.9800
N1—C41.317 (12)C6—H6A0.9800
N1—C11.360 (11)C7—C81.395 (14)
N2—C21.342 (12)C8—C91.36 (2)
N2—C31.343 (12)C8—H80.9400
N3—C51.316 (14)C9—C101.35 (2)
N3—C61.445 (12)C9—H90.9400
N3—H3N0.87 (3)C10—C111.38 (2)
N4—C111.327 (14)C10—H100.9400
N4—C71.334 (12)C11—H110.9400
O1—C51.242 (10)N10—O131.212 (12)
C1—C21.373 (13)N10—O111.231 (12)
C1—C51.494 (14)N10—O121.248 (11)
C2—H20.9400
N2i—Ag1—N4140.8 (3)O1—C5—C1120.1 (11)
N2i—Ag1—O11117.1 (3)N3—C5—C1116.4 (9)
N4—Ag1—O1198.5 (3)N3—C6—C7114.6 (8)
N2i—Ag1—O12ii115.0 (3)N3—C6—H6B108.6
N4—Ag1—O12ii89.9 (4)C7—C6—H6B108.6
O11—Ag1—O12ii72.6 (3)N3—C6—H6A108.6
C4—N1—C1115.5 (8)C7—C6—H6A108.6
C2—N2—C3116.2 (8)H6B—C6—H6A107.6
C2—N2—Ag1iii122.7 (6)N4—C7—C8120.4 (9)
C3—N2—Ag1iii120.2 (7)N4—C7—C6114.6 (8)
C5—N3—C6121.5 (9)C8—C7—C6125.0 (9)
C5—N3—H3N118 (9)C9—C8—C7118.9 (11)
C6—N3—H3N121 (9)C9—C8—H8120.5
C11—N4—C7119.2 (9)C7—C8—H8120.5
C11—N4—Ag1120.6 (7)C10—C9—C8121.0 (12)
C7—N4—Ag1120.0 (6)C10—C9—H9119.5
N1—C1—C2122.5 (8)C8—C9—H9119.5
N1—C1—C5117.0 (8)C9—C10—C11117.2 (12)
C2—C1—C5120.4 (8)C9—C10—H10121.4
N2—C2—C1121.4 (9)C11—C10—H10121.4
N2—C2—H2119.3N4—C11—C10123.4 (12)
C1—C2—H2119.3N4—C11—H11118.3
N2—C3—C4121.6 (10)C10—C11—H11118.3
N2—C3—H3119.2O13—N10—O11121.5 (10)
C4—C3—H3119.2O13—N10—O12120.5 (9)
N1—C4—C3122.5 (9)O11—N10—O12118.0 (9)
N1—C4—H4118.7N10—O11—Ag1103.4 (6)
C3—C4—H4118.7N10—O12—Ag1iv108.1 (6)
O1—C5—N3123.5 (12)
C4—N1—C1—C23.7 (14)C11—N4—C7—C81.0 (16)
C4—N1—C1—C5176.6 (9)Ag1—N4—C7—C8176.5 (9)
C3—N2—C2—C11.3 (14)C11—N4—C7—C6177.8 (11)
Ag1iii—N2—C2—C1167.9 (6)Ag1—N4—C7—C66.7 (11)
N1—C1—C2—N21.7 (14)N3—C6—C7—N4176.6 (9)
C5—C1—C2—N2178.5 (9)N3—C6—C7—C80.1 (15)
C2—N2—C3—C42.3 (15)N4—C7—C8—C92 (2)
Ag1iii—N2—C3—C4167.2 (7)C6—C7—C8—C9178.3 (13)
C1—N1—C4—C32.7 (14)C7—C8—C9—C101 (2)
N2—C3—C4—N10.2 (16)C8—C9—C10—C110 (3)
C6—N3—C5—O13 (2)C7—N4—C11—C101 (2)
C6—N3—C5—C1178.4 (9)Ag1—N4—C11—C10174.9 (14)
N1—C1—C5—O1176.6 (13)C9—C10—C11—N41 (3)
C2—C1—C5—O13.7 (19)O13—N10—O11—Ag119.1 (14)
N1—C1—C5—N31.8 (15)O12—N10—O11—Ag1160.9 (10)
C2—C1—C5—N3178.0 (10)O13—N10—O12—Ag1iv164.7 (9)
C5—N3—C6—C773.6 (14)O11—N10—O12—Ag1iv15.2 (14)
Symmetry codes: (i) x1/2, y, z; (ii) x, y+1, z+1/2; (iii) x+1/2, y, z; (iv) x, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1v0.87 (3)2.35 (12)2.914 (12)123 (11)
C2—H2···O13iii0.942.593.330 (15)136
Symmetry codes: (iii) x+1/2, y, z; (v) x+1/2, y, z+1/2.
 

Funding information

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel.

References

First citationAssoumatine, T. & Stoeckli-Evans, H. (2017). Acta Cryst. E73, 434–440.  CSD CrossRef IUCr Journals Google Scholar
First citationCati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18–22.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHellyer, R. M., Larsen, D. S. & Brooker, S. (2009). Eur. J. Inorg. Chem. pp. 1162–1171.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie GmbH, Damstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds