research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

C—I⋯N short contacts as tools for the construction of the crystal packing in the crystal structure of 3,3′-(ethane-1,2-di­yl)bis­­(6-iodo-3,4-di­hydro-2H-1,3-benzoxazine)

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 March 2017; accepted 31 March 2017; online 7 April 2017)

The asymmetric unit of the title compound, C18H18I2N2O2, consists of one half-mol­ecule, completed by the application of inversion symmetry. The mol­ecule adopts the typical structure for this class of bis-benxozazines, characterized by an anti orientation of the two benzoxazine rings around the central C—C bond. The oxazinic ring adopts a half-chair conformation. In the crystal, mol­ecules are linked by C—I⋯N short contacts [I⋯N = 3.378 (2) Å], generating layers lying parallel to the bc plane.

1. Chemical context

Benzoxazines have been studied for more than 70 years (Holly & Cope, 1944[Holly, F. W. & Cope, A. C. (1944). J. Am. Chem. Soc. 66, 1875-1879.]): they are heterocyclic compounds, which have the core structure of a benzene ring fused with an oxazine ring that can be readily synthesized by the Mannich reaction of mixing three components, either in solution or by a melt-state reaction using a combination of a phenolic derivative, formaldehyde, and a primary amine (Wattanathana et al., 2014[Wattanathana, W., Nonthaglin, S., Veranitisagul, C., Koonsaeng, N. & Laobuthee, A. J. (2014). J. Mol. Struct. 1074, 118-125.]). The importance of these compounds is for the production of the corresponding polymers called polybenzoxazines, which have been developed as a class of ring-opening phenolic resins (Ishida & Sanders, 2000[Ishida, H. & Sanders, D. P. (2000). J. Polym. Sci. Part B, 38, 3289-3301.]). However, the usefulness of benzoxazines as precursors for a class of thermosetting phenolic resins with excellent mechanical and thermal properties was not recognized until recently (Velez-Herrera & Ishida, 2009[Velez-Herrera, P. & Ishida, H. (2009). J. Fluor. Chem. 130, 573-580.]).

[Scheme 1]

As the electrophilic character of the substituents affects the stability both of the reaction inter­mediates and the benzoxazine ring (Hamerton et al., 2006[Hamerton, I., Howlin, B. J. & Mitchell, A. L. (2006). React. Funct. Polym. 66, 21-39.]), consequently, when p-iodo­phenol, formaldehyde and ethyl­enedi­amine were allowed to react in a molar ratio of 2:4:1, the title compound (I)[link] was formed. This article forms part of our ongoing research into improving the understanding of the structural features resulting from replacement of the halogen substituent at the para position of the aromatic ring of bis-1,3-benzoxazines. So, an iodine functional bis-1,3-benzoxazine, namely 3,3′-(ethane-1,2-di­yl)bis­(6-iodo-3,4-di­hydro-2H-1,3-benzoxazine) has been synthesized in high yield and purity.

2. Structural commentary

Similar to that observed in the crystal structure of the related compounds (Rivera et al., 2010[Rivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.], 2016a[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2016a). Acta Cryst. E72, 1645-1647.]), the asymmetric unit of the title compound C18H18I2N2O2, contains one-half of the formula unit; a centre of inversion is located at the mid-point of the central C1—C1(1 − x, 1 − y, 1 − z) bond (see Fig. 1[link]). The six-membered oxazine heterocyclic ring adopts a half-chair conformation, with puckering parameters Q = 0.482 (3) Å, θ =129.6 (2)°, φ = 283.6 (3)°: with respect to the plane formed by O1/C3/C4/C5, the deviations of C2 and N1 are 0.301 (3) and −0.320 (3) Å, respectively. The observed C—O bond length [1.376 (3) Å] is in a good agreement with the related p-fluoro and p-bromo structures (Rivera et al., 2016a[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2016a). Acta Cryst. E72, 1645-1647.],b[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2016b). Acta Cryst. E72, 1509-1511.]), but this value is shorter than for the the p-chloro derivative (Rivera et al., 2010[Rivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.]). The C7—I1 bond length [2.107 (3) Å] is in good agreement with the value reported for 4-iodo­phenol [2.104 (5) Å; Merz, 2006[Merz, K. (2006). Cryst. Growth Des. 6, 1615-1619.]]. The C8—C9 bond length [1.378 (4) Å] is shorter than the average C–C bond length of benzene ring [1.398 (4) Å)]. The N1—C2 bond length [1.435 (3) Å] is significantly shorter than those of N1—C5 [1.474 (3) Å] and N1—C1 [1.478 (3) Å], probably due to the presence of a hyperconjugative inter­action between the lone-pair electrons of the nitro­gen atom and the anti­bonding σ orbital of C—O bond (nN→σ*C2–O1). Moreover, the C2—N1—C1 [112.6 (2)°] and C5—N1—C1 [113.0 (2)°] angles are larger than the mean value of sp3 hybridization in ammonia (107°; Olovsson & Templeton, 1959[Olovsson, I. & Templeton, D. H. (1959). Acta Cryst. 12, 832-836.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Atoms labelled with the suffix A are generated using the symmetry operator (1 − x, 1 − y, 1 − z).

3. Supra­molecular features

The crystal-packing arrangement of the title compound is illustrated in Fig. 2[link]. In contrast with related structures (Rivera et al., 2016a[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2016a). Acta Cryst. E72, 1645-1647.],b[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2016b). Acta Cryst. E72, 1509-1511.], 2010[Rivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.]), the absence of C—H⋯X or C—H⋯O inter­actions in the title compound is surprising. The packing of title compound is dominated by short contacts (Table 1[link]), as indicated by a PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) analysis. Short C—I⋯N inter­actions (Table 1[link]) are observed between neighboring mol­ecules; it is remarkable that these short contacts present in the crystal structure of (I)[link] has structure-directing characteristics.

Table 1
Short-contact geometry (Å, °)

C—I X C—I I···X C—I···X
C7—I1 N1i 2.107 (3) 3.378 (2) 169.13 (9)
Symmetry code: (i) x, −y, [{1\over 2}] + z.
[Figure 2]
Figure 2
Crystal packing of (I)[link], displaying C—I⋯N short contacts, which result in chains, forming layers propagating parallel to the bc plane.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for short N⋯I contacts between an N atom bonded to three C atoms and an I atom bonded to an aromatic ring yielded 47 entries with a distance of less than 3.5 Å. The search yielded four comparable structures, namely 3,3′-ethane-1,2-diylbis(6-methyl-3,4-di­hydro-2H-1,3-benzoxazine) (AXAKAM; Rivera et al., 2011[Rivera, A., Camacho, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2028.]), 3,3′-ethyl­enebis(3,4-di­hydro-6-chloro-2H-1,3-benzoxazine), (NUQKAM; Rivera et al., 2010[Rivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.]), 3,3′-(ethane-1,2-di­yl)-bis­(6-meth­oxy-3,4-di­hydro-2H-1,3-benzoxazine) monohydrate (QEDDOU; Rivera et al., 2012b[Rivera, A., Camacho, J., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012b). Acta Cryst. E68, o2734.]), 3,3′-ethane-1,2-diylbis(3,4-di­hydro-2H-1,3-benzoxazine) (SAGPUN; Rivera et al., 2012a[Rivera, A., Camacho, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o148.]).

5. Synthesis and crystallization

The title compound was prepared as described by Rivera et al. (1989[Rivera, A., Aguilar, Z., Clavijo, D. & Joseph-Nathan, P. (1989). An. Quim. Ser. C, 85, 9-10.]). The reaction mixture was stored at room temperature for several weeks until a yellowish precipitate was formed. The solid was separated by filtration, washed with ethanol and crystallized from acetone solution. Yield 45.5%, m.p. 434 K.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in the difference electron-density map. C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99Å) and refined using a riding-model approximation, with Uiso(H) set to 1.2Ueq of the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C18H18I2N2O2
Mr 548.14
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 20.4200 (9), 5.9477 (2), 17.8414 (8)
β (°) 123.607 (3)
V3) 1804.69 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.50
Crystal size (mm) 0.29 × 0.27 × 0.27
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.395, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 39259, 2531, 2456
Rint 0.076
(sin θ/λ)max−1) 0.697
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.22
No. of reflections 2531
No. of parameters 110
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.46, −1.35
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97, SHELXL97 and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

