research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three 4-substituted-2,2′-bi­pyridines synthesized by Sonogashira and Suzuki–Miyaura cross-coupling reactions

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and bDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by G. Smith, Queensland University of Technology, Australia (Received 3 March 2017; accepted 24 March 2017; online 31 March 2017)

Facile synthetic routes for three 4-substituted 2,2′-bi­pyridine derivatives, 4-[2-(4-methyl­phenyl)­ethyn­yl]-2,2′-bi­pyridine, C19H14N2, (I), 4-[2-(pyridin-3-yl)ethyn­yl]-2,2′-bi­pyridine, C17H11N3, (II), and 4-(indol-4-yl)-2,2′-bi­pyridine, C18H13N3, (III), via Sonogashira and Suzuki–Miyaura cross-coupling reactions, respect­ively, are described. As indicated by X-ray analysis, the 2,2′-bi­pyridine core, the ethyl­ene linkage and the substituents of (I) and (II) are almost planar [dihedral angles between the two ring systems: 8.98 (5) and 9.90 (6)° for the two mol­ecules of (I) in the asymmetric unit and 2.66 (14)° for (II)], allowing π-conjugation. On the contrary, in (III), the indole substituent ring is rotated significantly out of the bi­pyridine plane [dihedral angle = 55.82 (3)°], due to steric hindrance. The crystal packings of (I) and (II) are dominated by ππ inter­actions, resulting in layers of mol­ecules parallel to (30-2) in (I) and columns of mol­ecules along the a axis in (II). The packing of (III) exhibits zigzag chains of mol­ecules along the c axis inter­acting through N—H⋯N hydrogen bonds and ππ inter­actions. The contributions of unknown disordered solvent mol­ecules to the diffraction intensities in (II) were removed with the SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18] algorithm of PLATON. The given chemical formula and other crystal data do not take into account these solvent mol­ecules.

1. Chemical context

The bidentate ligand 2,2′-bi­pyridine (Bpy) is one of the most studied chelate systems and has found applications in various fields, including catalysis (Kitanosono et al., 2015[Kitanosono, T., Zhu, L., Liu, C., Xu, P. & Kobayashi, S. (2015). J. Am. Chem. Soc. 137, 15422-15425.]; Song et al., 2015[Song, N., Concepcion, J. J., Binstead, R. A., Rudd, J. A., Vannucci, A. K., Dares, C. J., Coggins, M. K. & Meyer, T. J. (2015). Proc. Natl Acad. Sci. USA, 112, 4935-4940.]), chemosensors for metal ions (Al Abdel Hamid et al., 2011[Al Abdel Hamid, A. A. G., Al-Khateeb, M., Tahat, Z. A., Qudah, M., Obeidat, S. M. & Rawashdeh, A. M. (2011). Int. J. Inorg. Chem. (Article ID 843051, 6 pages).]), electroluminescent devices (Li et al., 2000[Li, M., Yu, J., Chen, Z., Totani, K., Watanabe, T. & Miyata, S. (2000). Jpn. J. Appl. Phys. 39, L1171-L1173.]), and mol­ecular shuttles (Lewis et al., 2016[Lewis, J. E. M., Bordoli, R. J., Denis, M., Fletcher, C. J., Galli, M., Neal, E. A., Rochette, E. M. & Goldup, S. M. (2016). Chem. Sci. 7, 3154-3161.]). In particular, as a result of their unique photophysical characteristics, 2,2′-bi­pyridine derivatives are used in the synthesis of photosensitizers (Grätzel, 2003[Grätzel, M. (2003). J. Photochem. Photobiol. Photochem. Rev. 4, 145-153.], Grätzel, 2009[Grätzel, M. (2009). Acc. Chem. Res. 42, 1788-1798.]; Chen et al., 2012[Chen, X., Li, C., Grätzel, M., Kostecki, R. & Mao, S. S. (2012). Chem. Soc. Rev. 41, 7909-7937.]; Nguyen et al., 2015[Nguyen, N. H., Mai, A. T., Dang, X. T. & Luong, T. T. T. (2015). J. Sol. Energy Eng. 137, 021006-1-5.]). In order to fine tune its properties, great efforts have been made to develop new synthetic methods for function­alization of this bidentate ligand by introducing various substituents (Kaes et al., 2000[Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553-3590.]; Newkome et al., 2004[Newkome, G. R., Patri, A. K., Holder, E. & Schubert, U. S. (2004). Eur. J. Org. Chem. pp. 235-254.]; Ortiz et al., 2013[Ortiz, J. H. M., Vega, N., Comedi, D., Tirado, M., Romero, I., Fontrodona, X., Parella, T., Vieyra, F. E. M., Borsarelli, C. D. & Katz, N. E. (2013). Inorg. Chem. 52, 4950-4962.]; Norris et al., 2013[Norris, M. R., Concepcion, J. J., Glasson, C. R. K., Fang, Z., Lapides, A. M., Ashford, D. L., Templeton, J. L. & Meyer, T. J. (2013). Inorg. Chem. 52, 12492-12501.]).

In this paper, we report on the synthesis of three 4-substituted 2,2′-bi­pyridine derivatives, namely 4-(4-methyl­phenyl­ethyn­yl)-2,2′-bi­pyridine, C19H14N2, (I)[link], 4-(pyridin-3-ylethyn­yl)-2,2′-bi­pyridine, C17H11N3, (II)[link] and 4-(indol-4-yl)-2,2′-bi­pyridine, C18H13N3, (III)[link], obtained from the Sonogashira (Sonogashira et al., 1975[Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467-4470.]; Sonogashira, 2002[Sonogashira, K. (2002). J. Organomet. Chem. 653, 46-49.]; Negishi & de Meijere, 2002[Negishi, E. & de Meijere, A. (2002). In Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley: New York.]) and Suzuki–Miyaura (Miyaura & Suzuki, 1979[Miyaura, N. & Suzuki, A. (1979). J. Chem. Soc. Chem. Commun. pp. 866-867.]; Suzuki, 1999[Suzuki, A. (1999). J. Organomet. Chem. 576, 147-168.]; Kumar et al., 2014[Kumar, A., Rao, G. K., Saleem, F., Kumar, R. & Singh, A. K. (2014). J. Hazard. Mater. 269, 9-17.]; Blangetti et al., 2013[Blangetti, M., Rosso, H., Prandi, C., Deagostino, A. & Venturello, P. (2013). Molecules, 18, 1188-1213.]) cross-coupling reactions of 4-bromo-2,2′-bi­pyridine. The ethynyl bridge in (I)[link] and (II)[link] was introduced to decrease the steric hindrance between the pyridine ring and the aromatic substituent and at the same time to extend the π-conjugation. The crystal structures as well as geometry and the mol­ecular arrangement in the crystals of (I)[link], (II)[link] and (III)[link] are reported herein.

[Scheme 1]

2. Structural commentary

The structures of the three 4-substituted 2,2′-bi­pyridines (I)[link], (II)[link], and (III)[link] were elucidated by 1H and 13C NMR spectros­copy using d1-chloro­form as solvent (see Synthesis and crystallization). The 1H NMR spectra of the three compounds show typical proton resonances and splitting patterns of the Bpy core. The proton resonances of the introduced alkyne or the heteroarene moiety are easily recognized. In the 13C NMR spectrum of (I)[link] and (II)[link], the two resonance signals at about 94.3 and 86.5 p.p.m. prove the 2,2′-bi­pyridine and the tolyl or pyridine substituent to be connected by a C≡C linker. These signals typical for Csp carbons are not observed in the 13C NMR spectrum of (III)[link] as the heterocycle is directly attached to the 2,2′-bi­pyridine core.

The mol­ecular conformations of the compounds (I)[link], (II)[link] and (III)[link] determined in the X-ray structural analysis are shown in Fig. 1[link]. The asymmetric unit of (I)[link] (Fig. 1[link]a) consists of two mol­ecules with similar conformational features (r.m.s deviation = 0.120 Å) and are linked by a C—H⋯N hydrogen bond (Table 1[link]). As expected, the aromatic substituents introduced via an ethyl­ene bridge in (I)[link] (Fig. 1[link]a) and (II)[link] (Fig. 1[link]b) are essentially coplanar with the 2,2′-bi­pyridine core, as indicated by the dihedral angles between the aromatic moieties, viz. 8.98 (5) and 9.90 (6)° in (I)[link] and 2.66 (14)° in (II)[link]. On the other hand, the indole moiety and the bipyridyl ring are out of plane in (III)[link] (Fig. 1[link]c) in order to reduce the van de Waals repulsion between H5 with H19 and H3 with H17, the dihedral angle between the mean planes of the bi­pyridine core and indole ring being 55.82 (3)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N28 0.95 2.53 3.472 (2) 169
C26—H26⋯N7i 0.95 2.55 3.487 (3) 171
Symmetry code: (i) x, y+1, z.
[Figure 1]
Figure 1
View of the asymmetric unit of (a) (I)[link], (b) (II)[link], and (c) (III)[link] showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level.

The 2,2′-bipyridyl groups in the three compounds exhibit trans conformations and the pyridine rings are essentially co-planar, as indicated by the dihedral angles between the best planes through the two pyridine rings, viz. 3.40 (9) and 10.81 (9)° in (I)[link], 0.4 (2)° in (II)[link] and 11.66 (7)° in (III)[link]. These values are within the range 0.8–28.5° observed for the 2,2′-bi­pyridine derivatives substituted at the 4-position with an aromatic substituent (Table 4[link]). All of these structural characteristics are consistent with those in our previous report (Nguyen et al., 2014[Nguyen, H., Nguyen Bich, N., Dang, T. T. & Van Meervelt, L. (2014). Acta Cryst. C70, 895-899.]).

Table 4
4-Substituted 2,2′-bi­pyridines present in the Cambridge Structural Databasea

The dihedral angle py–py is defined as the angle between the best planes through both pyridine rings and the dihedral angle py–Ar is defined as the angle between the best planes through the 4-substituted pyridine and the aromatic substituent.

4-Substituent CSD refcode Dihedral angle py–py (°) Dihedral angle py–Ar (°) Reference
(substituted) phen­yl EWOYEW 0.8 9.1 Ramakrishnan et al. (2016[Ramakrishnan, R., Mallia, A. R., Niyas, M. A., Sethy, R. & Hariharan, M. (2016). Cryst. Growth Des. 16, 6327-6336.])
  EWOXIZ 7.8/28.5/12.5 35.8/32.8/40.8 Ramakrishnan et al. (2016[Ramakrishnan, R., Mallia, A. R., Niyas, M. A., Sethy, R. & Hariharan, M. (2016). Cryst. Growth Des. 16, 6327-6336.])
  ZOZRIF 6.6 24.5 Wang et al. (1996[Wang, W., Baba, A., Schmehl, R. H. & Mague, J. T. (1996). Acta Cryst. C52, 658-660.])
  RIPQUC 15.7 42.9 Cargill Thompson et al. (1997[Cargill Thompson, A. M. W., Smailes, M. C. C., Jeffery, J. C. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 737-744.])
triazine MULRUI 14.2/3.7/18.5 8.1/6.1/25.2 Laramée-Milette et al. (2015[Laramée-Milette, B., Lussier, F., Ciofini, I. & Hanan, G. S. (2015). Dalton Trans. 44, 11551-11561.])
(substituted) naphthalene EWOXUL 2.8/10.8/1.8 6.0/26.1/32.9 Ramakrishnan et al. (2016[Ramakrishnan, R., Mallia, A. R., Niyas, M. A., Sethy, R. & Hariharan, M. (2016). Cryst. Growth Des. 16, 6327-6336.])
  EWOYIA 18.2/20.8 34.8/31.7 Ramakrishnan et al. (2016[Ramakrishnan, R., Mallia, A. R., Niyas, M. A., Sethy, R. & Hariharan, M. (2016). Cryst. Growth Des. 16, 6327-6336.])
  OKAGOX 23.0/9.6 44.6/39.3 He et al. (2011[He, Y., Bian, Z., Kang, C. & Gao, L. (2011). Chem. Commun. 47, 1589-1591.])
2,2′-bi­pyridine TEBGAI 3.2/2.7 0.0/0.0 Honey & Steel (1991[Honey, G. E. & Steel, P. J. (1991). Acta Cryst. C47, 2247-2249.])
anthracene EWOWUK 4.0 73.8 Ramakrishnan et al. (2016[Ramakrishnan, R., Mallia, A. R., Niyas, M. A., Sethy, R. & Hariharan, M. (2016). Cryst. Growth Des. 16, 6327-6336.])
phenanthrene EWOXAR 5.2 64.8 Ramakrishnan et al. (2016[Ramakrishnan, R., Mallia, A. R., Niyas, M. A., Sethy, R. & Hariharan, M. (2016). Cryst. Growth Des. 16, 6327-6336.])
  EWOXEV 11.1 53.1 Ramakrishnan et al. (2016[Ramakrishnan, R., Mallia, A. R., Niyas, M. A., Sethy, R. & Hariharan, M. (2016). Cryst. Growth Des. 16, 6327-6336.])
pyrene EWOXOF 4.0 51.6 Ramakrishnan et al. (2016[Ramakrishnan, R., Mallia, A. R., Niyas, M. A., Sethy, R. & Hariharan, M. (2016). Cryst. Growth Des. 16, 6327-6336.])
Note: (a) Groom et al. (2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

In conclusion, we have described facile synthetic procedures for 4-alkynylated and 4-aryl­ated 2,2′-bi­pyridines by means of the Sonogashira and Suzuki–Miyaura cross-coupling reactions of 4-bromo-2,2′-bi­pyridine. Based on this strategy, two novel 4-alkynylbi­pyridines and one 4-aryl-2,2′-bi­pyridine were synthesized whose structures were partially elucidated by NMR spectroscopic methods. In addition, the X-ray structural analysis revealed the planarity of the 4-alkynylbi­pyridines as the triple-bond linker separates the bi­pyridine and the introduced aromatic parts. This provides a hint for fine-tuning the electronic properties of this ligand by introducing suitable substituents. On the other hand, the introduced heterocyclic ring in compound (III)[link], formed via Suzuki–Miyaura cross-coupling is twisted from the 2,2′-bi­pyridine ring due to the van der Waals repulsive force of the hydrogen atoms in close proximity.

3. Supra­molecular features

The crystal packing of (I)[link] is dominated by πpyridineπpyridine and πpyridineπphen­yl stacking inter­actions [Fig. 2[link]; Cg1⋯Cg3i = 3.7769 (11) and Cg4⋯Cg5ii = 3.8707 (11) Å; Cg1, Cg3, Cg4 and Cg5 are the centroids of the N1/C2–C6, C15–C20, N22/C23–27 and N28/C29–C33 rings, respectively; symmetry codes: (i) −x, −y, −z; (ii) −x, −y + 1, −z]. The mol­ecules lie in layers parallel to (30[\overline{2}]) and within these planes, neighboring mol­ecules inter­act with each other through C—H⋯N hydrogen bonds (Table 1[link]).

[Figure 2]
Figure 2
Partial crystal packing of (I)[link] showing C—H⋯N (blue dotted lines) and ππ (gray dotted lines) inter­actions. [Symmetry codes: (i) −x, −y, −z; (ii) −x, −y + 1, −z; (iii) x, y + 1, z].

Similarly, ππ inter­actions between the pyridine rings of (II)[link] result in columms of mol­ecules along the a-axis direction [Cg1⋯Cg1i = Cg2⋯Cg2i = Cg3⋯Cg3i = 3.7436 (3) Å; Cg1, Cg2, and Cg3 are centroids of the N1/C2–C6; N7/C7–C12 and N15/C16–C20 rings, respectively; symmetry code: (i) x + 1, y, z]. Neighboring columns inter­act by C—H⋯N hydrogen bonds (Fig. 3[link], Table 2[link]). In between the columns, large voids (375 Å3) contain disordered solvent mol­ecules.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N7i 0.95 2.55 3.475 (5) 163
C18—H18⋯N1ii 0.95 2.60 3.509 (5) 161
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing of (II)[link] viewed along the a axis. C—H⋯N hydrogen bonds between neighboring columns of stacked mol­ecules are shown as blue dotted lines. Voids are contoured (green grid) at 0.2 Å away from the mol­ecular surface resulting in a total void volume of 375 Å3. [Symmetry codes: (i) x − 1, −y + [{3\over 2}], z − [{1\over 2}]; (ii) x + 1, −y + [{3\over 2}], z + [{1\over 2}]].

The mol­ecules in the crystal packing of (III)[link] are arranged in zigzag chains running along the c axis by hydrogen-bonding inter­actions in a head-to-tail manner between N13—H13⋯N7i [symmetry code: (i) x, −y + [{3\over 2}], z + [{1\over 2}]; Table 3[link], Fig. 4[link]]. These chains inter­act by ππ stacking between pyridine rings [Cg2⋯Cg3i = 3.6920 (8) Å; Cg2 and Cg3 are the centroids of the N1/C2–C6 and N7/C8–C12 rings, respectively; symmetry code: (i) x, −y + [{1\over 2}], z + [{1\over 2}]] and C—H⋯π inter­actions (Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N13/C14–C16/C21, N1/C2–C6, N7/C8–C12 and C16–C21, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯N7i 0.88 2.22 3.002 (2) 148
C14—H14⋯N1ii 0.95 2.39 3.336 (2) 176
C5—H5⋯Cg1iii 0.95 2.58 3.3371 (14) 137
C6—H6⋯Cg4iii 0.95 2.78 3.5268 (14) 136
C11—H11⋯Cg4iv 0.95 2.56 3.3548 (15) 141
C17—H17⋯Cg2v 0.95 2.85 3.6555 (15) 143
C20—H20⋯Cg3vi 0.95 2.86 3.5814 (16) 133
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) -x, -y+1, -z+1.
[Figure 4]
Figure 4
Crystal packing of (III)[link] showing N—H⋯N hydrogen bonds (blue dotted lines) and ππ (gray dotted lines) inter­actions·[Symmetry codes: (i) x, −y + [{3\over 2}], z + [{1\over 2}]; (ii) x, −y + [{1\over 2}], z − [{1\over 2}]; (iii) x, −y + [{3\over 2}], z − [{1\over 2}]; (iv) x, −y + [{1\over 2}], z + [{1\over 2}]].

4. Database survey

An extension of the π-conjugated system of 2,2′-bi­pyridine can be obtained by the introduction of an aromatic substituent. A search in the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for crystal structures of 2,2′-bi­pyridine derivatives substituted at the 4-position with an aromatic substituent resulted in 13 unique hits (excluding organometallic compounds) with substituents ranging from smaller phenyl and triazine rings to bi­pyridine, naphthalene, anthracene and phenanthrene to a larger pyrene ring (Table 4[link]). However, it is evident from the dihedral angle between the best planes through pyridine and its aromatic 4-substituent (varying from 0.0 to 73.8°) that the degree of extension of the π-conjugated system depends on the steric hindrance of the substituent and the ππ inter­actions in the crystal packing.

5. Synthesis and crystallization

The compound 4-bromo-2,2′-bi­pyridine was prepared using literature procedures (Egbe et al., 2001[Egbe, D. A. M., Amer, A. M. & Klemm, E. (2001). Des. Monomers Polym. 4, 169-175.]). The alkynylated and aryl­ated Bpy derivatives (I)[link], (II)[link], and (III)[link] were prepared by the palladium-catalyzed Sonogashira and the palladium-catalyzed Suzuki–Miyaura cross-coupling reactions.

(a) Synthesis of 4-(4-methyl­phenyl­ethyn­yl)-2,2′-bi­pyridine (I)[link] by the Sonogashira reaction: Toluene (4.0 ml) was deaerated by exchanging between a vacuum and a stream of argon (3 times). To this argon-saturated solution were added 4-bromo-2,2′-bi­pyridine (59 mg, 0.25 mmol, 1.0 equiv), Pd(PPh3)4 (28.5 mg, 0.025 mmol, 10 mol%) and CuI (10 mg, 0.050 mmol, 20 mol%). The pale-yellow mixture obtained was degassed again as described above. To the reaction mixture, a solution of p-tolyl­acetyl­ene (34.8 mg, 0.3 mmol, 1.2 equiv) in argon-saturated toluene (1.0 ml) was added dropwise over 15 minutes. The reaction mixture was heated at 323 K for 4 h. The reaction mixture turned reddish brown when the cross-coupling completed as indicated by TLC (EtOAc:n-hexane 1:4, v/v). The reaction mixture was diluted with EtOAc, washed with water (3 times), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by SiO2 column chromatography to furnish the 4-alkynated 2,2′-bi­pyridine (I)[link] as a brownish yellow solid (43 mg, 64%). M.p. 365–367 K; 1H NMR (CDCl3, 500 MHz): δ (p.p.m.) 8.70 (dt, J = 4.5 Hz and 0.5 Hz, 1 H), 8.65 (d, J = 5.0 Hz, 1 H), 8.52 (s, 1 H), 8.40 (dd, J = 8.0 Hz and 0.5 Hz, 1 H), 7.82 (td, J = 7.5 Hz and 1.5 Hz, 1 H), 7.45 (d, J = 8 Hz, 2 H, Ar), 7.38 (dd, J = 5.0 Hz and 1.0 Hz, 1 H), 7.32 (m, 1 H), 7.19 (d, J = 8 Hz, 2 H, Ar), 2.38 (s, 3 H, –CH3). 13C NMR (CDCl3, 125 MHz): δ(p.p.m.) 156.2, 155.6, 149.2, 149.1, 139.5, 137.0, 132.7, 131.8, 129.2, 125.2, 123.9, 123.2, 121.1, 119.2, 94.3 and 86.5 (C≡C), 21.6 (–CH3). Besides the desired cross-coupling product, a small amount of the Glaser homo-coupling by-product was also observed. Single crystals of (I)[link] suitable for X-ray structure analysis were obtained by recrystallization from chloro­form.

(b) 4-(Pyridine-3-ylethyn­yl)-2,2′-bi­pyridine (II)[link]: Following the same procedure for (I)[link], except that no CuI co-catalyst was used, (II)[link] was obtained from 4-bromo-2,2′-bi­pyridine (59 mg, 0.25 mmol, 1.0 equiv) and pyridine-3-yl­acetyl­ene (31 mg, 0.3 mmol, 1.2 equiv) after 4 h at 373 K as a white solid (50 mg, 78%). M.p. 398–400 K; 1H NMR (CDCl3, 500 MHz): δ (p.p.m.) 8.81 (s, 1 H), 8.71 (s, 2 H), 8.62 (dd, J = 5.0 Hz and 1.0 Hz, 1 H), 8.57 (s, 1 H), 8.43 (d, J = 7.5 Hz, 1 H), 7.85 (m, 2 H), 7.42 (d, J = 8.0 Hz, 1 H), 7.33 (m, 2 H). 13C NMR (CDCl3, 125 MHz): δ(p.p.m.) 156.3, 155.3, 152.4, 149.4, 149.3, 149.2, 138.7, 137.0, 131.6, 125.1, 124.0, 123.2, 123.2, 121.2, 119.5, 90.2 (C≡C). Single crystals of (II)[link] suitable for X-ray structure analysis were obtained by recrystallization from ethyl acetate.

(c) Synthesis of 4-(1H-indol-4-yl)-2,2′-bi­pyridine (III)[link] by the Suzuki–Miyaura reaction: Toluene was degassed by exchanging between a vacuum and a stream of argon (3 times). 5-Bromo-2,2′-bi­pyridine (58 mg, 0.25 mmol, 1.0 equiv) and Pd(Ph3P)4 (28.8 mg, 0.025 mmol, 10 mol%) were dissolved in this degassed toluene (4 mL). To the obtained solution, H2O (1 ml), K3PO4 (105.5 mg, 0.5 mmol, 2.0 equiv), and 1H-indol-4-ylboronic acid (48.3 mg, 0.3 mmol, 1.2 equiv) were added. The reaction was stirred vigorously under an argon atmosphere at 383 K until TLC (n-hexa­ne–ethyl acetate 95:5,v/v) indicated the complete consumption of the starting material. The reaction mixture was filtered to remove insoluble particles. The filtrate was washed several times with H2O, dried over Na2SO4, and concentrated under reduced pressure by rotary evaporation. The residue was purified by SiO2 column chromatography (n-hexa­ne–ethyl acetate 97:3, v/v) to furnish the desired 4-aryl­ated 2,2′-bi­pyridine (III)[link] as a yellow solid (32.5 mg, 48%). M.p. 356–357 K; 1H NMR (CDCl3, 500 MHz): δ (p.p.m.) 8.86 (br s, 1 H, NH indole), 8.74 (m, 2 H), 8.70 (d, J = 5.0 Hz, 1 H), 8.45 (d, J = 8.0 Hz, 1 H), 8.04 (t, J = 1.0 Hz, 1 H), 7.83 (td, J = 7.5 Hz and 2.0 Hz, 1 H), 7.60 (dd, J = 5.0 Hz and 2.0 Hz, 1 H), 7.55 (dd, J = 8.0 Hz and 2.0 Hz, 1 H), 7.42 (d, J = 7.5 Hz, 1 H), 7.31 (m, 1 H), 7.22 (t, J = 3.0 Hz, 1 H), 6.61 (t, J 2.0 Hz, 1 H). 13C NMR (CDCl3, 125 MHz)) : δ(p.p.m.) 156.5, 156.3, 150.7, 149.4, 149.1, 136.9, 136.4, 129.9, 128.5, 125.3, 123.7, 121.7, 121.4, 121.3, 119.6, 119.2, 111.6, 103.2. Single crystals of (III)[link] suitable for X-ray structure analysis were obtained by recrystallization from chloro­form.

6. Structure solution and refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The structures of (I)[link] and (III)[link] were solved using SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and for (II)[link] by charge flipping using Olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]). All hydrogen atoms were placed in idealized positions and refined in a riding mode with Uiso(H) = 1.2 times those of their parent atoms (1.5 times for methyl groups), with C—H distances of 0.95 Å (aromatic) and 0.98 Å (CH3) and N—H distances of 0.88 Å.

Table 5
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C19H14N2 C17H11N3 C18H13N3
Mr 270.32 257.29 271.31
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 9.8697 (7), 12.6040 (7), 22.8414 (13) 3.7436 (3), 34.146 (3), 10.7528 (9) 9.6951 (6), 12.0142 (7), 12.0376 (9)
β (°) 97.890 (6) 94.799 (8) 109.552 (8)
V3) 2814.5 (3) 1369.7 (2) 1321.28 (15)
Z 8 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 0.08 0.08
Crystal size (mm) 0.30 × 0.15 × 0.10 0.40 × 0.10 × 0.10 0.35 × 0.35 × 0.20
 
Data collection
Diffractometer Agilent SuperNova (single source at offset, Eos detector) Agilent SuperNova (single source at offset, Eos detector) Agilent SuperNova (single source at offset, Eos detector)
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.552, 1.000 0.695, 1.000 0.993, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12597, 5747, 3728 4235, 1926, 1645 8569, 2692, 2363
Rint 0.025 0.022 0.023
θmax (°) 26.4 23.3 26.4
(sin θ/λ)max−1) 0.625 0.555 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.146, 1.04 0.083, 0.208, 1.15 0.038, 0.095, 1.06
No. of reflections 5747 1926 2692
No. of parameters 381 181 190
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.22 0.44, −0.29 0.21, −0.23
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

For (II)[link] a region of electron density amounting to the scattering from approximately 10.7 carbon atoms, apparently disordered in channels between columns of stacking mol­ecules, was removed with the SQUEEZE routine of PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) after it proved impossible to identify it with any reasonable solvent mol­ecule. A suggestion of possible twinning generated by PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) was further checked but subsequent refinement did not improve and was neglected.

Supporting information


Computing details top

For all compounds, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I), (III); Olex2.solve (Bourhis et al., 2015) for (II). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I), (III); SHELXL (Sheldrick, 2015) for (II). For all compounds, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) 4-[2-(4-Methylphenyl)ethynyl]-2,2'-bipyridine top
Crystal data top
C19H14N2Dx = 1.276 Mg m3
Mr = 270.32Melting point = 365–367 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8697 (7) ÅCell parameters from 2955 reflections
b = 12.6040 (7) Åθ = 3.0–28.1°
c = 22.8414 (13) ŵ = 0.08 mm1
β = 97.890 (6)°T = 100 K
V = 2814.5 (3) Å3Block, orange-colourless
Z = 80.30 × 0.15 × 0.10 mm
F(000) = 1136
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
5747 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3728 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = 129
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1515
Tmin = 0.552, Tmax = 1.000l = 2528
12597 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.7915P]
where P = (Fo2 + 2Fc2)/3
5747 reflections(Δ/σ)max < 0.001
381 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1D0.44761 (19)0.30825 (17)0.43143 (8)0.0253 (5)
N220.21628 (16)0.57648 (13)0.03346 (7)0.0249 (4)
C230.20493 (18)0.47210 (15)0.04431 (8)0.0208 (4)
C240.23091 (18)0.42918 (16)0.10057 (8)0.0219 (4)
H240.22250.35490.10630.026*
C250.26964 (18)0.49598 (16)0.14880 (8)0.0219 (4)
C260.28021 (19)0.60404 (16)0.13795 (9)0.0258 (5)
H260.30570.65250.16940.031*
C270.2527 (2)0.63910 (16)0.08023 (9)0.0277 (5)
H270.26030.71300.07330.033*
N280.15236 (16)0.29935 (12)0.00260 (7)0.0233 (4)
C290.16089 (18)0.40394 (15)0.00772 (8)0.0209 (4)
C300.1289 (2)0.44677 (16)0.06415 (8)0.0265 (5)
H300.13770.52080.07050.032*
C310.0845 (2)0.38021 (16)0.11061 (9)0.0300 (5)
H310.06180.40790.14940.036*
C320.0731 (2)0.27292 (17)0.10025 (9)0.0281 (5)
H320.04200.22520.13140.034*
C330.1085 (2)0.23716 (16)0.04304 (9)0.0252 (5)
H330.10090.16330.03590.030*
C340.29879 (19)0.45398 (16)0.20791 (8)0.0233 (5)
C350.32897 (18)0.41970 (16)0.25663 (8)0.0226 (4)
C360.36776 (18)0.38063 (16)0.31578 (8)0.0214 (4)
C370.38186 (19)0.27264 (16)0.32746 (9)0.0251 (5)
H370.36470.22280.29610.030*
C380.4208 (2)0.23774 (16)0.38463 (9)0.0275 (5)
H380.42940.16370.39210.033*
C390.4325 (2)0.41597 (17)0.41955 (8)0.0284 (5)
H390.44900.46560.45100.034*
C400.3939 (2)0.45209 (17)0.36263 (8)0.0271 (5)
H400.38510.52610.35530.033*
C410.4909 (2)0.26987 (19)0.49369 (9)0.0352 (5)
H41A0.58290.29630.50790.053*
H41B0.49130.19210.49420.053*
H41C0.42650.29620.51940.053*
N10.30594 (16)0.07848 (13)0.21333 (7)0.0237 (4)
C20.29537 (18)0.02679 (15)0.20395 (8)0.0197 (4)
C30.25839 (18)0.07017 (16)0.14808 (8)0.0209 (4)
H30.25050.14490.14320.025*
C40.23300 (18)0.00324 (16)0.09931 (8)0.0212 (4)
C50.24522 (18)0.10603 (16)0.10882 (8)0.0240 (5)
H50.22960.15470.07680.029*
C60.28062 (19)0.14124 (15)0.16604 (8)0.0245 (4)
H60.28750.21570.17230.029*
N70.34111 (16)0.19977 (13)0.24599 (7)0.0231 (4)
C80.32952 (18)0.09575 (15)0.25668 (8)0.0202 (4)
C90.3519 (2)0.05342 (16)0.31331 (8)0.0258 (5)
H90.34070.02040.31950.031*
C100.3908 (2)0.12057 (17)0.36064 (8)0.0285 (5)
H100.40650.09360.39980.034*
C110.4063 (2)0.22683 (17)0.34999 (9)0.0290 (5)
H110.43450.27450.38150.035*
C120.3800 (2)0.26281 (17)0.29244 (9)0.0284 (5)
H120.39010.33650.28540.034*
C130.19552 (19)0.04592 (15)0.04086 (8)0.0216 (4)
C140.16254 (19)0.08025 (16)0.00793 (8)0.0231 (4)
C150.12182 (18)0.12154 (16)0.06645 (8)0.0220 (4)
C160.10184 (19)0.22989 (16)0.07588 (9)0.0243 (4)
H160.11630.27790.04360.029*
C170.06086 (19)0.26739 (16)0.13242 (9)0.0250 (5)
H170.04620.34140.13820.030*
C180.04061 (19)0.20031 (16)0.18071 (8)0.0253 (5)
C190.06191 (19)0.09226 (16)0.17123 (8)0.0265 (5)
H190.04940.04490.20390.032*
C200.10105 (19)0.05250 (16)0.11494 (8)0.0250 (5)
H200.11380.02170.10920.030*
C210.0027 (2)0.24223 (17)0.24197 (9)0.0319 (5)
H21A0.08920.20890.25870.048*
H21B0.01500.31930.24030.048*
H21C0.06780.22580.26690.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1D0.0183 (10)0.0412 (13)0.0158 (10)0.0012 (9)0.0007 (8)0.0047 (9)
N220.0308 (9)0.0233 (9)0.0196 (9)0.0029 (7)0.0002 (7)0.0013 (7)
C230.0205 (10)0.0229 (11)0.0185 (10)0.0015 (8)0.0005 (8)0.0026 (8)
C240.0234 (10)0.0223 (11)0.0191 (10)0.0009 (8)0.0001 (8)0.0033 (8)
C250.0204 (10)0.0272 (11)0.0173 (10)0.0007 (8)0.0001 (8)0.0015 (8)
C260.0295 (11)0.0274 (11)0.0195 (10)0.0028 (9)0.0006 (8)0.0028 (9)
C270.0366 (12)0.0235 (11)0.0220 (11)0.0024 (9)0.0003 (9)0.0027 (9)
N280.0273 (9)0.0238 (9)0.0184 (9)0.0004 (7)0.0014 (7)0.0011 (7)
C290.0195 (10)0.0248 (11)0.0182 (10)0.0022 (8)0.0016 (8)0.0025 (8)
C300.0332 (12)0.0243 (11)0.0206 (11)0.0001 (9)0.0017 (9)0.0039 (8)
C310.0387 (12)0.0337 (12)0.0158 (10)0.0006 (10)0.0026 (9)0.0034 (9)
C320.0319 (11)0.0318 (11)0.0194 (11)0.0021 (9)0.0002 (9)0.0033 (9)
C330.0302 (11)0.0238 (11)0.0205 (11)0.0006 (9)0.0002 (9)0.0008 (8)
C340.0224 (10)0.0288 (12)0.0179 (11)0.0003 (8)0.0001 (8)0.0001 (9)
C350.0209 (10)0.0275 (11)0.0191 (10)0.0006 (8)0.0012 (8)0.0017 (9)
C360.0181 (9)0.0307 (11)0.0150 (9)0.0004 (8)0.0011 (7)0.0011 (8)
C370.0259 (10)0.0305 (11)0.0180 (11)0.0007 (9)0.0003 (8)0.0006 (9)
C380.0297 (11)0.0290 (12)0.0229 (12)0.0009 (9)0.0002 (9)0.0041 (9)
C390.0308 (11)0.0375 (13)0.0165 (10)0.0004 (9)0.0019 (8)0.0050 (9)
C400.0299 (11)0.0295 (12)0.0214 (11)0.0023 (9)0.0014 (9)0.0004 (9)
C410.0327 (12)0.0542 (15)0.0180 (11)0.0016 (11)0.0005 (9)0.0055 (10)
N10.0274 (9)0.0238 (9)0.0190 (9)0.0005 (7)0.0003 (7)0.0004 (7)
C20.0163 (9)0.0252 (11)0.0174 (10)0.0006 (8)0.0016 (7)0.0010 (8)
C30.0217 (10)0.0221 (11)0.0185 (10)0.0004 (8)0.0013 (8)0.0016 (8)
C40.0168 (9)0.0291 (11)0.0176 (10)0.0002 (8)0.0027 (7)0.0010 (8)
C50.0240 (10)0.0261 (11)0.0209 (10)0.0001 (8)0.0009 (8)0.0056 (8)
C60.0286 (11)0.0199 (10)0.0239 (11)0.0009 (8)0.0005 (8)0.0031 (8)
N70.0272 (9)0.0227 (9)0.0189 (9)0.0003 (7)0.0012 (7)0.0024 (7)
C80.0183 (9)0.0246 (11)0.0176 (10)0.0009 (8)0.0016 (7)0.0012 (8)
C90.0328 (11)0.0258 (11)0.0181 (10)0.0006 (9)0.0015 (8)0.0016 (8)
C100.0360 (12)0.0342 (12)0.0147 (10)0.0028 (9)0.0008 (9)0.0002 (9)
C110.0322 (12)0.0363 (12)0.0176 (11)0.0021 (10)0.0000 (9)0.0070 (9)
C120.0352 (12)0.0279 (12)0.0215 (12)0.0042 (9)0.0013 (9)0.0047 (9)
C130.0212 (10)0.0244 (11)0.0185 (10)0.0003 (8)0.0004 (8)0.0054 (8)
C140.0221 (10)0.0265 (11)0.0203 (11)0.0024 (8)0.0016 (8)0.0048 (9)
C150.0179 (9)0.0314 (12)0.0160 (10)0.0006 (8)0.0004 (8)0.0003 (8)
C160.0245 (10)0.0298 (11)0.0179 (10)0.0028 (9)0.0007 (8)0.0034 (9)
C170.0256 (11)0.0276 (11)0.0213 (11)0.0009 (9)0.0014 (8)0.0010 (9)
C180.0203 (10)0.0353 (12)0.0196 (10)0.0012 (9)0.0006 (8)0.0003 (9)
C190.0266 (11)0.0349 (12)0.0175 (10)0.0002 (9)0.0005 (8)0.0069 (9)
C200.0254 (10)0.0280 (11)0.0214 (11)0.0001 (8)0.0025 (8)0.0019 (8)
C210.0346 (12)0.0403 (13)0.0190 (12)0.0007 (10)0.0025 (9)0.0000 (9)
Geometric parameters (Å, º) top
C1D—C381.387 (3)N1—C21.346 (2)
C1D—C391.389 (3)N1—C61.335 (2)
C1D—C411.507 (3)C2—C31.390 (3)
N22—C231.346 (2)C2—C81.486 (3)
N22—C271.337 (2)C3—H30.9500
C23—C241.385 (3)C3—C41.392 (3)
C23—C291.482 (3)C4—C51.397 (3)
C24—H240.9500C4—C131.440 (3)
C24—C251.398 (3)C5—H50.9500
C25—C261.391 (3)C5—C61.379 (3)
C25—C341.442 (3)C6—H60.9500
C26—H260.9500N7—C81.341 (2)
C26—C271.382 (3)N7—C121.339 (2)
C27—H270.9500C8—C91.389 (3)
N28—C291.344 (2)C9—H90.9500
N28—C331.328 (2)C9—C101.385 (3)
C29—C301.393 (3)C10—H100.9500
C30—H300.9500C10—C111.374 (3)
C30—C311.376 (3)C11—H110.9500
C31—H310.9500C11—C121.381 (3)
C31—C321.380 (3)C12—H120.9500
C32—H320.9500C13—C141.198 (3)
C32—C331.381 (3)C14—C151.439 (3)
C33—H330.9500C15—C161.392 (3)
C34—C351.193 (3)C15—C201.401 (3)
C35—C361.440 (3)C16—H160.9500
C36—C371.390 (3)C16—C171.383 (3)
C36—C401.396 (3)C17—H170.9500
C37—H370.9500C17—C181.382 (3)
C37—C381.381 (3)C18—C191.390 (3)
C38—H380.9500C18—C211.502 (3)
C39—H390.9500C19—H190.9500
C39—C401.381 (3)C19—C201.385 (3)
C40—H400.9500C20—H200.9500
C41—H41A0.9800C21—H21A0.9800
C41—H41B0.9800C21—H21B0.9800
C41—H41C0.9800C21—H21C0.9800
C38—C1D—C39118.15 (18)C6—N1—C2116.97 (16)
C38—C1D—C41121.38 (19)N1—C2—C3122.60 (17)
C39—C1D—C41120.47 (19)N1—C2—C8116.32 (16)
C27—N22—C23116.74 (16)C3—C2—C8121.05 (18)
N22—C23—C24122.87 (18)C2—C3—H3120.3
N22—C23—C29116.20 (16)C2—C3—C4119.46 (19)
C24—C23—C29120.93 (17)C4—C3—H3120.3
C23—C24—H24120.3C3—C4—C5118.08 (18)
C23—C24—C25119.46 (18)C3—C4—C13120.70 (18)
C25—C24—H24120.3C5—C4—C13121.22 (17)
C24—C25—C34120.98 (18)C4—C5—H5121.0
C26—C25—C24117.94 (17)C6—C5—C4118.03 (18)
C26—C25—C34121.07 (18)C6—C5—H5121.0
C25—C26—H26120.9N1—C6—C5124.84 (19)
C27—C26—C25118.26 (18)N1—C6—H6117.6
C27—C26—H26120.9C5—C6—H6117.6
N22—C27—C26124.72 (19)C12—N7—C8117.27 (17)
N22—C27—H27117.6N7—C8—C2116.08 (16)
C26—C27—H27117.6N7—C8—C9122.57 (17)
C33—N28—C29117.57 (16)C9—C8—C2121.31 (18)
N28—C29—C23116.51 (16)C8—C9—H9120.5
N28—C29—C30122.05 (18)C10—C9—C8118.94 (19)
C30—C29—C23121.43 (17)C10—C9—H9120.5
C29—C30—H30120.5C9—C10—H10120.6
C31—C30—C29119.01 (19)C11—C10—C9118.90 (18)
C31—C30—H30120.5C11—C10—H10120.6
C30—C31—H31120.3C10—C11—H11120.7
C30—C31—C32119.32 (19)C10—C11—C12118.55 (19)
C32—C31—H31120.3C12—C11—H11120.7
C31—C32—H32121.1N7—C12—C11123.7 (2)
C31—C32—C33117.79 (19)N7—C12—H12118.1
C33—C32—H32121.1C11—C12—H12118.1
N28—C33—C32124.24 (19)C14—C13—C4178.9 (2)
N28—C33—H33117.9C13—C14—C15179.5 (2)
C32—C33—H33117.9C16—C15—C14120.93 (18)
C35—C34—C25177.1 (2)C16—C15—C20118.98 (18)
C34—C35—C36178.5 (2)C20—C15—C14120.09 (18)
C37—C36—C35121.45 (18)C15—C16—H16120.1
C37—C36—C40118.79 (18)C17—C16—C15119.80 (18)
C40—C36—C35119.75 (18)C17—C16—H16120.1
C36—C37—H37120.0C16—C17—H17119.1
C38—C37—C36120.05 (19)C18—C17—C16121.87 (19)
C38—C37—H37120.0C18—C17—H17119.1
C1D—C38—H38119.2C17—C18—C19118.20 (18)
C37—C38—C1D121.55 (19)C17—C18—C21121.32 (19)
C37—C38—H38119.2C19—C18—C21120.49 (18)
C1D—C39—H39119.5C18—C19—H19119.5
C40—C39—C1D120.98 (19)C20—C19—C18121.07 (18)
C40—C39—H39119.5C20—C19—H19119.5
C36—C40—H40119.8C15—C20—H20120.0
C39—C40—C36120.49 (19)C19—C20—C15120.07 (19)
C39—C40—H40119.8C19—C20—H20120.0
C1D—C41—H41A109.5C18—C21—H21A109.5
C1D—C41—H41B109.5C18—C21—H21B109.5
C1D—C41—H41C109.5C18—C21—H21C109.5
H41A—C41—H41B109.5H21A—C21—H21B109.5
H41A—C41—H41C109.5H21A—C21—H21C109.5
H41B—C41—H41C109.5H21B—C21—H21C109.5
C1D—C39—C40—C360.7 (3)N1—C2—C3—C41.0 (3)
N22—C23—C24—C250.5 (3)N1—C2—C8—N7169.28 (16)
N22—C23—C29—N28178.53 (16)N1—C2—C8—C98.8 (3)
N22—C23—C29—C302.1 (3)C2—N1—C6—C50.2 (3)
C23—N22—C27—C260.6 (3)C2—C3—C4—C50.4 (3)
C23—C24—C25—C260.1 (3)C2—C3—C4—C13179.53 (17)
C23—C24—C25—C34179.39 (17)C2—C8—C9—C10176.47 (17)
C23—C29—C30—C31177.98 (18)C3—C2—C8—N79.0 (2)
C24—C23—C29—N282.1 (3)C3—C2—C8—C9172.87 (17)
C24—C23—C29—C30177.27 (18)C3—C4—C5—C60.5 (3)
C24—C25—C26—C270.4 (3)C4—C5—C6—N10.9 (3)
C25—C26—C27—N220.0 (3)C6—N1—C2—C30.7 (3)
C27—N22—C23—C240.9 (3)C6—N1—C2—C8177.53 (16)
C27—N22—C23—C29178.43 (17)N7—C8—C9—C101.5 (3)
N28—C29—C30—C311.4 (3)C8—C2—C3—C4177.15 (16)
C29—C23—C24—C25178.73 (17)C8—N7—C12—C111.0 (3)
C29—N28—C33—C321.0 (3)C8—C9—C10—C110.2 (3)
C29—C30—C31—C320.2 (3)C9—C10—C11—C121.1 (3)
C30—C31—C32—C330.5 (3)C10—C11—C12—N70.6 (3)
C31—C32—C33—N280.1 (3)C12—N7—C8—C2176.01 (16)
C33—N28—C29—C23177.68 (16)C12—N7—C8—C92.1 (3)
C33—N28—C29—C301.7 (3)C13—C4—C5—C6179.59 (17)
C34—C25—C26—C27179.12 (18)C14—C15—C16—C17179.10 (17)
C35—C36—C37—C38179.24 (18)C14—C15—C20—C19179.98 (17)
C35—C36—C40—C39179.36 (18)C15—C16—C17—C180.9 (3)
C36—C37—C38—C1D0.5 (3)C16—C15—C20—C190.3 (3)
C37—C36—C40—C390.3 (3)C16—C17—C18—C190.3 (3)
C38—C1D—C39—C400.9 (3)C16—C17—C18—C21179.44 (18)
C39—C1D—C38—C370.8 (3)C17—C18—C19—C200.6 (3)
C40—C36—C37—C380.2 (3)C18—C19—C20—C150.9 (3)
C41—C1D—C38—C37179.64 (18)C20—C15—C16—C170.6 (3)
C41—C1D—C39—C40179.53 (18)C21—C18—C19—C20179.61 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N280.952.533.472 (2)169
C26—H26···N7i0.952.553.487 (3)171
Symmetry code: (i) x, y+1, z.
(II) 4-[2-(Pyridin-3-yl)ethynyl]-2,2'-bipyridine top
Crystal data top
C17H11N3F(000) = 536
Mr = 257.29Dx = 1.248 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.7436 (3) ÅCell parameters from 1697 reflections
b = 34.146 (3) Åθ = 3.5–28.7°
c = 10.7528 (9) ŵ = 0.08 mm1
β = 94.799 (8)°T = 100 K
V = 1369.7 (2) Å3Needle, colourless
Z = 40.40 × 0.10 × 0.10 mm
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
1926 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1645 reflections with I > 2σ(I)
Detector resolution: 15.9631 pixels mm-1Rint = 0.022
ω scansθmax = 23.3°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
h = 44
Tmin = 0.695, Tmax = 1.000k = 3733
4235 measured reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.208 w = 1/[σ2(Fo2) + (0.0696P)2 + 4.7923P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
1926 reflectionsΔρmax = 0.44 e Å3
181 parametersΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2656 (9)0.68966 (10)0.2378 (3)0.0167 (8)
C20.4386 (11)0.69652 (11)0.3508 (4)0.0147 (9)
C30.5026 (11)0.73404 (11)0.3962 (4)0.0154 (9)
H30.62080.73780.47700.018*
C40.3928 (11)0.76640 (12)0.3231 (4)0.0150 (9)
C50.2126 (11)0.75954 (12)0.2070 (4)0.0166 (10)
H50.12940.78070.15480.020*
C60.1571 (11)0.72098 (12)0.1693 (4)0.0170 (10)
H60.03430.71650.08970.020*
N70.7312 (9)0.66830 (10)0.5380 (3)0.0168 (8)
C80.5578 (11)0.66142 (11)0.4254 (4)0.0142 (9)
C90.4899 (11)0.62361 (12)0.3803 (4)0.0177 (10)
H90.36680.61970.30040.021*
C100.6034 (12)0.59197 (12)0.4530 (4)0.0187 (10)
H100.55820.56600.42440.022*
C110.7850 (11)0.59893 (12)0.5686 (4)0.0176 (10)
H110.86910.57780.62060.021*
C120.8406 (11)0.63710 (12)0.6063 (4)0.0186 (10)
H120.96460.64160.68570.022*
C130.4658 (11)0.80521 (12)0.3695 (4)0.0150 (9)
C140.5307 (11)0.83770 (12)0.4099 (4)0.0168 (10)
N150.5621 (10)0.94601 (10)0.4131 (3)0.0185 (9)
C160.5068 (11)0.90884 (12)0.3788 (4)0.0176 (10)
H160.39380.90390.29790.021*
C170.6047 (11)0.87675 (11)0.4544 (4)0.0153 (9)
C180.7784 (11)0.88416 (12)0.5721 (4)0.0170 (10)
H180.85650.86320.62580.020*
C190.8344 (11)0.92252 (12)0.6090 (4)0.0197 (10)
H190.94570.92840.68950.024*
C200.7262 (11)0.95225 (12)0.5273 (4)0.0200 (10)
H200.77010.97850.55330.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0152 (19)0.0180 (19)0.0163 (19)0.0010 (15)0.0013 (15)0.0006 (15)
C20.012 (2)0.019 (2)0.013 (2)0.0016 (18)0.0030 (17)0.0006 (17)
C30.013 (2)0.019 (2)0.014 (2)0.0009 (18)0.0014 (18)0.0006 (17)
C40.011 (2)0.019 (2)0.015 (2)0.0016 (18)0.0023 (17)0.0005 (17)
C50.021 (2)0.017 (2)0.013 (2)0.0011 (18)0.0048 (18)0.0021 (16)
C60.017 (2)0.021 (2)0.013 (2)0.0005 (18)0.0021 (18)0.0003 (17)
N70.0190 (19)0.0156 (19)0.016 (2)0.0019 (15)0.0035 (15)0.0008 (14)
C80.014 (2)0.017 (2)0.012 (2)0.0003 (17)0.0029 (17)0.0003 (16)
C90.018 (2)0.019 (2)0.016 (2)0.0015 (18)0.0005 (18)0.0038 (17)
C100.020 (2)0.012 (2)0.025 (2)0.0013 (18)0.0066 (19)0.0031 (18)
C110.014 (2)0.017 (2)0.022 (2)0.0028 (18)0.0035 (19)0.0048 (18)
C120.020 (2)0.021 (2)0.015 (2)0.0047 (18)0.0038 (18)0.0017 (18)
C130.014 (2)0.018 (2)0.013 (2)0.0015 (18)0.0024 (17)0.0029 (18)
C140.014 (2)0.020 (2)0.016 (2)0.0016 (18)0.0020 (18)0.0024 (18)
N150.024 (2)0.0155 (18)0.016 (2)0.0005 (16)0.0045 (16)0.0019 (14)
C160.015 (2)0.023 (2)0.016 (2)0.0004 (18)0.0068 (18)0.0005 (18)
C170.016 (2)0.015 (2)0.016 (2)0.0022 (18)0.0057 (18)0.0006 (17)
C180.014 (2)0.016 (2)0.021 (2)0.0029 (18)0.0018 (18)0.0047 (17)
C190.019 (2)0.021 (2)0.018 (2)0.0005 (19)0.0010 (19)0.0014 (18)
C200.021 (2)0.015 (2)0.024 (3)0.0008 (18)0.003 (2)0.0004 (18)
Geometric parameters (Å, º) top
N1—C21.348 (5)C10—C111.387 (6)
N1—C61.342 (5)C11—H110.9500
C2—C31.385 (6)C11—C121.375 (6)
C2—C81.490 (6)C12—H120.9500
C3—H30.9500C13—C141.209 (6)
C3—C41.398 (6)C14—C171.436 (6)
C4—C51.388 (6)N15—C161.333 (5)
C4—C131.434 (6)N15—C201.344 (6)
C5—H50.9500C16—H160.9500
C5—C61.388 (6)C16—C171.395 (6)
C6—H60.9500C17—C181.397 (6)
N7—C81.345 (5)C18—H180.9500
N7—C121.338 (5)C18—C191.380 (6)
C8—C91.395 (6)C19—H190.9500
C9—H90.9500C19—C201.381 (6)
C9—C101.379 (6)C20—H200.9500
C10—H100.9500
C6—N1—C2117.1 (3)C11—C10—H10120.7
N1—C2—C3122.3 (4)C10—C11—H11120.7
N1—C2—C8116.4 (3)C12—C11—C10118.5 (4)
C3—C2—C8121.2 (4)C12—C11—H11120.7
C2—C3—H3120.0N7—C12—C11124.1 (4)
C2—C3—C4119.9 (4)N7—C12—H12117.9
C4—C3—H3120.0C11—C12—H12117.9
C3—C4—C13119.8 (4)C14—C13—C4179.1 (4)
C5—C4—C3118.0 (4)C13—C14—C17178.4 (4)
C5—C4—C13122.2 (4)C16—N15—C20116.9 (4)
C4—C5—H5120.9N15—C16—H16118.0
C4—C5—C6118.2 (4)N15—C16—C17124.0 (4)
C6—C5—H5120.9C17—C16—H16118.0
N1—C6—C5124.4 (4)C16—C17—C14120.1 (4)
N1—C6—H6117.8C16—C17—C18117.8 (4)
C5—C6—H6117.8C18—C17—C14122.2 (4)
C12—N7—C8117.2 (3)C17—C18—H18120.7
N7—C8—C2116.4 (3)C19—C18—C17118.7 (4)
N7—C8—C9122.3 (4)C19—C18—H18120.7
C9—C8—C2121.3 (4)C18—C19—H19120.5
C8—C9—H9120.3C18—C19—C20119.1 (4)
C10—C9—C8119.3 (4)C20—C19—H19120.5
C10—C9—H9120.3N15—C20—C19123.5 (4)
C9—C10—H10120.7N15—C20—H20118.2
C9—C10—C11118.6 (4)C19—C20—H20118.2
N1—C2—C3—C41.3 (6)C8—N7—C12—C110.4 (6)
N1—C2—C8—N7179.9 (3)C8—C9—C10—C110.6 (6)
N1—C2—C8—C90.5 (6)C9—C10—C11—C120.7 (6)
C2—N1—C6—C50.2 (6)C10—C11—C12—N70.2 (7)
C2—C3—C4—C51.7 (6)C12—N7—C8—C2179.9 (3)
C2—C3—C4—C13178.8 (4)C12—N7—C8—C90.5 (6)
C2—C8—C9—C10179.6 (4)C13—C4—C5—C6179.3 (4)
C3—C2—C8—N70.4 (6)C14—C17—C18—C19178.9 (4)
C3—C2—C8—C9179.3 (4)N15—C16—C17—C14179.3 (4)
C3—C4—C5—C61.1 (6)N15—C16—C17—C181.5 (6)
C4—C5—C6—N10.2 (6)C16—N15—C20—C190.6 (6)
C6—N1—C2—C30.4 (6)C16—C17—C18—C191.9 (6)
C6—N1—C2—C8179.9 (3)C17—C18—C19—C201.8 (6)
N7—C8—C9—C100.0 (6)C18—C19—C20—N151.1 (7)
C8—C2—C3—C4178.9 (4)C20—N15—C16—C170.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N7i0.952.553.475 (5)163
C18—H18···N1ii0.952.603.509 (5)161
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2.
(III) 4-(Indol-4-yl)-2,2'-bipyridine top
Crystal data top
C18H13N3Dx = 1.364 Mg m3
Mr = 271.31Melting point = 398–400 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6951 (6) ÅCell parameters from 4854 reflections
b = 12.0142 (7) Åθ = 3.5–29.1°
c = 12.0376 (9) ŵ = 0.08 mm1
β = 109.552 (8)°T = 100 K
V = 1321.28 (15) Å3Block, orange
Z = 40.35 × 0.35 × 0.20 mm
F(000) = 568
Data collection top
Agilent SuperNova (single source at offset, Eos detector)
diffractometer
2692 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2363 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1315
Tmin = 0.993, Tmax = 1.000l = 1511
8569 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.7137P]
where P = (Fo2 + 2Fc2)/3
2692 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.31593 (11)0.25441 (9)0.52186 (10)0.0149 (2)
C20.25581 (13)0.33233 (11)0.43923 (11)0.0136 (3)
C30.26375 (13)0.44551 (11)0.46516 (11)0.0143 (3)
H30.22410.49820.40390.017*
C40.33001 (13)0.48165 (11)0.58118 (11)0.0140 (3)
C50.39151 (13)0.40081 (11)0.66627 (11)0.0155 (3)
H50.43810.42110.74640.019*
C60.38351 (14)0.29005 (11)0.63189 (11)0.0154 (3)
H60.42900.23610.69040.018*
N70.12564 (12)0.36675 (9)0.23212 (10)0.0173 (3)
C80.17196 (13)0.29055 (11)0.31882 (11)0.0143 (3)
C90.14054 (14)0.17732 (11)0.29891 (12)0.0169 (3)
H90.17370.12530.36170.020*
C100.06031 (14)0.14199 (11)0.18635 (12)0.0186 (3)
H100.03850.06530.17090.022*
C110.01227 (14)0.21922 (12)0.09662 (12)0.0183 (3)
H110.04280.19710.01860.022*
C120.04713 (14)0.33039 (12)0.12420 (12)0.0181 (3)
H120.01330.38380.06280.022*
N130.25953 (12)0.93647 (9)0.65298 (10)0.0172 (3)
H130.22040.97450.69740.021*
C140.31571 (14)0.98129 (11)0.57170 (12)0.0182 (3)
H140.31841.05850.55530.022*
C150.36687 (14)0.89859 (11)0.51831 (12)0.0170 (3)
H150.41120.90760.45940.020*
C160.34102 (13)0.79562 (11)0.56791 (11)0.0143 (3)
C170.36292 (13)0.68330 (11)0.54613 (11)0.0142 (3)
H170.40450.66370.48770.017*
C180.32337 (13)0.60125 (11)0.61069 (11)0.0139 (3)
C190.26479 (14)0.63113 (11)0.69974 (11)0.0149 (3)
H190.24290.57420.74600.018*
C200.23857 (14)0.74072 (11)0.72121 (11)0.0156 (3)
H200.19740.75970.78010.019*
C210.27468 (13)0.82248 (11)0.65331 (11)0.0146 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0145 (5)0.0133 (5)0.0168 (6)0.0003 (4)0.0051 (4)0.0009 (4)
C20.0121 (6)0.0143 (6)0.0149 (6)0.0002 (5)0.0054 (5)0.0004 (5)
C30.0150 (6)0.0130 (6)0.0143 (6)0.0006 (5)0.0040 (5)0.0019 (5)
C40.0121 (6)0.0140 (6)0.0169 (7)0.0011 (5)0.0061 (5)0.0003 (5)
C50.0132 (6)0.0176 (7)0.0143 (6)0.0012 (5)0.0026 (5)0.0004 (5)
C60.0138 (6)0.0148 (6)0.0167 (6)0.0018 (5)0.0041 (5)0.0035 (5)
N70.0182 (5)0.0159 (6)0.0166 (6)0.0010 (4)0.0045 (4)0.0009 (5)
C80.0132 (6)0.0148 (6)0.0158 (6)0.0007 (5)0.0060 (5)0.0003 (5)
C90.0165 (6)0.0142 (7)0.0193 (7)0.0014 (5)0.0050 (5)0.0006 (5)
C100.0146 (6)0.0155 (7)0.0244 (7)0.0004 (5)0.0050 (5)0.0052 (6)
C110.0133 (6)0.0244 (7)0.0165 (7)0.0009 (5)0.0039 (5)0.0053 (6)
C120.0183 (6)0.0196 (7)0.0156 (7)0.0005 (5)0.0044 (5)0.0018 (5)
N130.0210 (6)0.0122 (6)0.0171 (6)0.0021 (5)0.0049 (4)0.0019 (4)
C140.0223 (7)0.0124 (6)0.0164 (7)0.0016 (5)0.0017 (5)0.0015 (5)
C150.0208 (6)0.0147 (6)0.0142 (6)0.0029 (5)0.0040 (5)0.0010 (5)
C160.0134 (6)0.0151 (6)0.0118 (6)0.0013 (5)0.0007 (5)0.0005 (5)
C170.0137 (6)0.0145 (6)0.0133 (6)0.0003 (5)0.0031 (5)0.0015 (5)
C180.0118 (6)0.0143 (6)0.0130 (6)0.0001 (5)0.0009 (5)0.0009 (5)
C190.0161 (6)0.0149 (6)0.0128 (6)0.0024 (5)0.0036 (5)0.0007 (5)
C200.0153 (6)0.0184 (7)0.0133 (6)0.0003 (5)0.0050 (5)0.0018 (5)
C210.0140 (6)0.0128 (6)0.0141 (6)0.0003 (5)0.0006 (5)0.0025 (5)
Geometric parameters (Å, º) top
N1—C21.3481 (17)C11—C121.3904 (19)
N1—C61.3365 (17)C12—H120.9500
C2—C31.3915 (18)N13—H130.8800
C2—C81.4916 (18)N13—C141.3786 (18)
C3—H30.9500N13—C211.3773 (17)
C3—C41.3969 (18)C14—H140.9500
C4—C51.3925 (18)C14—C151.3637 (19)
C4—C181.4867 (18)C15—H150.9500
C5—H50.9500C15—C161.4318 (18)
C5—C61.3880 (18)C16—C171.4043 (18)
C6—H60.9500C16—C211.4202 (18)
N7—C81.3473 (17)C17—H170.9500
N7—C121.3401 (17)C17—C181.3864 (18)
C8—C91.3972 (18)C18—C191.4170 (18)
C9—H90.9500C19—H190.9500
C9—C101.3841 (19)C19—C201.3817 (18)
C10—H100.9500C20—H200.9500
C10—C111.381 (2)C20—C211.3953 (19)
C11—H110.9500
C6—N1—C2117.14 (11)N7—C12—H12118.0
N1—C2—C3122.36 (12)C11—C12—H12118.0
N1—C2—C8116.34 (11)C14—N13—H13125.6
C3—C2—C8121.20 (11)C21—N13—H13125.6
C2—C3—H3120.0C21—N13—C14108.87 (11)
C2—C3—C4120.03 (12)N13—C14—H14125.0
C4—C3—H3120.0C15—C14—N13110.02 (12)
C3—C4—C18119.81 (11)C15—C14—H14125.0
C5—C4—C3117.33 (12)C14—C15—H15126.5
C5—C4—C18122.72 (12)C14—C15—C16106.91 (12)
C4—C5—H5120.6C16—C15—H15126.5
C6—C5—C4118.81 (12)C17—C16—C15133.94 (12)
C6—C5—H5120.6C17—C16—C21119.13 (12)
N1—C6—C5124.24 (12)C21—C16—C15106.88 (11)
N1—C6—H6117.9C16—C17—H17120.3
C5—C6—H6117.9C18—C17—C16119.41 (12)
C12—N7—C8117.60 (12)C18—C17—H17120.3
N7—C8—C2117.13 (11)C17—C18—C4120.74 (12)
N7—C8—C9122.12 (12)C17—C18—C19120.00 (12)
C9—C8—C2120.73 (12)C19—C18—C4119.07 (11)
C8—C9—H9120.5C18—C19—H19119.1
C10—C9—C8119.03 (13)C20—C19—C18121.89 (12)
C10—C9—H9120.5C20—C19—H19119.1
C9—C10—H10120.3C19—C20—H20121.2
C11—C10—C9119.44 (13)C19—C20—C21117.60 (12)
C11—C10—H10120.3C21—C20—H20121.2
C10—C11—H11121.1N13—C21—C16107.31 (11)
C10—C11—C12117.85 (12)N13—C21—C20130.87 (12)
C12—C11—H11121.1C20—C21—C16121.82 (12)
N7—C12—C11123.95 (13)
N1—C2—C3—C42.97 (19)C10—C11—C12—N70.7 (2)
N1—C2—C8—N7172.50 (11)C12—N7—C8—C2178.40 (11)
N1—C2—C8—C99.08 (17)C12—N7—C8—C90.00 (19)
C2—N1—C6—C52.00 (19)N13—C14—C15—C160.34 (15)
C2—C3—C4—C52.62 (18)C14—N13—C21—C160.78 (14)
C2—C3—C4—C18173.06 (11)C14—N13—C21—C20178.21 (13)
C2—C8—C9—C10178.90 (12)C14—C15—C16—C17176.75 (14)
C3—C2—C8—N710.94 (18)C14—C15—C16—C210.80 (14)
C3—C2—C8—C9167.48 (12)C15—C16—C17—C18179.18 (13)
C3—C4—C5—C60.18 (18)C15—C16—C21—N130.97 (14)
C3—C4—C18—C1750.68 (17)C15—C16—C21—C20178.13 (11)
C3—C4—C18—C19124.26 (13)C16—C17—C18—C4173.34 (11)
C4—C5—C6—N12.2 (2)C16—C17—C18—C191.55 (18)
C4—C18—C19—C20171.75 (11)C17—C16—C21—N13177.02 (11)
C5—C4—C18—C17133.88 (13)C17—C16—C21—C203.88 (18)
C5—C4—C18—C1951.18 (17)C17—C18—C19—C203.23 (19)
C6—N1—C2—C30.64 (18)C18—C4—C5—C6175.36 (11)
C6—N1—C2—C8175.87 (11)C18—C19—C20—C211.27 (19)
N7—C8—C9—C100.56 (19)C19—C20—C21—N13178.86 (13)
C8—C2—C3—C4173.38 (11)C19—C20—C21—C162.28 (18)
C8—N7—C12—C110.6 (2)C21—N13—C14—C150.28 (15)
C8—C9—C10—C110.48 (19)C21—C16—C17—C181.86 (18)
C9—C10—C11—C120.12 (19)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N13/C14–C16/C21, N1/C2–C6, N7/C8–C12 and C16–C21, respectively.
D—H···AD—HH···AD···AD—H···A
N13—H13···N7i0.882.223.002 (2)148
C14—H14···N1ii0.952.393.336 (2)176
C5—H5···Cg1iii0.952.583.3371 (14)137
C6—H6···Cg4iii0.952.783.5268 (14)136
C11—H11···Cg4iv0.952.563.3548 (15)141
C17—H17···Cg2v0.952.853.6555 (15)143
C20—H20···Cg3vi0.952.863.5814 (16)133
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+3/2; (iv) x, y1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x, y+1, z+1.
4-Substituted 2,2'-bipyridines present in the Cambridge Structural Databasea top
The dihedral angle Py–Py is defined as the angle between the best planes through both pyridine rings and the dihedral angle Py–Ar is defined as the angle between the best planes through the 4-substituted pyridine and the aromatic substituent.
4-SubstituentCSD refcodeDihedral angle Py–Py (°)Dihedral angle Py–Ar (°)Reference
(substituted) phenylEWOYEW0.89.1Ramakrishnan et al. (2016)
EWOXIZ7.8/28.5/12.535.8/32.8/40.8Ramakrishnan et al. (2016)
ZOZRIF6.624.5Wang et al. (1996)
RIPQUC15.742.9Cargill Thompson et al. (1997)
triazineMULRUI14.2/3.7/18.58.1/6.1/25.2Laramée-Milette et al. (2015)
(substituted) naphthaleneEWOXUL2.8/10.8/1.86.0/26.1/32.9Ramakrishnan et al. (2016)
EWOYIA18.2/20.834.8/31.7Ramakrishnan et al. (2016)
OKAGOX23.0/9.644.6/39.3He et al. (2011)
2,2'-bipyridineTEBGAI3.2/2.70.0/0.0Honey & Steel (1991)
anthraceneEWOWUK4.073.8Ramakrishnan et al. (2016)
phenanthreneEWOXAR5.264.8Ramakrishnan et al. (2016)
EWOXEV11.153.1Ramakrishnan et al. (2016)
pyreneEWOXOF4.051.6Ramakrishnan et al. (2016)
Note: (a) Groom et al. (2016).
 

Acknowledgements

The Hercules Foundation is thanked for supporting the purchase of the diffractometer.

Funding information

Funding for this research was provided by: Hercules Foundation (Belgium) (award No. AKUL/09/0035).

References

First citationAl Abdel Hamid, A. A. G., Al-Khateeb, M., Tahat, Z. A., Qudah, M., Obeidat, S. M. & Rawashdeh, A. M. (2011). Int. J. Inorg. Chem. (Article ID 843051, 6 pages).  Google Scholar
First citationBlangetti, M., Rosso, H., Prandi, C., Deagostino, A. & Venturello, P. (2013). Molecules, 18, 1188–1213.  CrossRef CAS PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCargill Thompson, A. M. W., Smailes, M. C. C., Jeffery, J. C. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 737–744.  CrossRef Google Scholar
First citationChen, X., Li, C., Grätzel, M., Kostecki, R. & Mao, S. S. (2012). Chem. Soc. Rev. 41, 7909–7937.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEgbe, D. A. M., Amer, A. M. & Klemm, E. (2001). Des. Monomers Polym. 4, 169–175.  CrossRef CAS Google Scholar
First citationGrätzel, M. (2003). J. Photochem. Photobiol. Photochem. Rev. 4, 145–153.  Google Scholar
First citationGrätzel, M. (2009). Acc. Chem. Res. 42, 1788–1798.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, Y., Bian, Z., Kang, C. & Gao, L. (2011). Chem. Commun. 47, 1589–1591.  CrossRef CAS Google Scholar
First citationHoney, G. E. & Steel, P. J. (1991). Acta Cryst. C47, 2247–2249.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitanosono, T., Zhu, L., Liu, C., Xu, P. & Kobayashi, S. (2015). J. Am. Chem. Soc. 137, 15422–15425.  CrossRef CAS PubMed Google Scholar
First citationKumar, A., Rao, G. K., Saleem, F., Kumar, R. & Singh, A. K. (2014). J. Hazard. Mater. 269, 9–17.  CrossRef CAS PubMed Google Scholar
First citationLaramée-Milette, B., Lussier, F., Ciofini, I. & Hanan, G. S. (2015). Dalton Trans. 44, 11551–11561.  PubMed Google Scholar
First citationLewis, J. E. M., Bordoli, R. J., Denis, M., Fletcher, C. J., Galli, M., Neal, E. A., Rochette, E. M. & Goldup, S. M. (2016). Chem. Sci. 7, 3154–3161.  CrossRef CAS Google Scholar
First citationLi, M., Yu, J., Chen, Z., Totani, K., Watanabe, T. & Miyata, S. (2000). Jpn. J. Appl. Phys. 39, L1171–L1173.  CrossRef CAS Google Scholar
First citationMiyaura, N. & Suzuki, A. (1979). J. Chem. Soc. Chem. Commun. pp. 866–867.  CrossRef Google Scholar
First citationNegishi, E. & de Meijere, A. (2002). In Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley: New York.  Google Scholar
First citationNewkome, G. R., Patri, A. K., Holder, E. & Schubert, U. S. (2004). Eur. J. Org. Chem. pp. 235–254.  Web of Science CrossRef Google Scholar
First citationNguyen, N. H., Mai, A. T., Dang, X. T. & Luong, T. T. T. (2015). J. Sol. Energy Eng. 137, 021006-1-5.  Google Scholar
First citationNguyen, H., Nguyen Bich, N., Dang, T. T. & Van Meervelt, L. (2014). Acta Cryst. C70, 895–899.  CrossRef IUCr Journals Google Scholar
First citationNorris, M. R., Concepcion, J. J., Glasson, C. R. K., Fang, Z., Lapides, A. M., Ashford, D. L., Templeton, J. L. & Meyer, T. J. (2013). Inorg. Chem. 52, 12492–12501.  CrossRef CAS PubMed Google Scholar
First citationOrtiz, J. H. M., Vega, N., Comedi, D., Tirado, M., Romero, I., Fontrodona, X., Parella, T., Vieyra, F. E. M., Borsarelli, C. D. & Katz, N. E. (2013). Inorg. Chem. 52, 4950–4962.  CrossRef CAS PubMed Google Scholar
First citationRamakrishnan, R., Mallia, A. R., Niyas, M. A., Sethy, R. & Hariharan, M. (2016). Cryst. Growth Des. 16, 6327–6336.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, N., Concepcion, J. J., Binstead, R. A., Rudd, J. A., Vannucci, A. K., Dares, C. J., Coggins, M. K. & Meyer, T. J. (2015). Proc. Natl Acad. Sci. USA, 112, 4935–4940.  CrossRef CAS PubMed Google Scholar
First citationSonogashira, K. (2002). J. Organomet. Chem. 653, 46–49.  Web of Science CrossRef CAS Google Scholar
First citationSonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, A. (1999). J. Organomet. Chem. 576, 147–168.  Web of Science CrossRef CAS Google Scholar
First citationWang, W., Baba, A., Schmehl, R. H. & Mague, J. T. (1996). Acta Cryst. C52, 658–660.  CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds