research communications
O-ethyl-β-D-galactopyranoside monohydrate
of 4-nitrophenyl 6-aDepartamento de Produtos Farmacêuticos – Faculdade de Farmácia – Universidade Federal de Minas Gerais – Avenida Antônio Carlos 6627, Belo Horizonte MG, 31.270-901, Brazil, and bDepartamento de Física – Instituto de Ciências Exatas – Universidade Federal de Minas Gerais – Avenida Antônio Carlos 6627, Belo Horizonte MG, 31.270-901, Brazil
*Correspondence e-mail: brunoleoufmg@hotmail.com
The synthesis and 14H19NO8·H2O, prepared in three steps from 6-O-ethyl-1,2;3,4-di-O-isopropylidene-α-D-galactopyranose using protecting-group strategies employed in carbohydrate chemistry, is reported. The consists of a single galactoside molecule, in which the pyranoid ring has a 4C1 conformation and the 4-nitrophenyl moiety is essentially planar. In the crystal, each carbohydrate is surrounded by other D-galactose residues and water molecules, linked by O—H⋯O hydrogen bonds involving all hydroxy groups, giving a two-dimensional lying parallel to (100) and extended into three dimensions by C—H⋯O interactions.
of the title compound, CKeywords: crystal structure; D-galactose; nitrophenyl galactopyranosides; pyranoid ring; hydrogen bonding.
CCDC reference: 1539718
1. Chemical context
Small molecules containing D-galactose moieties substituted at non-anomeric positions have been assayed against galactosidases (Viana et al., 2011; McCarter et al., 1992; Huber & Gaunt, 1983) and (Butera et al., 2009; Salameh et al., 2005). Trypanosoma cruzi trans-sialidase (TcTS) (Mendonça-Previato et al., 2010), an enzyme involved in Chagas's disease infection, is inhibited by β-D-galactopyranosides substituted at the C6 ring site, which are in general more potent than the corresponding analogues modified at other ring positions of the carbohydrate (Harrison et al., 2011). In this context, the title compound C14H19NO8 was designed and synthesized to be evaluated against TcTS and T. cruzi invasion of host cells. The synthesis and of this compound as the monohydrate (I) is reported herein.
2. Structural commentary
In the structure of the title monohydrated compound (I) (Fig. 1), the pyranoid ring adopts a 4C1 conformation, with puckering parameters Q = 0.569 (2) Å, θ = 4.6 (2)° and φ = 51 (3)°. The anomeric beta form and D-galacto configuration of the carbohydrate with C1(S), C2(R), C3(S), C4(R) and C5(R) are consistent with that expected from the synthesis. The length of the glycosidic bond is 1.408 (2) Å and the bond angles around the anomeric carbon atom (C1) range from 106.40 (16) to 111.35 (17)°. The 4-nitrophenyl substituent at C1 located in an equatorial position is essentially planar, with a r.m.s. deviation of 0.02 Å for non-hydrogen atoms [torsion angle C9—C10—N1—O11 = 179.0 (4)°]. The angle between the mean plane of the 4-nitrophenyl substituent (defined by atoms C7–C12/N1/O11/O12) and the mean sugar plane (defined by C1–C5/O5 atoms) is 57.45 (11)° [torsion angle O5—C1—O1—O7 = −79.8 (2)°]. An intramolecular C13—H13B⋯O5 interaction is also present (Table 1).
3. Supramolecular features
In the crystal, a carbohydrate moiety is connected to eight neighboring D-galactose residues by several direct and water-mediated classical hydrogen bonds (Table 1), establishing a network of interactions (Fig. 2). Regarding only the O—H⋯O interaction type, there are O2—H2B⋯O6i, O3—H3B⋯O1Wii and O4—H4B⋯O3iii hydrogen bonds. In addition, there is a single-water bridge connecting O3 to O2 of a nearby galactoside molecule (O1W—H1WA⋯O2iv and O1W—H1WB⋯O3v; for symmetry codes, see Table 1). A two-dimensional in the form of a sheet lying parallel to (100) is formed. The overall three-dimensional supramolecular aggregation is completed by intermolecular C—H⋯O interactions: C3—H3A⋯O4vi connects carbohydrate rings stacked along the a axis and C13—H13A⋯O12vii connects ethyl and nitro groups along the c axis. The 4-nitrophenyl substituent groups are arranged in parallel planes (Fig. 3), with an interplanar distance of 3.4355 (14) Å, but the slip angle (48.3°) prevents overlapping and therefore no π–π interactions are present [ring-centroid separation = 5.163 (2) Å].