3,3'-(Ethane-1,2-diyl)bis(6-iodo-3,4-dihydro-2H-1,3-benzoxazine) top
Crystal data top
C18H18I2N2O2F(000) = 1048
Mr = 548.14Dx = 2.017 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.4200 (9) ÅCell parameters from 39259 reflections
b = 5.9477 (2) Åθ = 3.3–29.9°
c = 17.8414 (8) ŵ = 3.50 mm1
β = 123.607 (3)°T = 173 K
V = 1804.69 (14) Å3Block, colourless
Z = 40.29 × 0.27 × 0.27 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2456 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.076
ω scansθmax = 29.7°, θmin = 3.6°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 2828
Tmin = 0.395, Tmax = 1.000k = 78
39259 measured reflectionsl = 2424
2531 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0378P)2 + 4.0804P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.002
S = 1.22Δρmax = 1.46 e Å3
2531 reflectionsΔρmin = 1.35 e Å3
110 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0034 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.60686 (2)0.05887 (3)0.93105 (2)0.02375 (9)
O10.68205 (12)0.6146 (3)0.71878 (13)0.0231 (4)
N10.60465 (12)0.4020 (4)0.58050 (14)0.0174 (4)
C10.53347 (15)0.5410 (4)0.54603 (16)0.0207 (5)
H1A0.5456620.6995390.5414550.025*
H1B0.5169750.5343940.5887470.025*
C20.67584 (15)0.5254 (5)0.63881 (17)0.0214 (5)
H2A0.6787080.6517950.6046330.026*
H2B0.7212870.4255210.6579440.026*
C30.66459 (15)0.4585 (4)0.76215 (17)0.0187 (4)
C40.62686 (14)0.2547 (4)0.72243 (15)0.0171 (4)
C50.60538 (15)0.1994 (4)0.62851 (16)0.0199 (4)
H5A0.6437930.0902350.6324780.024*
H5B0.5527760.1281360.5940330.024*
C60.61047 (15)0.1080 (4)0.77133 (16)0.0191 (4)
H60.5851920.0313360.7455020.023*
C70.63083 (15)0.1641 (5)0.85739 (16)0.0208 (5)
C80.66757 (17)0.3687 (5)0.89574 (17)0.0250 (5)
H80.6810430.4077060.9542970.030*
C90.68424 (17)0.5143 (5)0.84831 (17)0.0236 (5)
H90.7093130.6536540.8744390.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02726 (12)0.02815 (12)0.01965 (12)0.00072 (6)0.01537 (9)0.00344 (6)
O10.0281 (9)0.0214 (8)0.0185 (8)0.0058 (7)0.0121 (7)0.0023 (7)
N10.0167 (9)0.0205 (9)0.0129 (8)0.0030 (7)0.0069 (7)0.0024 (7)
C10.0207 (11)0.0228 (11)0.0130 (10)0.0046 (9)0.0060 (9)0.0010 (8)
C20.0188 (10)0.0271 (12)0.0168 (10)0.0008 (9)0.0089 (9)0.0013 (9)
C30.0185 (10)0.0207 (11)0.0150 (10)0.0001 (8)0.0081 (9)0.0021 (8)
C40.0166 (9)0.0219 (10)0.0109 (9)0.0022 (8)0.0064 (8)0.0017 (8)
C50.0248 (11)0.0198 (10)0.0133 (9)0.0014 (9)0.0093 (9)0.0005 (8)
C60.0196 (10)0.0197 (10)0.0154 (10)0.0005 (8)0.0081 (8)0.0009 (8)
C70.0235 (11)0.0227 (11)0.0163 (10)0.0011 (9)0.0110 (9)0.0030 (9)
C80.0338 (13)0.0266 (13)0.0156 (10)0.0017 (11)0.0144 (10)0.0019 (9)
C90.0311 (13)0.0224 (11)0.0151 (10)0.0037 (10)0.0114 (10)0.0032 (9)
Geometric parameters (Å, º) top
I1—C72.107 (3)C3—C41.400 (3)
O1—C31.376 (3)C4—C61.399 (3)
O1—C21.460 (3)C4—C51.515 (3)
N1—C21.435 (3)C5—H5A0.9900
N1—C51.474 (3)C5—H5B0.9900
N1—C11.478 (3)C6—C71.391 (3)
C1—C1i1.523 (5)C6—H60.9500
C1—H1A0.9900C7—C81.394 (4)
C1—H1B0.9900C8—C91.378 (4)
C2—H2A0.9900C8—H80.9500
C2—H2B0.9900C9—H90.9500
C3—C91.397 (4)
I1···N1ii3.378 (2)
C3—O1—C2113.3 (2)C6—C4—C5122.1 (2)
C2—N1—C5108.45 (19)C3—C4—C5119.3 (2)
C2—N1—C1112.6 (2)N1—C5—C4111.6 (2)
C5—N1—C1113.0 (2)N1—C5—H5A109.3
N1—C1—C1i111.0 (3)C4—C5—H5A109.3
N1—C1—H1A109.4N1—C5—H5B109.3
C1i—C1—H1A109.4C4—C5—H5B109.3
N1—C1—H1B109.4H5A—C5—H5B108.0
C1i—C1—H1B109.4C7—C6—C4120.7 (2)
H1A—C1—H1B108.0C7—C6—H6119.7
N1—C2—O1113.5 (2)C4—C6—H6119.7
N1—C2—H2A108.9C6—C7—C8120.1 (2)
O1—C2—H2A108.9C6—C7—I1120.46 (19)
N1—C2—H2B108.9C8—C7—I1119.41 (18)
O1—C2—H2B108.9C9—C8—C7119.7 (2)
H2A—C2—H2B107.7C9—C8—H8120.2
O1—C3—C9116.9 (2)C7—C8—H8120.2
O1—C3—C4122.7 (2)C8—C9—C3120.5 (3)
C9—C3—C4120.3 (2)C8—C9—H9119.7
C6—C4—C3118.6 (2)C3—C9—H9119.7
C2—N1—C1—C1i150.8 (3)C1—N1—C5—C477.2 (2)
C5—N1—C1—C1i85.9 (3)C6—C4—C5—N1161.7 (2)
C5—N1—C2—O165.2 (3)C3—C4—C5—N118.6 (3)
C1—N1—C2—O160.5 (3)C3—C4—C6—C70.4 (4)
C3—O1—C2—N147.5 (3)C5—C4—C6—C7179.9 (2)
C2—O1—C3—C9167.3 (2)C4—C6—C7—C80.3 (4)
C2—O1—C3—C414.5 (3)C4—C6—C7—I1179.47 (18)
O1—C3—C4—C6179.0 (2)C6—C7—C8—C90.6 (4)
C9—C3—C4—C60.9 (4)I1—C7—C8—C9179.2 (2)
O1—C3—C4—C51.2 (4)C7—C8—C9—C30.1 (4)
C9—C3—C4—C5179.3 (2)O1—C3—C9—C8178.9 (3)
C2—N1—C5—C448.3 (3)C4—C3—C9—C80.7 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1/2.
Short-contact geometry (Å, °) top
C—IXC—II···XC—I···X
C7—I1N1i2.107 (3)3.378 (2)169.13 (9)
Symmetry code: (i) x, -y, 1/2+z.
 

