research communications
Crystal structures of three 4-substituted-2,2′-bipyridines synthesized by Sonogashira and Suzuki–Miyaura cross-coupling reactions
aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and bDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be
Facile synthetic routes for three 4-substituted 2,2′-bipyridine derivatives, 4-[2-(4-methylphenyl)ethynyl]-2,2′-bipyridine, C19H14N2, (I), 4-[2-(pyridin-3-yl)ethynyl]-2,2′-bipyridine, C17H11N3, (II), and 4-(indol-4-yl)-2,2′-bipyridine, C18H13N3, (III), via Sonogashira and Suzuki–Miyaura cross-coupling reactions, respectively, are described. As indicated by X-ray analysis, the 2,2′-bipyridine core, the ethylene linkage and the substituents of (I) and (II) are almost planar [dihedral angles between the two ring systems: 8.98 (5) and 9.90 (6)° for the two molecules of (I) in the and 2.66 (14)° for (II)], allowing π-conjugation. On the contrary, in (III), the indole substituent ring is rotated significantly out of the bipyridine plane [dihedral angle = 55.82 (3)°], due to The crystal packings of (I) and (II) are dominated by π–π interactions, resulting in layers of molecules parallel to (30-2) in (I) and columns of molecules along the a axis in (II). The packing of (III) exhibits zigzag chains of molecules along the c axis interacting through N—H⋯N hydrogen bonds and π–π interactions. The contributions of unknown disordered solvent molecules to the diffraction intensities in (II) were removed with the SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18] algorithm of PLATON. The given chemical formula and other crystal data do not take into account these solvent molecules.
1. Chemical context
The bidentate ligand 2,2′-bipyridine (Bpy) is one of the most studied chelate systems and has found applications in various fields, including catalysis (Kitanosono et al., 2015; Song et al., 2015), chemosensors for metal ions (Al Abdel Hamid et al., 2011), electroluminescent devices (Li et al., 2000), and molecular shuttles (Lewis et al., 2016). In particular, as a result of their unique photophysical characteristics, 2,2′-bipyridine derivatives are used in the synthesis of photosensitizers (Grätzel, 2003, Grätzel, 2009; Chen et al., 2012; Nguyen et al., 2015). In order to fine tune its properties, great efforts have been made to develop new synthetic methods for functionalization of this bidentate ligand by introducing various substituents (Kaes et al., 2000; Newkome et al., 2004; Ortiz et al., 2013; Norris et al., 2013).
In this paper, we report on the synthesis of three 4-substituted 2,2′-bipyridine derivatives, namely 4-(4-methylphenylethynyl)-2,2′-bipyridine, C19H14N2, (I), 4-(pyridin-3-ylethynyl)-2,2′-bipyridine, C17H11N3, (II) and 4-(indol-4-yl)-2,2′-bipyridine, C18H13N3, (III), obtained from the Sonogashira (Sonogashira et al., 1975; Sonogashira, 2002; Negishi & de Meijere, 2002) and Suzuki–Miyaura (Miyaura & Suzuki, 1979; Suzuki, 1999; Kumar et al., 2014; Blangetti et al., 2013) cross-coupling reactions of 4-bromo-2,2′-bipyridine. The ethynyl bridge in (I) and (II) was introduced to decrease the between the pyridine ring and the aromatic substituent and at the same time to extend the π-conjugation. The crystal structures as well as geometry and the molecular arrangement in the crystals of (I), (II) and (III) are reported herein.
2. Structural commentary
The structures of the three 4-substituted 2,2′-bipyridines (I), (II), and (III) were elucidated by 1H and 13C NMR spectroscopy using d1-chloroform as solvent (see Synthesis and crystallization). The 1H NMR spectra of the three compounds show typical proton resonances and splitting patterns of the Bpy core. The proton resonances of the introduced alkyne or the heteroarene moiety are easily recognized. In the 13C NMR spectrum of (I) and (II), the two resonance signals at about 94.3 and 86.5 p.p.m. prove the 2,2′-bipyridine and the tolyl or pyridine substituent to be connected by a C≡C linker. These signals typical for Csp carbons are not observed in the 13C NMR spectrum of (III) as the heterocycle is directly attached to the 2,2′-bipyridine core.
The molecular conformations of the compounds (I), (II) and (III) determined in the X-ray structural analysis are shown in Fig. 1. The of (I) (Fig. 1a) consists of two molecules with similar conformational features (r.m.s deviation = 0.120 Å) and are linked by a C—H⋯N hydrogen bond (Table 1). As expected, the aromatic substituents introduced via an ethylene bridge in (I) (Fig. 1a) and (II) (Fig. 1b) are essentially coplanar with the 2,2′-bipyridine core, as indicated by the dihedral angles between the aromatic moieties, viz. 8.98 (5) and 9.90 (6)° in (I) and 2.66 (14)° in (II). On the other hand, the indole moiety and the bipyridyl ring are out of plane in (III) (Fig. 1c) in order to reduce the van de Waals repulsion between H5 with H19 and H3 with H17, the dihedral angle between the mean planes of the bipyridine core and indole ring being 55.82 (3)°.
|
The 2,2′-bipyridyl groups in the three compounds exhibit trans conformations and the pyridine rings are essentially co-planar, as indicated by the dihedral angles between the best planes through the two pyridine rings, viz. 3.40 (9) and 10.81 (9)° in (I), 0.4 (2)° in (II) and 11.66 (7)° in (III). These values are within the range 0.8–28.5° observed for the 2,2′-bipyridine derivatives substituted at the 4-position with an aromatic substituent (Table 4). All of these structural characteristics are consistent with those in our previous report (Nguyen et al., 2014).
In conclusion, we have described facile synthetic procedures for 4-alkynylated and 4-arylated 2,2′-bipyridines by means of the Sonogashira and Suzuki–Miyaura cross-coupling reactions of 4-bromo-2,2′-bipyridine. Based on this strategy, two novel 4-alkynylbipyridines and one 4-aryl-2,2′-bipyridine were synthesized whose structures were partially elucidated by NMR spectroscopic methods. In addition, the X-ray structural analysis revealed the planarity of the 4-alkynylbipyridines as the triple-bond linker separates the bipyridine and the introduced aromatic parts. This provides a hint for fine-tuning the electronic properties of this ligand by introducing suitable substituents. On the other hand, the introduced heterocyclic ring in compound (III), formed via Suzuki–Miyaura cross-coupling is twisted from the 2,2′-bipyridine ring due to the van der Waals repulsive force of the hydrogen atoms in close proximity.
3. Supramolecular features
The crystal packing of (I) is dominated by πpyridine–πpyridine and πpyridine–πphenyl stacking interactions [Fig. 2; Cg1⋯Cg3i = 3.7769 (11) and Cg4⋯Cg5ii = 3.8707 (11) Å; Cg1, Cg3, Cg4 and Cg5 are the centroids of the N1/C2–C6, C15–C20, N22/C23–27 and N28/C29–C33 rings, respectively; symmetry codes: (i) −x, −y, −z; (ii) −x, −y + 1, −z]. The molecules lie in layers parallel to (30) and within these planes, neighboring molecules interact with each other through C—H⋯N hydrogen bonds (Table 1).
Similarly, π–π interactions between the pyridine rings of (II) result in columms of molecules along the a-axis direction [Cg1⋯Cg1i = Cg2⋯Cg2i = Cg3⋯Cg3i = 3.7436 (3) Å; Cg1, Cg2, and Cg3 are centroids of the N1/C2–C6; N7/C7–C12 and N15/C16–C20 rings, respectively; symmetry code: (i) x + 1, y, z]. Neighboring columns interact by C—H⋯N hydrogen bonds (Fig. 3, Table 2). In between the columns, large voids (375 Å3) contain disordered solvent molecules.
|
The molecules in the crystal packing of (III) are arranged in zigzag chains running along the c axis by hydrogen-bonding interactions in a head-to-tail manner between N13—H13⋯N7i [symmetry code: (i) x, −y + , z + ; Table 3, Fig. 4]. These chains interact by π–π stacking between pyridine rings [Cg2⋯Cg3i = 3.6920 (8) Å; Cg2 and Cg3 are the centroids of the N1/C2–C6 and N7/C8–C12 rings, respectively; symmetry code: (i) x, −y + , z + ] and C—H⋯π interactions (Table 3).
|
4. Database survey
An extension of the π-conjugated system of 2,2′-bipyridine can be obtained by the introduction of an aromatic substituent. A search in the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom et al., 2016) for crystal structures of 2,2′-bipyridine derivatives substituted at the 4-position with an aromatic substituent resulted in 13 unique hits (excluding organometallic compounds) with substituents ranging from smaller phenyl and triazine rings to bipyridine, naphthalene, anthracene and phenanthrene to a larger pyrene ring (Table 4). However, it is evident from the dihedral angle between the best planes through pyridine and its aromatic 4-substituent (varying from 0.0 to 73.8°) that the degree of extension of the π-conjugated system depends on the of the substituent and the π–π interactions in the crystal packing.
5. Synthesis and crystallization
The compound 4-bromo-2,2′-bipyridine was prepared using literature procedures (Egbe et al., 2001). The alkynylated and arylated Bpy derivatives (I), (II), and (III) were prepared by the palladium-catalyzed Sonogashira and the palladium-catalyzed Suzuki–Miyaura cross-coupling reactions.
(a) Synthesis of 4-(4-methylphenylethynyl)-2,2′-bipyridine (I) by the Sonogashira reaction: Toluene (4.0 ml) was deaerated by exchanging between a vacuum and a stream of argon (3 times). To this argon-saturated solution were added 4-bromo-2,2′-bipyridine (59 mg, 0.25 mmol, 1.0 equiv), Pd(PPh3)4 (28.5 mg, 0.025 mmol, 10 mol%) and CuI (10 mg, 0.050 mmol, 20 mol%). The pale-yellow mixture obtained was degassed again as described above. To the reaction mixture, a solution of p-tolylacetylene (34.8 mg, 0.3 mmol, 1.2 equiv) in argon-saturated toluene (1.0 ml) was added dropwise over 15 minutes. The reaction mixture was heated at 323 K for 4 h. The reaction mixture turned reddish brown when the cross-coupling completed as indicated by TLC (EtOAc:n-hexane 1:4, v/v). The reaction mixture was diluted with EtOAc, washed with water (3 times), dried over anhydrous Na2SO4, and concentrated under reduced pressure. The residue was purified by SiO2 to furnish the 4-alkynated 2,2′-bipyridine (I) as a brownish yellow solid (43 mg, 64%). M.p. 365–367 K; 1H NMR (CDCl3, 500 MHz): δ (p.p.m.) 8.70 (dt, J = 4.5 Hz and 0.5 Hz, 1 H), 8.65 (d, J = 5.0 Hz, 1 H), 8.52 (s, 1 H), 8.40 (dd, J = 8.0 Hz and 0.5 Hz, 1 H), 7.82 (td, J = 7.5 Hz and 1.5 Hz, 1 H), 7.45 (d, J = 8 Hz, 2 H, Ar), 7.38 (dd, J = 5.0 Hz and 1.0 Hz, 1 H), 7.32 (m, 1 H), 7.19 (d, J = 8 Hz, 2 H, Ar), 2.38 (s, 3 H, –CH3). 13C NMR (CDCl3, 125 MHz): δ(p.p.m.) 156.2, 155.6, 149.2, 149.1, 139.5, 137.0, 132.7, 131.8, 129.2, 125.2, 123.9, 123.2, 121.1, 119.2, 94.3 and 86.5 (C≡C), 21.6 (–CH3). Besides the desired cross-coupling product, a small amount of the Glaser homo-coupling by-product was also observed. Single crystals of (I) suitable for X-ray structure analysis were obtained by recrystallization from chloroform.
(b) 4-(Pyridine-3-ylethynyl)-2,2′-bipyridine (II): Following the same procedure for (I), except that no CuI co-catalyst was used, (II) was obtained from 4-bromo-2,2′-bipyridine (59 mg, 0.25 mmol, 1.0 equiv) and pyridine-3-ylacetylene (31 mg, 0.3 mmol, 1.2 equiv) after 4 h at 373 K as a white solid (50 mg, 78%). M.p. 398–400 K; 1H NMR (CDCl3, 500 MHz): δ (p.p.m.) 8.81 (s, 1 H), 8.71 (s, 2 H), 8.62 (dd, J = 5.0 Hz and 1.0 Hz, 1 H), 8.57 (s, 1 H), 8.43 (d, J = 7.5 Hz, 1 H), 7.85 (m, 2 H), 7.42 (d, J = 8.0 Hz, 1 H), 7.33 (m, 2 H). 13C NMR (CDCl3, 125 MHz): δ(p.p.m.) 156.3, 155.3, 152.4, 149.4, 149.3, 149.2, 138.7, 137.0, 131.6, 125.1, 124.0, 123.2, 123.2, 121.2, 119.5, 90.2 (C≡C). Single crystals of (II) suitable for X-ray structure analysis were obtained by recrystallization from ethyl acetate.
(c) Synthesis of 4-(1H-indol-4-yl)-2,2′-bipyridine (III) by the Suzuki–Miyaura reaction: Toluene was degassed by exchanging between a vacuum and a stream of argon (3 times). 5-Bromo-2,2′-bipyridine (58 mg, 0.25 mmol, 1.0 equiv) and Pd(Ph3P)4 (28.8 mg, 0.025 mmol, 10 mol%) were dissolved in this degassed toluene (4 mL). To the obtained solution, H2O (1 ml), K3PO4 (105.5 mg, 0.5 mmol, 2.0 equiv), and 1H-indol-4-ylboronic acid (48.3 mg, 0.3 mmol, 1.2 equiv) were added. The reaction was stirred vigorously under an argon atmosphere at 383 K until TLC (n-hexane–ethyl acetate 95:5,v/v) indicated the complete consumption of the starting material. The reaction mixture was filtered to remove insoluble particles. The filtrate was washed several times with H2O, dried over Na2SO4, and concentrated under reduced pressure by rotary evaporation. The residue was purified by SiO2 (n-hexane–ethyl acetate 97:3, v/v) to furnish the desired 4-arylated 2,2′-bipyridine (III) as a yellow solid (32.5 mg, 48%). M.p. 356–357 K; 1H NMR (CDCl3, 500 MHz): δ (p.p.m.) 8.86 (br s, 1 H, NH indole), 8.74 (m, 2 H), 8.70 (d, J = 5.0 Hz, 1 H), 8.45 (d, J = 8.0 Hz, 1 H), 8.04 (t, J = 1.0 Hz, 1 H), 7.83 (td, J = 7.5 Hz and 2.0 Hz, 1 H), 7.60 (dd, J = 5.0 Hz and 2.0 Hz, 1 H), 7.55 (dd, J = 8.0 Hz and 2.0 Hz, 1 H), 7.42 (d, J = 7.5 Hz, 1 H), 7.31 (m, 1 H), 7.22 (t, J = 3.0 Hz, 1 H), 6.61 (t, J 2.0 Hz, 1 H). 13C NMR (CDCl3, 125 MHz)) : δ(p.p.m.) 156.5, 156.3, 150.7, 149.4, 149.1, 136.9, 136.4, 129.9, 128.5, 125.3, 123.7, 121.7, 121.4, 121.3, 119.6, 119.2, 111.6, 103.2. Single crystals of (III) suitable for X-ray structure analysis were obtained by recrystallization from chloroform.
6. Structure solution and refinement
Crystal data, data collection and structure . The structures of (I) and (III) were solved using SHELXS97 (Sheldrick, 2008) and for (II) by using Olex2.solve (Bourhis et al., 2015). All hydrogen atoms were placed in idealized positions and refined in a riding mode with Uiso(H) = 1.2 times those of their parent atoms (1.5 times for methyl groups), with C—H distances of 0.95 Å (aromatic) and 0.98 Å (CH3) and N—H distances of 0.88 Å.
details are summarized in Table 5
|
For (II) a region of electron density amounting to the scattering from approximately 10.7 carbon atoms, apparently disordered in channels between columns of stacking molecules, was removed with the SQUEEZE routine of PLATON (Spek, 2015) after it proved impossible to identify it with any reasonable solvent molecule. A suggestion of possible generated by PLATON (Spek, 2009) was further checked but subsequent did not improve and was neglected.
Supporting information
https://doi.org/10.1107/S2056989017004662/zs2378sup1.cif
contains datablocks global, II, III, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017004662/zs2378Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017004662/zs2378IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989017004662/zs2378IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017004662/zs2378Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017004662/zs2378IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989017004662/zs2378IIIsup7.cml
For all compounds, data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I), (III); Olex2.solve (Bourhis et al., 2015) for (II). Program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) for (I), (III); SHELXL (Sheldrick, 2015) for (II). For all compounds, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C19H14N2 | Dx = 1.276 Mg m−3 |
Mr = 270.32 | Melting point = 365–367 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.8697 (7) Å | Cell parameters from 2955 reflections |
b = 12.6040 (7) Å | θ = 3.0–28.1° |
c = 22.8414 (13) Å | µ = 0.08 mm−1 |
β = 97.890 (6)° | T = 100 K |
V = 2814.5 (3) Å3 | Block, orange-colourless |
Z = 8 | 0.30 × 0.15 × 0.10 mm |
F(000) = 1136 |
Agilent SuperNova (single source at offset, Eos detector) diffractometer | 5747 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 3728 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.025 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.7° |
ω scans | h = −12→9 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −15→15 |
Tmin = 0.552, Tmax = 1.000 | l = −25→28 |
12597 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.146 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0565P)2 + 0.7915P] where P = (Fo2 + 2Fc2)/3 |
5747 reflections | (Δ/σ)max < 0.001 |
381 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1D | 0.44761 (19) | 0.30825 (17) | 0.43143 (8) | 0.0253 (5) | |
N22 | 0.21628 (16) | 0.57648 (13) | 0.03346 (7) | 0.0249 (4) | |
C23 | 0.20493 (18) | 0.47210 (15) | 0.04431 (8) | 0.0208 (4) | |
C24 | 0.23091 (18) | 0.42918 (16) | 0.10057 (8) | 0.0219 (4) | |
H24 | 0.2225 | 0.3549 | 0.1063 | 0.026* | |
C25 | 0.26964 (18) | 0.49598 (16) | 0.14880 (8) | 0.0219 (4) | |
C26 | 0.28021 (19) | 0.60404 (16) | 0.13795 (9) | 0.0258 (5) | |
H26 | 0.3057 | 0.6525 | 0.1694 | 0.031* | |
C27 | 0.2527 (2) | 0.63910 (16) | 0.08023 (9) | 0.0277 (5) | |
H27 | 0.2603 | 0.7130 | 0.0733 | 0.033* | |
N28 | 0.15236 (16) | 0.29935 (12) | 0.00260 (7) | 0.0233 (4) | |
C29 | 0.16089 (18) | 0.40394 (15) | −0.00772 (8) | 0.0209 (4) | |
C30 | 0.1289 (2) | 0.44677 (16) | −0.06415 (8) | 0.0265 (5) | |
H30 | 0.1377 | 0.5208 | −0.0705 | 0.032* | |
C31 | 0.0845 (2) | 0.38021 (16) | −0.11061 (9) | 0.0300 (5) | |
H31 | 0.0618 | 0.4079 | −0.1494 | 0.036* | |
C32 | 0.0731 (2) | 0.27292 (17) | −0.10025 (9) | 0.0281 (5) | |
H32 | 0.0420 | 0.2252 | −0.1314 | 0.034* | |
C33 | 0.1085 (2) | 0.23716 (16) | −0.04304 (9) | 0.0252 (5) | |
H33 | 0.1009 | 0.1633 | −0.0359 | 0.030* | |
C34 | 0.29879 (19) | 0.45398 (16) | 0.20791 (8) | 0.0233 (5) | |
C35 | 0.32897 (18) | 0.41970 (16) | 0.25663 (8) | 0.0226 (4) | |
C36 | 0.36776 (18) | 0.38063 (16) | 0.31578 (8) | 0.0214 (4) | |
C37 | 0.38186 (19) | 0.27264 (16) | 0.32746 (9) | 0.0251 (5) | |
H37 | 0.3647 | 0.2228 | 0.2961 | 0.030* | |
C38 | 0.4208 (2) | 0.23774 (16) | 0.38463 (9) | 0.0275 (5) | |
H38 | 0.4294 | 0.1637 | 0.3921 | 0.033* | |
C39 | 0.4325 (2) | 0.41597 (17) | 0.41955 (8) | 0.0284 (5) | |
H39 | 0.4490 | 0.4656 | 0.4510 | 0.034* | |
C40 | 0.3939 (2) | 0.45209 (17) | 0.36263 (8) | 0.0271 (5) | |
H40 | 0.3851 | 0.5261 | 0.3553 | 0.033* | |
C41 | 0.4909 (2) | 0.26987 (19) | 0.49369 (9) | 0.0352 (5) | |
H41A | 0.5829 | 0.2963 | 0.5079 | 0.053* | |
H41B | 0.4913 | 0.1921 | 0.4942 | 0.053* | |
H41C | 0.4265 | 0.2962 | 0.5194 | 0.053* | |
N1 | 0.30594 (16) | 0.07848 (13) | 0.21333 (7) | 0.0237 (4) | |
C2 | 0.29537 (18) | −0.02679 (15) | 0.20395 (8) | 0.0197 (4) | |
C3 | 0.25839 (18) | −0.07017 (16) | 0.14808 (8) | 0.0209 (4) | |
H3 | 0.2505 | −0.1449 | 0.1432 | 0.025* | |
C4 | 0.23300 (18) | −0.00324 (16) | 0.09931 (8) | 0.0212 (4) | |
C5 | 0.24522 (18) | 0.10603 (16) | 0.10882 (8) | 0.0240 (5) | |
H5 | 0.2296 | 0.1547 | 0.0768 | 0.029* | |
C6 | 0.28062 (19) | 0.14124 (15) | 0.16604 (8) | 0.0245 (4) | |
H6 | 0.2875 | 0.2157 | 0.1723 | 0.029* | |
N7 | 0.34111 (16) | −0.19977 (13) | 0.24599 (7) | 0.0231 (4) | |
C8 | 0.32952 (18) | −0.09575 (15) | 0.25668 (8) | 0.0202 (4) | |
C9 | 0.3519 (2) | −0.05342 (16) | 0.31331 (8) | 0.0258 (5) | |
H9 | 0.3407 | 0.0204 | 0.3195 | 0.031* | |
C10 | 0.3908 (2) | −0.12057 (17) | 0.36064 (8) | 0.0285 (5) | |
H10 | 0.4065 | −0.0936 | 0.3998 | 0.034* | |
C11 | 0.4063 (2) | −0.22683 (17) | 0.34999 (9) | 0.0290 (5) | |
H11 | 0.4345 | −0.2745 | 0.3815 | 0.035* | |
C12 | 0.3800 (2) | −0.26281 (17) | 0.29244 (9) | 0.0284 (5) | |
H12 | 0.3901 | −0.3365 | 0.2854 | 0.034* | |
C13 | 0.19552 (19) | −0.04592 (15) | 0.04086 (8) | 0.0216 (4) | |
C14 | 0.16254 (19) | −0.08025 (16) | −0.00793 (8) | 0.0231 (4) | |
C15 | 0.12182 (18) | −0.12154 (16) | −0.06645 (8) | 0.0220 (4) | |
C16 | 0.10184 (19) | −0.22989 (16) | −0.07588 (9) | 0.0243 (4) | |
H16 | 0.1163 | −0.2779 | −0.0436 | 0.029* | |
C17 | 0.06086 (19) | −0.26739 (16) | −0.13242 (9) | 0.0250 (5) | |
H17 | 0.0462 | −0.3414 | −0.1382 | 0.030* | |
C18 | 0.04061 (19) | −0.20031 (16) | −0.18071 (8) | 0.0253 (5) | |
C19 | 0.06191 (19) | −0.09226 (16) | −0.17123 (8) | 0.0265 (5) | |
H19 | 0.0494 | −0.0449 | −0.2039 | 0.032* | |
C20 | 0.10105 (19) | −0.05250 (16) | −0.11494 (8) | 0.0250 (5) | |
H20 | 0.1138 | 0.0217 | −0.1092 | 0.030* | |
C21 | −0.0027 (2) | −0.24223 (17) | −0.24197 (9) | 0.0319 (5) | |
H21A | −0.0892 | −0.2089 | −0.2587 | 0.048* | |
H21B | −0.0150 | −0.3193 | −0.2403 | 0.048* | |
H21C | 0.0678 | −0.2258 | −0.2669 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1D | 0.0183 (10) | 0.0412 (13) | 0.0158 (10) | −0.0012 (9) | 0.0007 (8) | 0.0047 (9) |
N22 | 0.0308 (9) | 0.0233 (9) | 0.0196 (9) | −0.0029 (7) | 0.0002 (7) | 0.0013 (7) |
C23 | 0.0205 (10) | 0.0229 (11) | 0.0185 (10) | 0.0015 (8) | 0.0005 (8) | 0.0026 (8) |
C24 | 0.0234 (10) | 0.0223 (11) | 0.0191 (10) | 0.0009 (8) | −0.0001 (8) | 0.0033 (8) |
C25 | 0.0204 (10) | 0.0272 (11) | 0.0173 (10) | 0.0007 (8) | 0.0001 (8) | 0.0015 (8) |
C26 | 0.0295 (11) | 0.0274 (11) | 0.0195 (10) | −0.0028 (9) | −0.0006 (8) | −0.0028 (9) |
C27 | 0.0366 (12) | 0.0235 (11) | 0.0220 (11) | −0.0024 (9) | 0.0003 (9) | 0.0027 (9) |
N28 | 0.0273 (9) | 0.0238 (9) | 0.0184 (9) | 0.0004 (7) | 0.0014 (7) | 0.0011 (7) |
C29 | 0.0195 (10) | 0.0248 (11) | 0.0182 (10) | 0.0022 (8) | 0.0016 (8) | 0.0025 (8) |
C30 | 0.0332 (12) | 0.0243 (11) | 0.0206 (11) | −0.0001 (9) | −0.0017 (9) | 0.0039 (8) |
C31 | 0.0387 (12) | 0.0337 (12) | 0.0158 (10) | 0.0006 (10) | −0.0026 (9) | 0.0034 (9) |
C32 | 0.0319 (11) | 0.0318 (11) | 0.0194 (11) | −0.0021 (9) | −0.0002 (9) | −0.0033 (9) |
C33 | 0.0302 (11) | 0.0238 (11) | 0.0205 (11) | −0.0006 (9) | 0.0002 (9) | 0.0008 (8) |
C34 | 0.0224 (10) | 0.0288 (12) | 0.0179 (11) | −0.0003 (8) | −0.0001 (8) | 0.0001 (9) |
C35 | 0.0209 (10) | 0.0275 (11) | 0.0191 (10) | 0.0006 (8) | 0.0012 (8) | −0.0017 (9) |
C36 | 0.0181 (9) | 0.0307 (11) | 0.0150 (9) | 0.0004 (8) | 0.0011 (7) | 0.0011 (8) |
C37 | 0.0259 (10) | 0.0305 (11) | 0.0180 (11) | −0.0007 (9) | 0.0003 (8) | −0.0006 (9) |
C38 | 0.0297 (11) | 0.0290 (12) | 0.0229 (12) | −0.0009 (9) | 0.0002 (9) | 0.0041 (9) |
C39 | 0.0308 (11) | 0.0375 (13) | 0.0165 (10) | 0.0004 (9) | 0.0019 (8) | −0.0050 (9) |
C40 | 0.0299 (11) | 0.0295 (12) | 0.0214 (11) | 0.0023 (9) | 0.0014 (9) | −0.0004 (9) |
C41 | 0.0327 (12) | 0.0542 (15) | 0.0180 (11) | −0.0016 (11) | 0.0005 (9) | 0.0055 (10) |
N1 | 0.0274 (9) | 0.0238 (9) | 0.0190 (9) | −0.0005 (7) | −0.0003 (7) | 0.0004 (7) |
C2 | 0.0163 (9) | 0.0252 (11) | 0.0174 (10) | 0.0006 (8) | 0.0016 (7) | 0.0010 (8) |
C3 | 0.0217 (10) | 0.0221 (11) | 0.0185 (10) | 0.0004 (8) | 0.0013 (8) | 0.0016 (8) |
C4 | 0.0168 (9) | 0.0291 (11) | 0.0176 (10) | −0.0002 (8) | 0.0027 (7) | 0.0010 (8) |
C5 | 0.0240 (10) | 0.0261 (11) | 0.0209 (10) | 0.0001 (8) | −0.0009 (8) | 0.0056 (8) |
C6 | 0.0286 (11) | 0.0199 (10) | 0.0239 (11) | −0.0009 (8) | −0.0005 (8) | 0.0031 (8) |
N7 | 0.0272 (9) | 0.0227 (9) | 0.0189 (9) | 0.0003 (7) | 0.0012 (7) | 0.0024 (7) |
C8 | 0.0183 (9) | 0.0246 (11) | 0.0176 (10) | −0.0009 (8) | 0.0016 (7) | 0.0012 (8) |
C9 | 0.0328 (11) | 0.0258 (11) | 0.0181 (10) | −0.0006 (9) | 0.0015 (8) | −0.0016 (8) |
C10 | 0.0360 (12) | 0.0342 (12) | 0.0147 (10) | −0.0028 (9) | 0.0008 (9) | −0.0002 (9) |
C11 | 0.0322 (12) | 0.0363 (12) | 0.0176 (11) | 0.0021 (10) | 0.0000 (9) | 0.0070 (9) |
C12 | 0.0352 (12) | 0.0279 (12) | 0.0215 (12) | 0.0042 (9) | 0.0013 (9) | 0.0047 (9) |
C13 | 0.0212 (10) | 0.0244 (11) | 0.0185 (10) | 0.0003 (8) | 0.0004 (8) | 0.0054 (8) |
C14 | 0.0221 (10) | 0.0265 (11) | 0.0203 (11) | 0.0024 (8) | 0.0016 (8) | 0.0048 (9) |
C15 | 0.0179 (9) | 0.0314 (12) | 0.0160 (10) | 0.0006 (8) | 0.0004 (8) | 0.0003 (8) |
C16 | 0.0245 (10) | 0.0298 (11) | 0.0179 (10) | 0.0028 (9) | 0.0007 (8) | 0.0034 (9) |
C17 | 0.0256 (11) | 0.0276 (11) | 0.0213 (11) | 0.0009 (9) | 0.0014 (8) | 0.0010 (9) |
C18 | 0.0203 (10) | 0.0353 (12) | 0.0196 (10) | 0.0012 (9) | 0.0006 (8) | −0.0003 (9) |
C19 | 0.0266 (11) | 0.0349 (12) | 0.0175 (10) | −0.0002 (9) | 0.0005 (8) | 0.0069 (9) |
C20 | 0.0254 (10) | 0.0280 (11) | 0.0214 (11) | 0.0001 (8) | 0.0025 (8) | 0.0019 (8) |
C21 | 0.0346 (12) | 0.0403 (13) | 0.0190 (12) | 0.0007 (10) | −0.0025 (9) | 0.0000 (9) |
C1D—C38 | 1.387 (3) | N1—C2 | 1.346 (2) |
C1D—C39 | 1.389 (3) | N1—C6 | 1.335 (2) |
C1D—C41 | 1.507 (3) | C2—C3 | 1.390 (3) |
N22—C23 | 1.346 (2) | C2—C8 | 1.486 (3) |
N22—C27 | 1.337 (2) | C3—H3 | 0.9500 |
C23—C24 | 1.385 (3) | C3—C4 | 1.392 (3) |
C23—C29 | 1.482 (3) | C4—C5 | 1.397 (3) |
C24—H24 | 0.9500 | C4—C13 | 1.440 (3) |
C24—C25 | 1.398 (3) | C5—H5 | 0.9500 |
C25—C26 | 1.391 (3) | C5—C6 | 1.379 (3) |
C25—C34 | 1.442 (3) | C6—H6 | 0.9500 |
C26—H26 | 0.9500 | N7—C8 | 1.341 (2) |
C26—C27 | 1.382 (3) | N7—C12 | 1.339 (2) |
C27—H27 | 0.9500 | C8—C9 | 1.389 (3) |
N28—C29 | 1.344 (2) | C9—H9 | 0.9500 |
N28—C33 | 1.328 (2) | C9—C10 | 1.385 (3) |
C29—C30 | 1.393 (3) | C10—H10 | 0.9500 |
C30—H30 | 0.9500 | C10—C11 | 1.374 (3) |
C30—C31 | 1.376 (3) | C11—H11 | 0.9500 |
C31—H31 | 0.9500 | C11—C12 | 1.381 (3) |
C31—C32 | 1.380 (3) | C12—H12 | 0.9500 |
C32—H32 | 0.9500 | C13—C14 | 1.198 (3) |
C32—C33 | 1.381 (3) | C14—C15 | 1.439 (3) |
C33—H33 | 0.9500 | C15—C16 | 1.392 (3) |
C34—C35 | 1.193 (3) | C15—C20 | 1.401 (3) |
C35—C36 | 1.440 (3) | C16—H16 | 0.9500 |
C36—C37 | 1.390 (3) | C16—C17 | 1.383 (3) |
C36—C40 | 1.396 (3) | C17—H17 | 0.9500 |
C37—H37 | 0.9500 | C17—C18 | 1.382 (3) |
C37—C38 | 1.381 (3) | C18—C19 | 1.390 (3) |
C38—H38 | 0.9500 | C18—C21 | 1.502 (3) |
C39—H39 | 0.9500 | C19—H19 | 0.9500 |
C39—C40 | 1.381 (3) | C19—C20 | 1.385 (3) |
C40—H40 | 0.9500 | C20—H20 | 0.9500 |
C41—H41A | 0.9800 | C21—H21A | 0.9800 |
C41—H41B | 0.9800 | C21—H21B | 0.9800 |
C41—H41C | 0.9800 | C21—H21C | 0.9800 |
C38—C1D—C39 | 118.15 (18) | C6—N1—C2 | 116.97 (16) |
C38—C1D—C41 | 121.38 (19) | N1—C2—C3 | 122.60 (17) |
C39—C1D—C41 | 120.47 (19) | N1—C2—C8 | 116.32 (16) |
C27—N22—C23 | 116.74 (16) | C3—C2—C8 | 121.05 (18) |
N22—C23—C24 | 122.87 (18) | C2—C3—H3 | 120.3 |
N22—C23—C29 | 116.20 (16) | C2—C3—C4 | 119.46 (19) |
C24—C23—C29 | 120.93 (17) | C4—C3—H3 | 120.3 |
C23—C24—H24 | 120.3 | C3—C4—C5 | 118.08 (18) |
C23—C24—C25 | 119.46 (18) | C3—C4—C13 | 120.70 (18) |
C25—C24—H24 | 120.3 | C5—C4—C13 | 121.22 (17) |
C24—C25—C34 | 120.98 (18) | C4—C5—H5 | 121.0 |
C26—C25—C24 | 117.94 (17) | C6—C5—C4 | 118.03 (18) |
C26—C25—C34 | 121.07 (18) | C6—C5—H5 | 121.0 |
C25—C26—H26 | 120.9 | N1—C6—C5 | 124.84 (19) |
C27—C26—C25 | 118.26 (18) | N1—C6—H6 | 117.6 |
C27—C26—H26 | 120.9 | C5—C6—H6 | 117.6 |
N22—C27—C26 | 124.72 (19) | C12—N7—C8 | 117.27 (17) |
N22—C27—H27 | 117.6 | N7—C8—C2 | 116.08 (16) |
C26—C27—H27 | 117.6 | N7—C8—C9 | 122.57 (17) |
C33—N28—C29 | 117.57 (16) | C9—C8—C2 | 121.31 (18) |
N28—C29—C23 | 116.51 (16) | C8—C9—H9 | 120.5 |
N28—C29—C30 | 122.05 (18) | C10—C9—C8 | 118.94 (19) |
C30—C29—C23 | 121.43 (17) | C10—C9—H9 | 120.5 |
C29—C30—H30 | 120.5 | C9—C10—H10 | 120.6 |
C31—C30—C29 | 119.01 (19) | C11—C10—C9 | 118.90 (18) |
C31—C30—H30 | 120.5 | C11—C10—H10 | 120.6 |
C30—C31—H31 | 120.3 | C10—C11—H11 | 120.7 |
C30—C31—C32 | 119.32 (19) | C10—C11—C12 | 118.55 (19) |
C32—C31—H31 | 120.3 | C12—C11—H11 | 120.7 |
C31—C32—H32 | 121.1 | N7—C12—C11 | 123.7 (2) |
C31—C32—C33 | 117.79 (19) | N7—C12—H12 | 118.1 |
C33—C32—H32 | 121.1 | C11—C12—H12 | 118.1 |
N28—C33—C32 | 124.24 (19) | C14—C13—C4 | 178.9 (2) |
N28—C33—H33 | 117.9 | C13—C14—C15 | 179.5 (2) |
C32—C33—H33 | 117.9 | C16—C15—C14 | 120.93 (18) |
C35—C34—C25 | 177.1 (2) | C16—C15—C20 | 118.98 (18) |
C34—C35—C36 | 178.5 (2) | C20—C15—C14 | 120.09 (18) |
C37—C36—C35 | 121.45 (18) | C15—C16—H16 | 120.1 |
C37—C36—C40 | 118.79 (18) | C17—C16—C15 | 119.80 (18) |
C40—C36—C35 | 119.75 (18) | C17—C16—H16 | 120.1 |
C36—C37—H37 | 120.0 | C16—C17—H17 | 119.1 |
C38—C37—C36 | 120.05 (19) | C18—C17—C16 | 121.87 (19) |
C38—C37—H37 | 120.0 | C18—C17—H17 | 119.1 |
C1D—C38—H38 | 119.2 | C17—C18—C19 | 118.20 (18) |
C37—C38—C1D | 121.55 (19) | C17—C18—C21 | 121.32 (19) |
C37—C38—H38 | 119.2 | C19—C18—C21 | 120.49 (18) |
C1D—C39—H39 | 119.5 | C18—C19—H19 | 119.5 |
C40—C39—C1D | 120.98 (19) | C20—C19—C18 | 121.07 (18) |
C40—C39—H39 | 119.5 | C20—C19—H19 | 119.5 |
C36—C40—H40 | 119.8 | C15—C20—H20 | 120.0 |
C39—C40—C36 | 120.49 (19) | C19—C20—C15 | 120.07 (19) |
C39—C40—H40 | 119.8 | C19—C20—H20 | 120.0 |
C1D—C41—H41A | 109.5 | C18—C21—H21A | 109.5 |
C1D—C41—H41B | 109.5 | C18—C21—H21B | 109.5 |
C1D—C41—H41C | 109.5 | C18—C21—H21C | 109.5 |
H41A—C41—H41B | 109.5 | H21A—C21—H21B | 109.5 |
H41A—C41—H41C | 109.5 | H21A—C21—H21C | 109.5 |
H41B—C41—H41C | 109.5 | H21B—C21—H21C | 109.5 |
C1D—C39—C40—C36 | 0.7 (3) | N1—C2—C3—C4 | 1.0 (3) |
N22—C23—C24—C25 | 0.5 (3) | N1—C2—C8—N7 | −169.28 (16) |
N22—C23—C29—N28 | 178.53 (16) | N1—C2—C8—C9 | 8.8 (3) |
N22—C23—C29—C30 | −2.1 (3) | C2—N1—C6—C5 | −0.2 (3) |
C23—N22—C27—C26 | 0.6 (3) | C2—C3—C4—C5 | −0.4 (3) |
C23—C24—C25—C26 | 0.1 (3) | C2—C3—C4—C13 | 179.53 (17) |
C23—C24—C25—C34 | −179.39 (17) | C2—C8—C9—C10 | −176.47 (17) |
C23—C29—C30—C31 | −177.98 (18) | C3—C2—C8—N7 | 9.0 (2) |
C24—C23—C29—N28 | −2.1 (3) | C3—C2—C8—C9 | −172.87 (17) |
C24—C23—C29—C30 | 177.27 (18) | C3—C4—C5—C6 | −0.5 (3) |
C24—C25—C26—C27 | −0.4 (3) | C4—C5—C6—N1 | 0.9 (3) |
C25—C26—C27—N22 | 0.0 (3) | C6—N1—C2—C3 | −0.7 (3) |
C27—N22—C23—C24 | −0.9 (3) | C6—N1—C2—C8 | 177.53 (16) |
C27—N22—C23—C29 | 178.43 (17) | N7—C8—C9—C10 | 1.5 (3) |
N28—C29—C30—C31 | 1.4 (3) | C8—C2—C3—C4 | −177.15 (16) |
C29—C23—C24—C25 | −178.73 (17) | C8—N7—C12—C11 | 1.0 (3) |
C29—N28—C33—C32 | 1.0 (3) | C8—C9—C10—C11 | 0.2 (3) |
C29—C30—C31—C32 | −0.2 (3) | C9—C10—C11—C12 | −1.1 (3) |
C30—C31—C32—C33 | −0.5 (3) | C10—C11—C12—N7 | 0.6 (3) |
C31—C32—C33—N28 | 0.1 (3) | C12—N7—C8—C2 | 176.01 (16) |
C33—N28—C29—C23 | 177.68 (16) | C12—N7—C8—C9 | −2.1 (3) |
C33—N28—C29—C30 | −1.7 (3) | C13—C4—C5—C6 | 179.59 (17) |
C34—C25—C26—C27 | 179.12 (18) | C14—C15—C16—C17 | 179.10 (17) |
C35—C36—C37—C38 | 179.24 (18) | C14—C15—C20—C19 | 179.98 (17) |
C35—C36—C40—C39 | −179.36 (18) | C15—C16—C17—C18 | 0.9 (3) |
C36—C37—C38—C1D | −0.5 (3) | C16—C15—C20—C19 | −0.3 (3) |
C37—C36—C40—C39 | −0.3 (3) | C16—C17—C18—C19 | −0.3 (3) |
C38—C1D—C39—C40 | −0.9 (3) | C16—C17—C18—C21 | 179.44 (18) |
C39—C1D—C38—C37 | 0.8 (3) | C17—C18—C19—C20 | −0.6 (3) |
C40—C36—C37—C38 | 0.2 (3) | C18—C19—C20—C15 | 0.9 (3) |
C41—C1D—C38—C37 | −179.64 (18) | C20—C15—C16—C17 | −0.6 (3) |
C41—C1D—C39—C40 | 179.53 (18) | C21—C18—C19—C20 | 179.61 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···N28 | 0.95 | 2.53 | 3.472 (2) | 169 |
C26—H26···N7i | 0.95 | 2.55 | 3.487 (3) | 171 |
Symmetry code: (i) x, y+1, z. |
C17H11N3 | F(000) = 536 |
Mr = 257.29 | Dx = 1.248 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 3.7436 (3) Å | Cell parameters from 1697 reflections |
b = 34.146 (3) Å | θ = 3.5–28.7° |
c = 10.7528 (9) Å | µ = 0.08 mm−1 |
β = 94.799 (8)° | T = 100 K |
V = 1369.7 (2) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.10 × 0.10 mm |
Agilent SuperNova (single source at offset, Eos detector) diffractometer | 1926 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 1645 reflections with I > 2σ(I) |
Detector resolution: 15.9631 pixels mm-1 | Rint = 0.022 |
ω scans | θmax = 23.3°, θmin = 3.1° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | h = −4→4 |
Tmin = 0.695, Tmax = 1.000 | k = −37→33 |
4235 measured reflections | l = −11→11 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.083 | H-atom parameters constrained |
wR(F2) = 0.208 | w = 1/[σ2(Fo2) + (0.0696P)2 + 4.7923P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max < 0.001 |
1926 reflections | Δρmax = 0.44 e Å−3 |
181 parameters | Δρmin = −0.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2656 (9) | 0.68966 (10) | 0.2378 (3) | 0.0167 (8) | |
C2 | 0.4386 (11) | 0.69652 (11) | 0.3508 (4) | 0.0147 (9) | |
C3 | 0.5026 (11) | 0.73404 (11) | 0.3962 (4) | 0.0154 (9) | |
H3 | 0.6208 | 0.7378 | 0.4770 | 0.018* | |
C4 | 0.3928 (11) | 0.76640 (12) | 0.3231 (4) | 0.0150 (9) | |
C5 | 0.2126 (11) | 0.75954 (12) | 0.2070 (4) | 0.0166 (10) | |
H5 | 0.1294 | 0.7807 | 0.1548 | 0.020* | |
C6 | 0.1571 (11) | 0.72098 (12) | 0.1693 (4) | 0.0170 (10) | |
H6 | 0.0343 | 0.7165 | 0.0897 | 0.020* | |
N7 | 0.7312 (9) | 0.66830 (10) | 0.5380 (3) | 0.0168 (8) | |
C8 | 0.5578 (11) | 0.66142 (11) | 0.4254 (4) | 0.0142 (9) | |
C9 | 0.4899 (11) | 0.62361 (12) | 0.3803 (4) | 0.0177 (10) | |
H9 | 0.3668 | 0.6197 | 0.3004 | 0.021* | |
C10 | 0.6034 (12) | 0.59197 (12) | 0.4530 (4) | 0.0187 (10) | |
H10 | 0.5582 | 0.5660 | 0.4244 | 0.022* | |
C11 | 0.7850 (11) | 0.59893 (12) | 0.5686 (4) | 0.0176 (10) | |
H11 | 0.8691 | 0.5778 | 0.6206 | 0.021* | |
C12 | 0.8406 (11) | 0.63710 (12) | 0.6063 (4) | 0.0186 (10) | |
H12 | 0.9646 | 0.6416 | 0.6857 | 0.022* | |
C13 | 0.4658 (11) | 0.80521 (12) | 0.3695 (4) | 0.0150 (9) | |
C14 | 0.5307 (11) | 0.83770 (12) | 0.4099 (4) | 0.0168 (10) | |
N15 | 0.5621 (10) | 0.94601 (10) | 0.4131 (3) | 0.0185 (9) | |
C16 | 0.5068 (11) | 0.90884 (12) | 0.3788 (4) | 0.0176 (10) | |
H16 | 0.3938 | 0.9039 | 0.2979 | 0.021* | |
C17 | 0.6047 (11) | 0.87675 (11) | 0.4544 (4) | 0.0153 (9) | |
C18 | 0.7784 (11) | 0.88416 (12) | 0.5721 (4) | 0.0170 (10) | |
H18 | 0.8565 | 0.8632 | 0.6258 | 0.020* | |
C19 | 0.8344 (11) | 0.92252 (12) | 0.6090 (4) | 0.0197 (10) | |
H19 | 0.9457 | 0.9284 | 0.6895 | 0.024* | |
C20 | 0.7262 (11) | 0.95225 (12) | 0.5273 (4) | 0.0200 (10) | |
H20 | 0.7701 | 0.9785 | 0.5533 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0152 (19) | 0.0180 (19) | 0.0163 (19) | −0.0010 (15) | −0.0013 (15) | −0.0006 (15) |
C2 | 0.012 (2) | 0.019 (2) | 0.013 (2) | −0.0016 (18) | 0.0030 (17) | −0.0006 (17) |
C3 | 0.013 (2) | 0.019 (2) | 0.014 (2) | −0.0009 (18) | 0.0014 (18) | −0.0006 (17) |
C4 | 0.011 (2) | 0.019 (2) | 0.015 (2) | 0.0016 (18) | 0.0023 (17) | 0.0005 (17) |
C5 | 0.021 (2) | 0.017 (2) | 0.013 (2) | −0.0011 (18) | 0.0048 (18) | 0.0021 (16) |
C6 | 0.017 (2) | 0.021 (2) | 0.013 (2) | 0.0005 (18) | 0.0021 (18) | −0.0003 (17) |
N7 | 0.0190 (19) | 0.0156 (19) | 0.016 (2) | 0.0019 (15) | 0.0035 (15) | 0.0008 (14) |
C8 | 0.014 (2) | 0.017 (2) | 0.012 (2) | −0.0003 (17) | 0.0029 (17) | −0.0003 (16) |
C9 | 0.018 (2) | 0.019 (2) | 0.016 (2) | −0.0015 (18) | 0.0005 (18) | −0.0038 (17) |
C10 | 0.020 (2) | 0.012 (2) | 0.025 (2) | −0.0013 (18) | 0.0066 (19) | −0.0031 (18) |
C11 | 0.014 (2) | 0.017 (2) | 0.022 (2) | 0.0028 (18) | 0.0035 (19) | 0.0048 (18) |
C12 | 0.020 (2) | 0.021 (2) | 0.015 (2) | 0.0047 (18) | 0.0038 (18) | 0.0017 (18) |
C13 | 0.014 (2) | 0.018 (2) | 0.013 (2) | −0.0015 (18) | 0.0024 (17) | 0.0029 (18) |
C14 | 0.014 (2) | 0.020 (2) | 0.016 (2) | 0.0016 (18) | 0.0020 (18) | 0.0024 (18) |
N15 | 0.024 (2) | 0.0155 (18) | 0.016 (2) | 0.0005 (16) | 0.0045 (16) | 0.0019 (14) |
C16 | 0.015 (2) | 0.023 (2) | 0.016 (2) | 0.0004 (18) | 0.0068 (18) | −0.0005 (18) |
C17 | 0.016 (2) | 0.015 (2) | 0.016 (2) | 0.0022 (18) | 0.0057 (18) | −0.0006 (17) |
C18 | 0.014 (2) | 0.016 (2) | 0.021 (2) | 0.0029 (18) | 0.0018 (18) | 0.0047 (17) |
C19 | 0.019 (2) | 0.021 (2) | 0.018 (2) | −0.0005 (19) | −0.0010 (19) | −0.0014 (18) |
C20 | 0.021 (2) | 0.015 (2) | 0.024 (3) | 0.0008 (18) | 0.003 (2) | −0.0004 (18) |
N1—C2 | 1.348 (5) | C10—C11 | 1.387 (6) |
N1—C6 | 1.342 (5) | C11—H11 | 0.9500 |
C2—C3 | 1.385 (6) | C11—C12 | 1.375 (6) |
C2—C8 | 1.490 (6) | C12—H12 | 0.9500 |
C3—H3 | 0.9500 | C13—C14 | 1.209 (6) |
C3—C4 | 1.398 (6) | C14—C17 | 1.436 (6) |
C4—C5 | 1.388 (6) | N15—C16 | 1.333 (5) |
C4—C13 | 1.434 (6) | N15—C20 | 1.344 (6) |
C5—H5 | 0.9500 | C16—H16 | 0.9500 |
C5—C6 | 1.388 (6) | C16—C17 | 1.395 (6) |
C6—H6 | 0.9500 | C17—C18 | 1.397 (6) |
N7—C8 | 1.345 (5) | C18—H18 | 0.9500 |
N7—C12 | 1.338 (5) | C18—C19 | 1.380 (6) |
C8—C9 | 1.395 (6) | C19—H19 | 0.9500 |
C9—H9 | 0.9500 | C19—C20 | 1.381 (6) |
C9—C10 | 1.379 (6) | C20—H20 | 0.9500 |
C10—H10 | 0.9500 | ||
C6—N1—C2 | 117.1 (3) | C11—C10—H10 | 120.7 |
N1—C2—C3 | 122.3 (4) | C10—C11—H11 | 120.7 |
N1—C2—C8 | 116.4 (3) | C12—C11—C10 | 118.5 (4) |
C3—C2—C8 | 121.2 (4) | C12—C11—H11 | 120.7 |
C2—C3—H3 | 120.0 | N7—C12—C11 | 124.1 (4) |
C2—C3—C4 | 119.9 (4) | N7—C12—H12 | 117.9 |
C4—C3—H3 | 120.0 | C11—C12—H12 | 117.9 |
C3—C4—C13 | 119.8 (4) | C14—C13—C4 | 179.1 (4) |
C5—C4—C3 | 118.0 (4) | C13—C14—C17 | 178.4 (4) |
C5—C4—C13 | 122.2 (4) | C16—N15—C20 | 116.9 (4) |
C4—C5—H5 | 120.9 | N15—C16—H16 | 118.0 |
C4—C5—C6 | 118.2 (4) | N15—C16—C17 | 124.0 (4) |
C6—C5—H5 | 120.9 | C17—C16—H16 | 118.0 |
N1—C6—C5 | 124.4 (4) | C16—C17—C14 | 120.1 (4) |
N1—C6—H6 | 117.8 | C16—C17—C18 | 117.8 (4) |
C5—C6—H6 | 117.8 | C18—C17—C14 | 122.2 (4) |
C12—N7—C8 | 117.2 (3) | C17—C18—H18 | 120.7 |
N7—C8—C2 | 116.4 (3) | C19—C18—C17 | 118.7 (4) |
N7—C8—C9 | 122.3 (4) | C19—C18—H18 | 120.7 |
C9—C8—C2 | 121.3 (4) | C18—C19—H19 | 120.5 |
C8—C9—H9 | 120.3 | C18—C19—C20 | 119.1 (4) |
C10—C9—C8 | 119.3 (4) | C20—C19—H19 | 120.5 |
C10—C9—H9 | 120.3 | N15—C20—C19 | 123.5 (4) |
C9—C10—H10 | 120.7 | N15—C20—H20 | 118.2 |
C9—C10—C11 | 118.6 (4) | C19—C20—H20 | 118.2 |
N1—C2—C3—C4 | −1.3 (6) | C8—N7—C12—C11 | −0.4 (6) |
N1—C2—C8—N7 | 179.9 (3) | C8—C9—C10—C11 | −0.6 (6) |
N1—C2—C8—C9 | −0.5 (6) | C9—C10—C11—C12 | 0.7 (6) |
C2—N1—C6—C5 | 0.2 (6) | C10—C11—C12—N7 | −0.2 (7) |
C2—C3—C4—C5 | 1.7 (6) | C12—N7—C8—C2 | −179.9 (3) |
C2—C3—C4—C13 | −178.8 (4) | C12—N7—C8—C9 | 0.5 (6) |
C2—C8—C9—C10 | −179.6 (4) | C13—C4—C5—C6 | 179.3 (4) |
C3—C2—C8—N7 | −0.4 (6) | C14—C17—C18—C19 | −178.9 (4) |
C3—C2—C8—C9 | 179.3 (4) | N15—C16—C17—C14 | 179.3 (4) |
C3—C4—C5—C6 | −1.1 (6) | N15—C16—C17—C18 | −1.5 (6) |
C4—C5—C6—N1 | 0.2 (6) | C16—N15—C20—C19 | −0.6 (6) |
C6—N1—C2—C3 | 0.4 (6) | C16—C17—C18—C19 | 1.9 (6) |
C6—N1—C2—C8 | −179.9 (3) | C17—C18—C19—C20 | −1.8 (6) |
N7—C8—C9—C10 | 0.0 (6) | C18—C19—C20—N15 | 1.1 (7) |
C8—C2—C3—C4 | 178.9 (4) | C20—N15—C16—C17 | 0.8 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···N7i | 0.95 | 2.55 | 3.475 (5) | 163 |
C18—H18···N1ii | 0.95 | 2.60 | 3.509 (5) | 161 |
Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) x+1, −y+3/2, z+1/2. |
C18H13N3 | Dx = 1.364 Mg m−3 |
Mr = 271.31 | Melting point = 398–400 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6951 (6) Å | Cell parameters from 4854 reflections |
b = 12.0142 (7) Å | θ = 3.5–29.1° |
c = 12.0376 (9) Å | µ = 0.08 mm−1 |
β = 109.552 (8)° | T = 100 K |
V = 1321.28 (15) Å3 | Block, orange |
Z = 4 | 0.35 × 0.35 × 0.20 mm |
F(000) = 568 |
Agilent SuperNova (single source at offset, Eos detector) diffractometer | 2692 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2363 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.023 |
Detector resolution: 15.9631 pixels mm-1 | θmax = 26.4°, θmin = 2.8° |
ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −13→15 |
Tmin = 0.993, Tmax = 1.000 | l = −15→11 |
8569 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0344P)2 + 0.7137P] where P = (Fo2 + 2Fc2)/3 |
2692 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.31593 (11) | 0.25441 (9) | 0.52186 (10) | 0.0149 (2) | |
C2 | 0.25581 (13) | 0.33233 (11) | 0.43923 (11) | 0.0136 (3) | |
C3 | 0.26375 (13) | 0.44551 (11) | 0.46516 (11) | 0.0143 (3) | |
H3 | 0.2241 | 0.4982 | 0.4039 | 0.017* | |
C4 | 0.33001 (13) | 0.48165 (11) | 0.58118 (11) | 0.0140 (3) | |
C5 | 0.39151 (13) | 0.40081 (11) | 0.66627 (11) | 0.0155 (3) | |
H5 | 0.4381 | 0.4211 | 0.7464 | 0.019* | |
C6 | 0.38351 (14) | 0.29005 (11) | 0.63189 (11) | 0.0154 (3) | |
H6 | 0.4290 | 0.2361 | 0.6904 | 0.018* | |
N7 | 0.12564 (12) | 0.36675 (9) | 0.23212 (10) | 0.0173 (3) | |
C8 | 0.17196 (13) | 0.29055 (11) | 0.31882 (11) | 0.0143 (3) | |
C9 | 0.14054 (14) | 0.17732 (11) | 0.29891 (12) | 0.0169 (3) | |
H9 | 0.1737 | 0.1253 | 0.3617 | 0.020* | |
C10 | 0.06031 (14) | 0.14199 (11) | 0.18635 (12) | 0.0186 (3) | |
H10 | 0.0385 | 0.0653 | 0.1709 | 0.022* | |
C11 | 0.01227 (14) | 0.21922 (12) | 0.09662 (12) | 0.0183 (3) | |
H11 | −0.0428 | 0.1971 | 0.0186 | 0.022* | |
C12 | 0.04713 (14) | 0.33039 (12) | 0.12420 (12) | 0.0181 (3) | |
H12 | 0.0133 | 0.3838 | 0.0628 | 0.022* | |
N13 | 0.25953 (12) | 0.93647 (9) | 0.65298 (10) | 0.0172 (3) | |
H13 | 0.2204 | 0.9745 | 0.6974 | 0.021* | |
C14 | 0.31571 (14) | 0.98129 (11) | 0.57170 (12) | 0.0182 (3) | |
H14 | 0.3184 | 1.0585 | 0.5553 | 0.022* | |
C15 | 0.36687 (14) | 0.89859 (11) | 0.51831 (12) | 0.0170 (3) | |
H15 | 0.4112 | 0.9076 | 0.4594 | 0.020* | |
C16 | 0.34102 (13) | 0.79562 (11) | 0.56791 (11) | 0.0143 (3) | |
C17 | 0.36292 (13) | 0.68330 (11) | 0.54613 (11) | 0.0142 (3) | |
H17 | 0.4045 | 0.6637 | 0.4877 | 0.017* | |
C18 | 0.32337 (13) | 0.60125 (11) | 0.61069 (11) | 0.0139 (3) | |
C19 | 0.26479 (14) | 0.63113 (11) | 0.69974 (11) | 0.0149 (3) | |
H19 | 0.2429 | 0.5742 | 0.7460 | 0.018* | |
C20 | 0.23857 (14) | 0.74072 (11) | 0.72121 (11) | 0.0156 (3) | |
H20 | 0.1974 | 0.7597 | 0.7801 | 0.019* | |
C21 | 0.27468 (13) | 0.82248 (11) | 0.65331 (11) | 0.0146 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0145 (5) | 0.0133 (5) | 0.0168 (6) | 0.0003 (4) | 0.0051 (4) | 0.0009 (4) |
C2 | 0.0121 (6) | 0.0143 (6) | 0.0149 (6) | 0.0002 (5) | 0.0054 (5) | 0.0004 (5) |
C3 | 0.0150 (6) | 0.0130 (6) | 0.0143 (6) | 0.0006 (5) | 0.0040 (5) | 0.0019 (5) |
C4 | 0.0121 (6) | 0.0140 (6) | 0.0169 (7) | −0.0011 (5) | 0.0061 (5) | 0.0003 (5) |
C5 | 0.0132 (6) | 0.0176 (7) | 0.0143 (6) | −0.0012 (5) | 0.0026 (5) | −0.0004 (5) |
C6 | 0.0138 (6) | 0.0148 (6) | 0.0167 (6) | 0.0018 (5) | 0.0041 (5) | 0.0035 (5) |
N7 | 0.0182 (5) | 0.0159 (6) | 0.0166 (6) | −0.0010 (4) | 0.0045 (4) | 0.0009 (5) |
C8 | 0.0132 (6) | 0.0148 (6) | 0.0158 (6) | 0.0007 (5) | 0.0060 (5) | −0.0003 (5) |
C9 | 0.0165 (6) | 0.0142 (7) | 0.0193 (7) | 0.0014 (5) | 0.0050 (5) | 0.0006 (5) |
C10 | 0.0146 (6) | 0.0155 (7) | 0.0244 (7) | −0.0004 (5) | 0.0050 (5) | −0.0052 (6) |
C11 | 0.0133 (6) | 0.0244 (7) | 0.0165 (7) | −0.0009 (5) | 0.0039 (5) | −0.0053 (6) |
C12 | 0.0183 (6) | 0.0196 (7) | 0.0156 (7) | 0.0005 (5) | 0.0044 (5) | 0.0018 (5) |
N13 | 0.0210 (6) | 0.0122 (6) | 0.0171 (6) | 0.0021 (5) | 0.0049 (4) | −0.0019 (4) |
C14 | 0.0223 (7) | 0.0124 (6) | 0.0164 (7) | −0.0016 (5) | 0.0017 (5) | 0.0015 (5) |
C15 | 0.0208 (6) | 0.0147 (6) | 0.0142 (6) | −0.0029 (5) | 0.0040 (5) | 0.0010 (5) |
C16 | 0.0134 (6) | 0.0151 (6) | 0.0118 (6) | −0.0013 (5) | 0.0007 (5) | −0.0005 (5) |
C17 | 0.0137 (6) | 0.0145 (6) | 0.0133 (6) | −0.0003 (5) | 0.0031 (5) | −0.0015 (5) |
C18 | 0.0118 (6) | 0.0143 (6) | 0.0130 (6) | −0.0001 (5) | 0.0009 (5) | −0.0009 (5) |
C19 | 0.0161 (6) | 0.0149 (6) | 0.0128 (6) | −0.0024 (5) | 0.0036 (5) | 0.0007 (5) |
C20 | 0.0153 (6) | 0.0184 (7) | 0.0133 (6) | −0.0003 (5) | 0.0050 (5) | −0.0018 (5) |
C21 | 0.0140 (6) | 0.0128 (6) | 0.0141 (6) | 0.0003 (5) | 0.0006 (5) | −0.0025 (5) |
N1—C2 | 1.3481 (17) | C11—C12 | 1.3904 (19) |
N1—C6 | 1.3365 (17) | C12—H12 | 0.9500 |
C2—C3 | 1.3915 (18) | N13—H13 | 0.8800 |
C2—C8 | 1.4916 (18) | N13—C14 | 1.3786 (18) |
C3—H3 | 0.9500 | N13—C21 | 1.3773 (17) |
C3—C4 | 1.3969 (18) | C14—H14 | 0.9500 |
C4—C5 | 1.3925 (18) | C14—C15 | 1.3637 (19) |
C4—C18 | 1.4867 (18) | C15—H15 | 0.9500 |
C5—H5 | 0.9500 | C15—C16 | 1.4318 (18) |
C5—C6 | 1.3880 (18) | C16—C17 | 1.4043 (18) |
C6—H6 | 0.9500 | C16—C21 | 1.4202 (18) |
N7—C8 | 1.3473 (17) | C17—H17 | 0.9500 |
N7—C12 | 1.3401 (17) | C17—C18 | 1.3864 (18) |
C8—C9 | 1.3972 (18) | C18—C19 | 1.4170 (18) |
C9—H9 | 0.9500 | C19—H19 | 0.9500 |
C9—C10 | 1.3841 (19) | C19—C20 | 1.3817 (18) |
C10—H10 | 0.9500 | C20—H20 | 0.9500 |
C10—C11 | 1.381 (2) | C20—C21 | 1.3953 (19) |
C11—H11 | 0.9500 | ||
C6—N1—C2 | 117.14 (11) | N7—C12—H12 | 118.0 |
N1—C2—C3 | 122.36 (12) | C11—C12—H12 | 118.0 |
N1—C2—C8 | 116.34 (11) | C14—N13—H13 | 125.6 |
C3—C2—C8 | 121.20 (11) | C21—N13—H13 | 125.6 |
C2—C3—H3 | 120.0 | C21—N13—C14 | 108.87 (11) |
C2—C3—C4 | 120.03 (12) | N13—C14—H14 | 125.0 |
C4—C3—H3 | 120.0 | C15—C14—N13 | 110.02 (12) |
C3—C4—C18 | 119.81 (11) | C15—C14—H14 | 125.0 |
C5—C4—C3 | 117.33 (12) | C14—C15—H15 | 126.5 |
C5—C4—C18 | 122.72 (12) | C14—C15—C16 | 106.91 (12) |
C4—C5—H5 | 120.6 | C16—C15—H15 | 126.5 |
C6—C5—C4 | 118.81 (12) | C17—C16—C15 | 133.94 (12) |
C6—C5—H5 | 120.6 | C17—C16—C21 | 119.13 (12) |
N1—C6—C5 | 124.24 (12) | C21—C16—C15 | 106.88 (11) |
N1—C6—H6 | 117.9 | C16—C17—H17 | 120.3 |
C5—C6—H6 | 117.9 | C18—C17—C16 | 119.41 (12) |
C12—N7—C8 | 117.60 (12) | C18—C17—H17 | 120.3 |
N7—C8—C2 | 117.13 (11) | C17—C18—C4 | 120.74 (12) |
N7—C8—C9 | 122.12 (12) | C17—C18—C19 | 120.00 (12) |
C9—C8—C2 | 120.73 (12) | C19—C18—C4 | 119.07 (11) |
C8—C9—H9 | 120.5 | C18—C19—H19 | 119.1 |
C10—C9—C8 | 119.03 (13) | C20—C19—C18 | 121.89 (12) |
C10—C9—H9 | 120.5 | C20—C19—H19 | 119.1 |
C9—C10—H10 | 120.3 | C19—C20—H20 | 121.2 |
C11—C10—C9 | 119.44 (13) | C19—C20—C21 | 117.60 (12) |
C11—C10—H10 | 120.3 | C21—C20—H20 | 121.2 |
C10—C11—H11 | 121.1 | N13—C21—C16 | 107.31 (11) |
C10—C11—C12 | 117.85 (12) | N13—C21—C20 | 130.87 (12) |
C12—C11—H11 | 121.1 | C20—C21—C16 | 121.82 (12) |
N7—C12—C11 | 123.95 (13) | ||
N1—C2—C3—C4 | −2.97 (19) | C10—C11—C12—N7 | 0.7 (2) |
N1—C2—C8—N7 | −172.50 (11) | C12—N7—C8—C2 | −178.40 (11) |
N1—C2—C8—C9 | 9.08 (17) | C12—N7—C8—C9 | 0.00 (19) |
C2—N1—C6—C5 | 2.00 (19) | N13—C14—C15—C16 | 0.34 (15) |
C2—C3—C4—C5 | 2.62 (18) | C14—N13—C21—C16 | −0.78 (14) |
C2—C3—C4—C18 | −173.06 (11) | C14—N13—C21—C20 | 178.21 (13) |
C2—C8—C9—C10 | 178.90 (12) | C14—C15—C16—C17 | 176.75 (14) |
C3—C2—C8—N7 | 10.94 (18) | C14—C15—C16—C21 | −0.80 (14) |
C3—C2—C8—C9 | −167.48 (12) | C15—C16—C17—C18 | −179.18 (13) |
C3—C4—C5—C6 | −0.18 (18) | C15—C16—C21—N13 | 0.97 (14) |
C3—C4—C18—C17 | −50.68 (17) | C15—C16—C21—C20 | −178.13 (11) |
C3—C4—C18—C19 | 124.26 (13) | C16—C17—C18—C4 | 173.34 (11) |
C4—C5—C6—N1 | −2.2 (2) | C16—C17—C18—C19 | −1.55 (18) |
C4—C18—C19—C20 | −171.75 (11) | C17—C16—C21—N13 | −177.02 (11) |
C5—C4—C18—C17 | 133.88 (13) | C17—C16—C21—C20 | 3.88 (18) |
C5—C4—C18—C19 | −51.18 (17) | C17—C18—C19—C20 | 3.23 (19) |
C6—N1—C2—C3 | 0.64 (18) | C18—C4—C5—C6 | 175.36 (11) |
C6—N1—C2—C8 | −175.87 (11) | C18—C19—C20—C21 | −1.27 (19) |
N7—C8—C9—C10 | 0.56 (19) | C19—C20—C21—N13 | 178.86 (13) |
C8—C2—C3—C4 | 173.38 (11) | C19—C20—C21—C16 | −2.28 (18) |
C8—N7—C12—C11 | −0.6 (2) | C21—N13—C14—C15 | 0.28 (15) |
C8—C9—C10—C11 | −0.48 (19) | C21—C16—C17—C18 | −1.86 (18) |
C9—C10—C11—C12 | −0.12 (19) |
Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N13/C14–C16/C21, N1/C2–C6, N7/C8–C12 and C16–C21, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N13—H13···N7i | 0.88 | 2.22 | 3.002 (2) | 148 |
C14—H14···N1ii | 0.95 | 2.39 | 3.336 (2) | 176 |
C5—H5···Cg1iii | 0.95 | 2.58 | 3.3371 (14) | 137 |
C6—H6···Cg4iii | 0.95 | 2.78 | 3.5268 (14) | 136 |
C11—H11···Cg4iv | 0.95 | 2.56 | 3.3548 (15) | 141 |
C17—H17···Cg2v | 0.95 | 2.85 | 3.6555 (15) | 143 |
C20—H20···Cg3vi | 0.95 | 2.86 | 3.5814 (16) | 133 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, y+1, z; (iii) −x+1, y−1/2, −z+3/2; (iv) −x, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z+1. |
The dihedral angle Py–Py is defined as the angle between the best planes through both pyridine rings and the dihedral angle Py–Ar is defined as the angle between the best planes through the 4-substituted pyridine and the aromatic substituent. |
4-Substituent | CSD refcode | Dihedral angle Py–Py (°) | Dihedral angle Py–Ar (°) | Reference |
(substituted) phenyl | EWOYEW | 0.8 | 9.1 | Ramakrishnan et al. (2016) |
EWOXIZ | 7.8/28.5/12.5 | 35.8/32.8/40.8 | Ramakrishnan et al. (2016) | |
ZOZRIF | 6.6 | 24.5 | Wang et al. (1996) | |
RIPQUC | 15.7 | 42.9 | Cargill Thompson et al. (1997) | |
triazine | MULRUI | 14.2/3.7/18.5 | 8.1/6.1/25.2 | Laramée-Milette et al. (2015) |
(substituted) naphthalene | EWOXUL | 2.8/10.8/1.8 | 6.0/26.1/32.9 | Ramakrishnan et al. (2016) |
EWOYIA | 18.2/20.8 | 34.8/31.7 | Ramakrishnan et al. (2016) | |
OKAGOX | 23.0/9.6 | 44.6/39.3 | He et al. (2011) | |
2,2'-bipyridine | TEBGAI | 3.2/2.7 | 0.0/0.0 | Honey & Steel (1991) |
anthracene | EWOWUK | 4.0 | 73.8 | Ramakrishnan et al. (2016) |
phenanthrene | EWOXAR | 5.2 | 64.8 | Ramakrishnan et al. (2016) |
EWOXEV | 11.1 | 53.1 | Ramakrishnan et al. (2016) | |
pyrene | EWOXOF | 4.0 | 51.6 | Ramakrishnan et al. (2016) |
Note: (a) Groom et al. (2016). |
Acknowledgements
The Hercules Foundation is thanked for supporting the purchase of the diffractometer.
Funding information
Funding for this research was provided by: Hercules Foundation (Belgium) (award No. AKUL/09/0035).
References
Al Abdel Hamid, A. A. G., Al-Khateeb, M., Tahat, Z. A., Qudah, M., Obeidat, S. M. & Rawashdeh, A. M. (2011). Int. J. Inorg. Chem. (Article ID 843051, 6 pages). Google Scholar
Blangetti, M., Rosso, H., Prandi, C., Deagostino, A. & Venturello, P. (2013). Molecules, 18, 1188–1213. CrossRef CAS PubMed Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Cargill Thompson, A. M. W., Smailes, M. C. C., Jeffery, J. C. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 737–744. CrossRef Google Scholar
Chen, X., Li, C., Grätzel, M., Kostecki, R. & Mao, S. S. (2012). Chem. Soc. Rev. 41, 7909–7937. CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Egbe, D. A. M., Amer, A. M. & Klemm, E. (2001). Des. Monomers Polym. 4, 169–175. CrossRef CAS Google Scholar
Grätzel, M. (2003). J. Photochem. Photobiol. Photochem. Rev. 4, 145–153. Google Scholar
Grätzel, M. (2009). Acc. Chem. Res. 42, 1788–1798. PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
He, Y., Bian, Z., Kang, C. & Gao, L. (2011). Chem. Commun. 47, 1589–1591. CrossRef CAS Google Scholar
Honey, G. E. & Steel, P. J. (1991). Acta Cryst. C47, 2247–2249. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaes, C., Katz, A. & Hosseini, M. W. (2000). Chem. Rev. 100, 3553–3590. Web of Science CrossRef PubMed CAS Google Scholar
Kitanosono, T., Zhu, L., Liu, C., Xu, P. & Kobayashi, S. (2015). J. Am. Chem. Soc. 137, 15422–15425. CrossRef CAS PubMed Google Scholar
Kumar, A., Rao, G. K., Saleem, F., Kumar, R. & Singh, A. K. (2014). J. Hazard. Mater. 269, 9–17. CrossRef CAS PubMed Google Scholar
Laramée-Milette, B., Lussier, F., Ciofini, I. & Hanan, G. S. (2015). Dalton Trans. 44, 11551–11561. PubMed Google Scholar
Lewis, J. E. M., Bordoli, R. J., Denis, M., Fletcher, C. J., Galli, M., Neal, E. A., Rochette, E. M. & Goldup, S. M. (2016). Chem. Sci. 7, 3154–3161. CrossRef CAS Google Scholar
Li, M., Yu, J., Chen, Z., Totani, K., Watanabe, T. & Miyata, S. (2000). Jpn. J. Appl. Phys. 39, L1171–L1173. CrossRef CAS Google Scholar
Miyaura, N. & Suzuki, A. (1979). J. Chem. Soc. Chem. Commun. pp. 866–867. CrossRef Google Scholar
Negishi, E. & de Meijere, A. (2002). In Handbook of Organopalladium Chemistry for Organic Synthesis, Wiley: New York. Google Scholar
Newkome, G. R., Patri, A. K., Holder, E. & Schubert, U. S. (2004). Eur. J. Org. Chem. pp. 235–254. Web of Science CrossRef Google Scholar
Nguyen, N. H., Mai, A. T., Dang, X. T. & Luong, T. T. T. (2015). J. Sol. Energy Eng. 137, 021006-1-5. Google Scholar
Nguyen, H., Nguyen Bich, N., Dang, T. T. & Van Meervelt, L. (2014). Acta Cryst. C70, 895–899. CrossRef IUCr Journals Google Scholar
Norris, M. R., Concepcion, J. J., Glasson, C. R. K., Fang, Z., Lapides, A. M., Ashford, D. L., Templeton, J. L. & Meyer, T. J. (2013). Inorg. Chem. 52, 12492–12501. CrossRef CAS PubMed Google Scholar
Ortiz, J. H. M., Vega, N., Comedi, D., Tirado, M., Romero, I., Fontrodona, X., Parella, T., Vieyra, F. E. M., Borsarelli, C. D. & Katz, N. E. (2013). Inorg. Chem. 52, 4950–4962. CrossRef CAS PubMed Google Scholar
Ramakrishnan, R., Mallia, A. R., Niyas, M. A., Sethy, R. & Hariharan, M. (2016). Cryst. Growth Des. 16, 6327–6336. CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, N., Concepcion, J. J., Binstead, R. A., Rudd, J. A., Vannucci, A. K., Dares, C. J., Coggins, M. K. & Meyer, T. J. (2015). Proc. Natl Acad. Sci. USA, 112, 4935–4940. CrossRef CAS PubMed Google Scholar
Sonogashira, K. (2002). J. Organomet. Chem. 653, 46–49. Web of Science CrossRef CAS Google Scholar
Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470. CrossRef Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Suzuki, A. (1999). J. Organomet. Chem. 576, 147–168. Web of Science CrossRef CAS Google Scholar
Wang, W., Baba, A., Schmehl, R. H. & Mague, J. T. (1996). Acta Cryst. C52, 658–660. CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.