4. Database survey
To the best of our knowledge, this is the first report of the O-substituted-β-D-galactopyranoside in the literature. In the Cambridge Structural Database (Version 5.38; Groom et al., 2016), the structural data for the closely related analogue 4-nitrophenyl β-D-galactopyranoside have been deposited (CSD Refcode VUCYO1; Gubica et al., 2009). Both galactosides are monohydrates and their molecular geometry and intermolecular interaction profiles in the are quite similar. The aromatic ring of the 6-unsubstituted galactoside is less planar due to the increased rotation of the N1—C10 bond, since the angle between the mean planes of the phenyl and nitro groups is ca 5.1°, compared to 2.6 (5)° in the title compound. According to the authors (Gubica et al., 2009), the deviation from coplanarity of these fragments in the 4-nitrophenyl β-D-galactopyranoside structure is due to intermolecular interactions involving the nitro group. In our crystallographic study on compound (I) we did not observe classical hydrogen bonds to 4-nitrophenyl O-atom acceptors, but only the weak C13—H13A⋯O12 interaction noted above.
of an aryl 6-5. Synthesis and crystallization
The chemical synthesis of 4-nitrophenyl 6-O-ethyl-β-D-galactopyranoside monohydrate (I) was achieved in three steps, as shown in Fig. 4.
Initially the O-alkylation of 1,2;3,4-di-O-isopropylidene-α-D-galactopyranose was carried out as reported in the literature furnishing the 6-O-alkylated derivative (2) (Cironi & Varela, 2001; McKeown & Hayward, 1960). Next, the peracetylated α-D-galactopyranosyl chloride (3) was prepared in a three-step one-pot reaction as follows. To a solution of (2) (0.59 g, 2.06 mmol) in acetyl chloride (2.92 mL, 41.13 mmol) was added methanol (0.42 mL) under ice-bath conditions. The mixture was stirred at room temperature for 2h in a closed system and concentrated hydrochloric acid (0.34 mL) was then added and the resulting mixture was stirred at room temperature for 24 h, also in a closed system. The reaction was quenched with crushed ice (about 30 mL) and the mixture was extracted with dichloromethane (3 × 25 mL). The organic layers were washed with a saturated aqueous sodium bicarbonate solution (2 × 60 mL) and water (60 mL), then dried over anhydrous sodium sulfate and concentrated. The brown oil obtained (0.68 g, 94% yield) was used in the next step without further purification.
Classical procedures in carbohydrate chemistry were employed in the next two steps (Conchie et al., 1957). The glycosylation of 4-nitrophenol with (3) in alkaline medium gave (4) in 46% yield. Treatment with sodium methoxide to remove the acetyl groups furnished (I) (as the monohydrate), in 84% yield. Colorless crystals of (I) (m.p. 424.1–424.9 K) suitable for X-ray were obtained by slow evaporation of an acetone solution (about 0.7 mg/mL) at room temperature.
Spectrometric data. [α]D28 −46 (c 1.0, DMSO). IR max (cm−1): 3354 (O—H), 1608, 1592, 1493 (C=C), 1511, 1349 (NO2), 1249, 1074 (C—O), 846 (C—H aromatic out-of-plane bending). 1H NMR (400 MHz, DMSO-d6): δH 8.20 (d, 2H, Jortho 9.2 Hz, CHCNO2), 7.22 (d, 2H, Jortho 9.2 Hz, OCCH), 5.28 (d, 1H, JOH-2,2 5.2 Hz, OH-2), 5.05 (d, 1H, J1,2 7.6 Hz, H-1), 4.91 (d, 1H, JOH-3,3 5.7 Hz, OH-3), 4.64 (d, 1H, JOH-4,4 4.6 Hz, OH-4), 3.85 (t, 1H, J5,6a 5.4 Hz, J5,6b 5.4 Hz, H-5), 3.71–3.66 (m, 1H, H-4), 3.63 (ddd, 1H, J2,1 7.6 Hz, J2,OH-2 5.2 Hz, J2,3 9.2 Hz, H-2), 3.55 (dd, 1H, J6a,5 5.4 Hz, J6a,6b 10.2 Hz, H-6a), 3.50–3.39 (m, 4H, H-3, H-6b and OCH2CH3), 1.09 (t, 3H, Jortho 6.9 Hz, OCH2CH3). 13C NMR (100 MHz, DMSO-d6): δC 162.4 (OCCH), 141.6 (CHCNO2), 125.6 (CHCNO2), 116.5 (OCCH), 100.3 (C-1), 73.8 (C-5), 73.0 (C-3), 70.0 (C-2), 69.1 (C-6), 68.3 (C-4), 65.7 (OCH2CH3), 15.1 (OCH2CH3).
6. Refinement
Crystal data, data collection and structure . Oxygen-bound H atoms were located in a difference-Fourier map and refined with distance restraints of 0.82 Å (hydroxy group H) and 0.89 Å (water H) with Uiso(H) = 1.5 Ueq(O). Carbon-bound H atoms were constrained to an ideal geometry with C—H distances in the range 0.93–0.98 Å, Uiso(H) = 1.5 Ueq(C) for methyl H atoms and Uiso(H) = 1.2 Ueq(C) for other H atoms. In the absence of significant effects, the Flack structure parameter (Flack, 1983) is essentially meaningless in this analysis and the is inferred from the known D-galacto configuration of the starting material, and remained unchanged during the synthesis. The beta configuration of C1 is confirmed by the coupling constant J1,2 = 7.6 Hz, obtained from NMR spectroscopy.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1539718
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C14H19NO8·H2O | Dx = 1.420 Mg m−3 |
Mr = 347.32 | Melting point: 424.5 K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 8847 reflections |
a = 5.1628 (3) Å | θ = 2.5–28.5° |
b = 8.1593 (3) Å | µ = 0.12 mm−1 |
c = 38.5755 (16) Å | T = 293 K |
V = 1624.99 (13) Å3 | Rod, colourless |
Z = 4 | 0.20 × 0.15 × 0.10 mm |
F(000) = 736 |
Rigaku OD Xcalibur, Atlas, Gemini Ultra diffractometer | 4265 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 3597 reflections with I > 2/s(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 10.4186 pixels mm-1 | θmax = 30.0°, θmin = 2.5° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −11→11 |
Tmin = 0.835, Tmax = 1.000 | l = −54→52 |
26976 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0448P)2 + 0.4091P] where P = (Fo2 + 2Fc2)/3 |
4265 reflections | (Δ/σ)max < 0.001 |
218 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2973 (3) | 0.04259 (19) | 0.13258 (4) | 0.0359 (4) | |
O2 | 0.3964 (4) | −0.11807 (19) | 0.06875 (4) | 0.0413 (4) | |
H2B | 0.3333 | −0.1933 | 0.0800 | 0.062* | |
O3 | 0.1726 (3) | 0.0335 (2) | 0.00904 (4) | 0.0331 (4) | |
H3B | 0.0444 | −0.0206 | 0.0142 | 0.050* | |
O4 | −0.1450 (3) | 0.2630 (2) | 0.04353 (4) | 0.0340 (4) | |
H4B | −0.2160 | 0.3194 | 0.0287 | 0.051* | |
O5 | 0.1951 (3) | 0.27596 (18) | 0.10442 (3) | 0.0300 (3) | |
O6 | 0.1929 (4) | 0.63541 (19) | 0.10524 (4) | 0.0388 (4) | |
O11 | 1.0131 (8) | 0.2628 (5) | 0.25526 (8) | 0.1100 (12) | |
O12 | 0.7670 (9) | 0.0893 (4) | 0.28005 (6) | 0.1237 (14) | |
N1 | 0.8375 (8) | 0.1651 (4) | 0.25473 (7) | 0.0748 (10) | |
C1 | 0.3383 (4) | 0.1298 (3) | 0.10156 (5) | 0.0285 (4) | |
H1 | 0.5228 | 0.1538 | 0.0984 | 0.034* | |
C2 | 0.2387 (5) | 0.0236 (3) | 0.07205 (5) | 0.0283 (4) | |
H2A | 0.0581 | −0.0078 | 0.0762 | 0.034* | |
C3 | 0.2607 (4) | 0.1215 (2) | 0.03863 (5) | 0.0257 (4) | |
H3A | 0.4454 | 0.1433 | 0.0350 | 0.031* | |
C4 | 0.1277 (4) | 0.2877 (3) | 0.04194 (5) | 0.0254 (4) | |
H4A | 0.1685 | 0.3539 | 0.0215 | 0.030* | |
C5 | 0.2224 (4) | 0.3771 (2) | 0.07412 (5) | 0.0266 (4) | |
H5 | 0.4057 | 0.4049 | 0.0711 | 0.032* | |
C6 | 0.0717 (5) | 0.5319 (3) | 0.08045 (6) | 0.0340 (5) | |
H6A | 0.0534 | 0.5910 | 0.0588 | 0.041* | |
H6B | −0.1005 | 0.5037 | 0.0886 | 0.041* | |
C7 | 0.4348 (5) | 0.0860 (3) | 0.16169 (6) | 0.0350 (5) | |
C8 | 0.3682 (7) | −0.0008 (3) | 0.19102 (6) | 0.0521 (7) | |
H8 | 0.2354 | −0.0778 | 0.1902 | 0.062* | |
C9 | 0.5004 (8) | 0.0274 (4) | 0.22159 (7) | 0.0629 (9) | |
H9 | 0.4563 | −0.0297 | 0.2416 | 0.076* | |
C10 | 0.6952 (6) | 0.1392 (4) | 0.22221 (6) | 0.0515 (7) | |
C11 | 0.7581 (8) | 0.2284 (5) | 0.19380 (7) | 0.0651 (9) | |
H11 | 0.8884 | 0.3069 | 0.1950 | 0.078* | |
C12 | 0.6266 (7) | 0.2019 (4) | 0.16305 (7) | 0.0596 (9) | |
H12 | 0.6684 | 0.2623 | 0.1434 | 0.072* | |
C13 | 0.0993 (6) | 0.6211 (3) | 0.14011 (6) | 0.0431 (6) | |
H13A | 0.2266 | 0.6673 | 0.1558 | 0.052* | |
H13B | 0.0799 | 0.5059 | 0.1458 | 0.052* | |
C14 | −0.1538 (7) | 0.7057 (5) | 0.14554 (9) | 0.0696 (10) | |
H14A | −0.1984 | 0.7024 | 0.1697 | 0.104* | |
H14B | −0.2858 | 0.6514 | 0.1323 | 0.104* | |
H14C | −0.1400 | 0.8177 | 0.1381 | 0.104* | |
O1W | 0.7487 (4) | 0.8396 (2) | 0.01513 (5) | 0.0579 (6) | |
H1WA | 0.6231 | 0.8390 | 0.0309 | 0.087* | |
H1WB | 0.7808 | 0.7339 | 0.0114 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0504 (10) | 0.0340 (8) | 0.0232 (7) | −0.0048 (8) | −0.0058 (7) | 0.0061 (6) |
O2 | 0.0589 (11) | 0.0259 (8) | 0.0391 (9) | 0.0043 (8) | 0.0131 (8) | 0.0045 (7) |
O3 | 0.0378 (8) | 0.0389 (8) | 0.0226 (7) | −0.0109 (7) | 0.0029 (6) | −0.0054 (6) |
O4 | 0.0266 (8) | 0.0428 (9) | 0.0326 (8) | −0.0055 (7) | −0.0060 (7) | 0.0056 (7) |
O5 | 0.0428 (9) | 0.0267 (7) | 0.0205 (6) | 0.0025 (7) | −0.0005 (7) | 0.0016 (6) |
O6 | 0.0548 (11) | 0.0289 (8) | 0.0326 (8) | −0.0085 (8) | 0.0020 (8) | −0.0043 (7) |
O11 | 0.101 (2) | 0.158 (3) | 0.0708 (18) | −0.019 (3) | −0.0407 (17) | −0.029 (2) |
O12 | 0.211 (4) | 0.120 (2) | 0.0396 (12) | −0.013 (3) | −0.0491 (19) | 0.0032 (15) |
N1 | 0.104 (3) | 0.082 (2) | 0.0393 (14) | 0.021 (2) | −0.0273 (16) | −0.0178 (14) |
C1 | 0.0346 (11) | 0.0263 (10) | 0.0247 (9) | −0.0019 (9) | −0.0023 (9) | 0.0051 (8) |
C2 | 0.0335 (11) | 0.0256 (9) | 0.0258 (9) | −0.0022 (9) | 0.0035 (9) | 0.0010 (8) |
C3 | 0.0283 (10) | 0.0289 (10) | 0.0199 (8) | −0.0053 (9) | 0.0013 (8) | −0.0012 (8) |
C4 | 0.0275 (10) | 0.0287 (10) | 0.0200 (9) | −0.0053 (8) | −0.0007 (8) | 0.0044 (8) |
C5 | 0.0305 (11) | 0.0259 (9) | 0.0234 (9) | −0.0055 (9) | −0.0031 (8) | 0.0034 (8) |
C6 | 0.0435 (13) | 0.0289 (10) | 0.0296 (10) | 0.0001 (10) | −0.0060 (9) | 0.0001 (9) |
C7 | 0.0494 (14) | 0.0309 (11) | 0.0248 (10) | 0.0063 (10) | −0.0055 (10) | −0.0004 (9) |
C8 | 0.085 (2) | 0.0448 (15) | 0.0267 (11) | −0.0106 (15) | −0.0050 (13) | 0.0029 (10) |
C9 | 0.109 (3) | 0.0573 (17) | 0.0229 (11) | −0.002 (2) | −0.0065 (15) | 0.0044 (12) |
C10 | 0.071 (2) | 0.0533 (16) | 0.0296 (12) | 0.0133 (16) | −0.0161 (13) | −0.0103 (12) |
C11 | 0.074 (2) | 0.079 (2) | 0.0422 (15) | −0.024 (2) | −0.0151 (15) | −0.0040 (15) |
C12 | 0.076 (2) | 0.069 (2) | 0.0341 (13) | −0.0261 (18) | −0.0139 (14) | 0.0098 (13) |
C13 | 0.0567 (16) | 0.0445 (14) | 0.0282 (11) | −0.0012 (13) | 0.0004 (11) | −0.0034 (11) |
C14 | 0.0544 (19) | 0.097 (3) | 0.0570 (18) | 0.0062 (19) | 0.0048 (15) | −0.0203 (18) |
O1W | 0.0500 (11) | 0.0482 (11) | 0.0753 (13) | −0.0145 (10) | 0.0207 (11) | −0.0187 (10) |
O1—C1 | 1.408 (2) | C5—H5 | 0.9800 |
O1—C7 | 1.375 (3) | C5—C6 | 1.504 (3) |
O2—H2B | 0.8200 | C6—H6A | 0.9700 |
O2—C2 | 1.420 (3) | C6—H6B | 0.9700 |
O3—H3B | 0.8201 | C7—C8 | 1.379 (3) |
O3—C3 | 1.423 (2) | C7—C12 | 1.370 (4) |
O4—H4B | 0.8199 | C8—H8 | 0.9300 |
O4—C4 | 1.424 (3) | C8—C9 | 1.382 (4) |
O5—C1 | 1.408 (3) | C9—H9 | 0.9300 |
O5—C5 | 1.438 (2) | C9—C10 | 1.358 (5) |
O6—C6 | 1.421 (3) | C10—C11 | 1.355 (4) |
O6—C13 | 1.434 (3) | C11—H11 | 0.9300 |
O11—N1 | 1.207 (5) | C11—C12 | 1.384 (4) |
O12—N1 | 1.212 (4) | C12—H12 | 0.9300 |
N1—C10 | 1.469 (4) | C13—H13A | 0.9700 |
C1—H1 | 0.9800 | C13—H13B | 0.9700 |
C1—C2 | 1.520 (3) | C13—C14 | 1.493 (4) |
C2—H2A | 0.9800 | C14—H14A | 0.9600 |
C2—C3 | 1.521 (3) | C14—H14B | 0.9600 |
C3—H3A | 0.9800 | C14—H14C | 0.9600 |
C3—C4 | 1.526 (3) | O1W—H1WA | 0.8898 |
C4—H4A | 0.9800 | O1W—H1WB | 0.8902 |
C4—C5 | 1.520 (3) | ||
C7—O1—C1 | 119.10 (18) | C6—C5—H5 | 108.9 |
C2—O2—H2B | 109.5 | O6—C6—C5 | 112.37 (18) |
C3—O3—H3B | 109.5 | O6—C6—H6A | 109.1 |
C4—O4—H4B | 109.4 | O6—C6—H6B | 109.1 |
C1—O5—C5 | 111.77 (15) | C5—C6—H6A | 109.1 |
C6—O6—C13 | 115.74 (19) | C5—C6—H6B | 109.1 |
O11—N1—O12 | 123.3 (3) | H6A—C6—H6B | 107.9 |
O11—N1—C10 | 119.0 (3) | O1—C7—C8 | 114.2 (2) |
O12—N1—C10 | 117.7 (4) | C12—C7—O1 | 125.6 (2) |
O1—C1—H1 | 110.5 | C12—C7—C8 | 120.2 (2) |
O1—C1—C2 | 107.33 (16) | C7—C8—H8 | 120.3 |
O5—C1—O1 | 106.40 (16) | C7—C8—C9 | 119.5 (3) |
O5—C1—H1 | 110.5 | C9—C8—H8 | 120.3 |
O5—C1—C2 | 111.35 (17) | C8—C9—H9 | 120.2 |
C2—C1—H1 | 110.5 | C10—C9—C8 | 119.5 (3) |
O2—C2—C1 | 109.70 (18) | C10—C9—H9 | 120.2 |
O2—C2—H2A | 110.3 | C9—C10—N1 | 118.8 (3) |
O2—C2—C3 | 107.99 (16) | C11—C10—N1 | 119.6 (3) |
C1—C2—H2A | 110.3 | C11—C10—C9 | 121.6 (3) |
C1—C2—C3 | 108.08 (16) | C10—C11—H11 | 120.3 |
C3—C2—H2A | 110.3 | C10—C11—C12 | 119.4 (3) |
O3—C3—C2 | 113.03 (16) | C12—C11—H11 | 120.3 |
O3—C3—H3A | 106.8 | C7—C12—C11 | 119.7 (3) |
O3—C3—C4 | 111.82 (17) | C7—C12—H12 | 120.1 |
C2—C3—H3A | 106.8 | C11—C12—H12 | 120.1 |
C2—C3—C4 | 111.25 (16) | O6—C13—H13A | 109.0 |
C4—C3—H3A | 106.8 | O6—C13—H13B | 109.0 |
O4—C4—C3 | 108.80 (17) | O6—C13—C14 | 112.9 (2) |
O4—C4—H4A | 109.0 | H13A—C13—H13B | 107.8 |
O4—C4—C5 | 110.55 (17) | C14—C13—H13A | 109.0 |
C3—C4—H4A | 109.0 | C14—C13—H13B | 109.0 |
C5—C4—C3 | 110.47 (17) | C13—C14—H14A | 109.5 |
C5—C4—H4A | 109.0 | C13—C14—H14B | 109.5 |
O5—C5—C4 | 110.93 (16) | C13—C14—H14C | 109.5 |
O5—C5—H5 | 108.9 | H14A—C14—H14B | 109.5 |
O5—C5—C6 | 107.41 (17) | H14A—C14—H14C | 109.5 |
C4—C5—H5 | 108.9 | H14B—C14—H14C | 109.5 |
C6—C5—C4 | 111.64 (17) | H1WA—O1W—H1WB | 104.0 |
O1—C1—C2—O2 | −67.1 (2) | C1—O5—C5—C6 | −177.75 (17) |
O1—C1—C2—C3 | 175.37 (17) | C1—C2—C3—O3 | 179.94 (18) |
O1—C7—C8—C9 | 177.4 (3) | C1—C2—C3—C4 | −53.3 (2) |
O1—C7—C12—C11 | −177.0 (3) | C2—C3—C4—O4 | −70.0 (2) |
O2—C2—C3—O3 | 61.3 (2) | C2—C3—C4—C5 | 51.5 (2) |
O2—C2—C3—C4 | −171.91 (17) | C3—C4—C5—O5 | −53.3 (2) |
O3—C3—C4—O4 | 57.4 (2) | C3—C4—C5—C6 | −173.06 (17) |
O3—C3—C4—C5 | 178.97 (16) | C4—C5—C6—O6 | −166.46 (18) |
O4—C4—C5—O5 | 67.2 (2) | C5—O5—C1—O1 | 179.69 (16) |
O4—C4—C5—C6 | −52.6 (2) | C5—O5—C1—C2 | −63.7 (2) |
O5—C1—C2—O2 | 176.81 (16) | C6—O6—C13—C14 | −77.1 (3) |
O5—C1—C2—C3 | 59.3 (2) | C7—O1—C1—O5 | −79.8 (2) |
O5—C5—C6—O6 | 71.7 (2) | C7—O1—C1—C2 | 160.93 (19) |
O11—N1—C10—C9 | 179.0 (4) | C7—C8—C9—C10 | −0.5 (5) |
O11—N1—C10—C11 | −2.0 (5) | C8—C7—C12—C11 | 1.6 (5) |
O12—N1—C10—C9 | −2.8 (5) | C8—C9—C10—N1 | −178.7 (3) |
O12—N1—C10—C11 | 176.2 (4) | C8—C9—C10—C11 | 2.3 (5) |
N1—C10—C11—C12 | 178.9 (3) | C9—C10—C11—C12 | −2.1 (5) |
C1—O1—C7—C8 | 176.3 (2) | C10—C11—C12—C7 | 0.1 (6) |
C1—O1—C7—C12 | −4.9 (4) | C12—C7—C8—C9 | −1.4 (5) |
C1—O5—C5—C4 | 60.0 (2) | C13—O6—C6—C5 | −96.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2B···O6i | 0.82 | 1.85 | 2.670 (2) | 179 |
O3—H3B···O1Wii | 0.82 | 1.91 | 2.711 (2) | 167 |
O4—H4B···O3iii | 0.82 | 1.97 | 2.785 (2) | 170 |
O1W—H1WA···O2iv | 0.89 | 1.90 | 2.776 (3) | 166 |
O1W—H1WB···O3v | 0.89 | 2.39 | 3.208 (2) | 154 |
C3—H3A···O4vi | 0.98 | 2.35 | 3.283 (3) | 158 |
C13—H13A···O12vii | 0.97 | 2.55 | 3.167 (3) | 121 |
C13—H13B···O5 | 0.97 | 2.53 | 3.173 (3) | 123 |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y−1, z; (iii) x−1/2, −y+1/2, −z; (iv) x, y+1, z; (v) x+1/2, −y+1/2, −z; (vi) x+1, y, z; (vii) −x+1, y+1/2, −z+1/2. |
Funding information
Funding for this research was provided by: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
References
Butera, A. P., Filho, J. de S., Prado, M. A. F., Lisboa, M. P. & Alves, R. J. (2009). Helv. Chim. Acta, 92, 176–187. CrossRef CAS Google Scholar
Cironi, P. & Varela, O. (2001). J. Braz. Chem. Soc. 12, 667–672. CrossRef CAS Google Scholar
Conchie, J., Levvy, G. A. & Marsh, C. A. (1957). Adv. Carbohydr. Chem. 12, 157–187. PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gubica, T., Temeriusz, A., Paradowska, K., Ostrowski, A., Klimentowska, P. & Cyrański, M. K. (2009). Carbohydr. Res. 344, 1734–1744. CSD CrossRef PubMed CAS Google Scholar
Harrison, J. A., Kartha, K. P. R., Fournier, E. J. L., Lowary, T. L., Malet, C., Nilsson, U. J., Hindsgaul, O., Schenkman, S., Naismith, J. H. & Field, R. A. (2011). Org. Biomol. Chem. 9, 1653–1660. CrossRef CAS PubMed Google Scholar
Huber, R. E. & Gaunt, M. T. (1983). Arch. Biochem. Biophys. 220, 263–271. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
McCarter, J. D., Adam, M. J. & Withers, S. G. (1992). Biochem. J. 286, 721–727. CrossRef PubMed CAS Google Scholar
McKeown, G. G. & Hayward, L. D. (1960). Can. J. Chem. 38, 174–175. CrossRef CAS Google Scholar
Mendonça-Previato, L., Todeschini, A. R., Freire de Lima, L. & Previato, J. O. (2010). Open Parasitol. J. 4, 111–115. Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Salameh, B. A., Leffler, H. & Nilsson, U. J. (2005). Bioorg. Med. Chem. Lett. 15, 3344–3346. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Viana, P. A., de Rezende, S. T., Alves, A. de A., Manfrini, R. M., Alves, R. J., Bemquerer, M. P., Santoro, M. M. & Guimarães, V. M. (2011). Carbohydr. Res. 346, 602–605. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.