Acknowledgements

JJR is grateful to COLCIENCIAS for his doctoral scholarship.

Funding information

Funding for this research was provided by: Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia (award No. 35816).

References

First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHamerton, I., Howlin, B. J. & Mitchell, A. L. (2006). React. Funct. Polym. 66, 21–39.  Web of Science CrossRef CAS Google Scholar
First citationHolly, F. W. & Cope, A. C. (1944). J. Am. Chem. Soc. 66, 1875–1879.  CrossRef CAS Google Scholar
First citationIshida, H. & Sanders, D. P. (2000). J. Polym. Sci. Part B, 38, 3289–3301.  CrossRef CAS Google Scholar
First citationMerz, K. (2006). Cryst. Growth Des. 6, 1615–1619.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlovsson, I. & Templeton, D. H. (1959). Acta Cryst. 12, 832–836.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRivera, A., Aguilar, Z., Clavijo, D. & Joseph-Nathan, P. (1989). An. Quim. Ser. C, 85, 9–10.  CAS Google Scholar
First citationRivera, A., Camacho, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012a). Acta Cryst. E68, o148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Camacho, J., Ríos-Motta, J., Kučeraková, M. & Dušek, M. (2012b). Acta Cryst. E68, o2734.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Camacho, J., Ríos-Motta, J., Pojarová, M. & Dušek, M. (2011). Acta Cryst. E67, o2028.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2016a). Acta Cryst. E72, 1645–1647.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2016b). Acta Cryst. E72, 1509–1511.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Rojas, J. J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2010). Acta Cryst. E66, o1134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVelez-Herrera, P. & Ishida, H. (2009). J. Fluor. Chem. 130, 573–580.  CAS Google Scholar
First citationWattanathana, W., Nonthaglin, S., Veranitisagul, C., Koonsaeng, N. & Laobuthee, A. J. (2014). J. Mol. Struct. 1074, 118–125.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds