research communications
μ3-Chlorido-μ2-chlorido-(μ3-pyrrolidine-1-carbodithioato-κ4S:S,S′:S′)tris[(triethylphosphane-κP)copper(I)]: and Hirshfeld surface analysis
aResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, bDepartment of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom, and cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India
*Correspondence e-mail: edwardt@sunway.edu.my
The title trinuclear compound, [Cu3(C5H8NS2)Cl2(C6H15P)3], has the dithiocarbamate ligand symmetrically chelating one CuI atom and each of the S atoms bridging to another CuI atom. Both chloride ligands are bridging, one being μ3- and the other μ2-bridging. Each Et3P ligand occupies a terminal position. Two of the CuI atoms exist within Cl2PS donor sets and the third is based on a ClPS2 donor set, with each coordination geometry based on a distorted tetrahedron. The constituents defining the core of the molecule, i.e. Cu3Cl2S2, occupy seven corners of a distorted cube. In the crystal, linear supramolecular chains along the c axis are formed via phosphane–methylene-C—H⋯Cl and pyrrolidine–methylene-C—H⋯π(chelate) interactions, and these chains pack without directional interactions between them. An analysis of the Hirshfeld surface points to the predominance of H atoms at the surface, i.e. contributing 86.6% to the surface, and also highlights the presence of C—H⋯π(chelate) interactions.
CCDC reference: 1543298
1. Chemical context
Recent studies have highlighted the potential of ternary coinage metal phosphane/dithiocarbamates as anti-microbial agents. Motivated by the quite significant activity exhibited by R3PAu(S2CNRR′), R, R′ = alkyl/aryl (Sim et al., 2014; Chen et al., 2016), lower congeners, i.e. (Ph3P)2M(S2CNRR′), M = CuI and AgI, were investigated and shown to be also potent in this context (Jamaludin et al., 2016). A prominent lead compound, Et3PAu(S2CNEt2), was shown to possess broad-range activity against Gram-positive and Gram-negative bacteria and, notably, was also bactericidal against methicillin-resistant Staphylococcus aureus (MRSA) (Chen et al., 2016). Given that Et3PAu(S2CNEt2) exhibited the most exciting potential amongst the phosphanegold dithiocarbamates, it was thought of interest to extend the chemistry/biological investigations of (R3P)2M(S2CNRR'), M = CuI and AgI, to include trialkylphosphane species. It was during these studies that the title compound, (I), was isolated as an incomplete reaction product from the 1:2:1 reaction between CuCl, Et3P and NH4[S2CN(CH2)4]. Herein, the crystal and molecular structures of (I) are described along with a detailed analysis of the Hirshfeld surface.
2. Structural commentary
The molecular structure of (I), Fig. 1, represents a neutral, trinuclear CuI complex comprising three monodentate phosphane ligands, two chlorido anions, one μ3- and the other μ2-bridging, and a dithiocarbamate ligand. The latter is tetra-coordinating, chelating the Cu3 atom, and each sulfur atom also bridges another CuI atom. As highlighted in Fig. 2, the Cu3Cl2S2 atoms of the core occupy the corners of a distorted cube with the putative eighth position being occupied by the quaternary-carbon atom of the dithiocarbamate ligand. As listed in Table 1, there are systematic trends in the Cu—donor-atom bond lengths. To a first approximation, the Cu—P bond lengths are about the same. As anticipated for the Cu1 and Cu2 atoms, the Cu—Cl bond lengths involving the μ3-chlorido ligand are systematically longer than those formed with the μ2-chlorido ligand. Despite being chelated by the dithiocarbamate ligand, the Cu3 atom forms longer Cu—S bond lengths than do the Cu1 and Cu2 atoms, an observation correlated with the presence of two electronegative chloride anions in the donor sets for the latter.
|
The coordination geometries for the Cu1 and Cu2 atoms are based on Cl2PS donor sets while that of Cu3 is based on a ClPS2 donor set, Table 1. While being based on tetrahedra, the coordination geometries exhibit wide ranges of angles subtended at the copper atoms, i.e. 30, 28 and 53°, respectively. The wider range of angles about the Cu3 atom can be traced, in part, to the acute angle subtended by the dithiocarbamate ligand. A measure of the geometry defined by a four-atom donor set is τ4 (Yang et al., 2007). Based on this index, τ4 values of 1 and 0 are computed for ideal tetrahedral and square-planar geometries, respectively. The τ4 values calculated for the Cu1–Cu3 atoms in (I) are 0.84, 0.86 and 0.78, respectively, i.e. consistent with distortions from tetrahedral geometries.
Reflecting the near equivalence in the pairs of Cu—S1 and Cu—S2 bonds, the associated C—S bond lengths are equal within experimental error, Table 1. Finally, the pyrrolidine ring is twisted about the C3—C4 bond.
3. Supramolecular features
The key feature of the molecular packing in (I) is the formation of linear supramolecular chains along the c axis, Fig. 3a and Table 2. The μ2-chlorido ligand accepts two phosphane-methylene-C—H⋯Cl type interactions to form a linear chain. Centrosymmetrically related chains are connected via pyrrolidine–methylene-C—H⋯π(chelate) interactions where the chelate ring is defined by the Cu1,S1,S2,C1 atoms. Such C—H⋯π(chelate) interactions are now well established in dithiocarbamate structural chemistry (Tiekink & Zukerman-Schpector, 2011) and are gaining greater recognition in coordination chemistry (Tiekink, 2017). The supramolecular chains pack in the crystal with no directional interactions between them, Fig. 3b.
4. Hirshfeld surface analysis
The Hirshfeld surface analysis of (I) was performed in accord with a recent study of a related dithiocarbamate complex (Jotani et al., 2016). The presence of tiny red spots near the Cl1 and methylene-H20B and H22B atoms on the Hirshfeld surfaces mapped over dnorm in Fig. 4 is indicative of the double-acceptor (C—H)2⋯Cl interaction. In the view of the Hirshfeld surface mapped over the calculated electrostatic potential in Fig. 5, the light-blue and pale-red regions around the electropositive and electronegative atoms result from the polarization of charges about the donors and acceptors, respectively, of the intermolecular interactions. The immediate environments about a reference molecule within the shape-index-mapped Hirshfeld surfaces in Fig. 6a and b highlight the intermolecular C—H⋯Cl and C—H⋯π(chelate) interactions, respectively.
The two-dimensional fingerprint plots for (I), i.e. the overall, Fig. 7a, and those delineated into H⋯H, Cl⋯H/H⋯Cl and S⋯H/H⋯S contacts (McKinnon et al., 2007) in Fig. 7b–d, respectively, provide further information on the intermolecular interactions present in the crystal. It is evident from the fingerprint plot delineated into H⋯H contacts, Fig. 7b, that the hydrogen atoms of the triethylphosphane and pyrrolidine ligands make the greatest contribution, i.e. 86.6%, to the Hirshfeld surface, but at distances greater than the sum of the van der Waals radii. The pair of tips at de + di ∼ 2.8 Å in the arrow-like distribution of points in the plot for Cl⋯H/H⋯Cl contacts, Fig. 7c, represent the intermolecular C—H⋯Cl interactions. A pair of short spikes at de + di ∼ 3.0 Å in the S⋯H/H⋯S delineated plot, Fig. 7d, and the 5.8% contribution to Hirshfeld surfaces along with the small but significant contributions from C⋯H/H⋯C and Cu⋯H/H⋯Cu contacts, Table 3, to the Hirshfeld surface are all indicative of the C—H⋯π(chelate) interaction, Fig. 3a and Table 2. The small contributions from the other interatomic contacts, namely N⋯H/H⋯N and C⋯N/N⋯C, have little effect on the packing of the crystal.
|
5. Database survey
The isolated Cu3(μ3-Cl)(μ2-Cl)S2 core observed in (I) appears to be rare in the literature, being structurally observed only in one other structure with general formula, M3(μ3-X)(μ2-X)S2, incidentally, a dithiocarbamate complex. Thus, in the RuII species, Ru3(CO)3(S2CNEt2)4Cl2, a discrete Ru3(μ3-Cl)(μ2-Cl)S2 core is found but where the μ2-S sulfur atoms are derived from four dithiocarbamate ligands and each RuII atom is coordinated by two additional sulfur donor atoms leading to trans-RuCClS4 octahedral coordination geometries (Raston & White, 1975). While other structures are known with the specified core, the core is embedded within higher nuclearity clusters or in coordination polymers.
There are twenty et al., 2016). The majority, i.e. 12 conform to the tetrahedral CuP2S2 motif observed in the biologically active bis(phosphane)copper(I) dithiocarbamate compounds mentioned in the Chemical Context (Jamaludin et al. 2016; Tan et al., 2016). Similar coordination geometries are found in two binuclear structures with bis(dithiocarbamate) ligands, as exemplified in (Ph3P)2CuS2CN(CH2CH2)2NCS2Cu(PPh3)2 (Kumar et al., 2009). There are two related complexes but with a 1:1:1 ratio of copper, dithiocarbamate and phosphane, as exemplified by [Et3PCu(S2CNEt2)]2 (Afzaal et al., 2011). One of the remaining structures is neutral and octanuclear with formula (Ph3P)4Cu8(μ4-SC6H4Br-4)4(μ2-SC6H4Br-4)2(S2CNMe2)2·MeO(CH2)2OMe (Langer et al., 2009). Here, each sulfur atom of the dithiocarbamate ligand bridges two different CuI atoms. The common feature of the remaining three structures is that they are charged and feature bidentate phosphane ligands. The simplest of these is formulated as [(dppm)2Cu2(S2CNMe2)][ClO4]2·EtOH·0.25H2O where the dithiocarbamate ligand is bidentate bridging as is the dppm ligand (Huang & Situ, 2003); dppm = Ph2PCH2PPh2. In the trinuclear mono-cation {(dppm)3Cu3(μ3-I)[S2CN(CH2Ph)CH2(2-thienyl)]}I, the dithiocarbamate ligand bridges two CuI atoms and simultaneously coordinates a third CuI atom via one of the sulfur atoms only (Rajput et al., 2015). The final structure to be described is related to the former whereby one bis(phosphane) ligand has been replaced by a dithiocarbamate ligand with the ejection of the μ3-iodido species, i.e. {(dppf)2Cu3[S2CN(CH2Ph)CH2Fc]2}PF6·CHCl3 (Kishore et al., 2016); dppf = Ph2P(η5-C5H4)Fe(η5-C5H4)PPh2 and Fc is (η5-C5H4)Fe(η5-C5H5). In this structure, each dithiocarbamate ligand is tri-coordinate, binding to three different CuI atoms. From the foregoing, it is obvious there is considerable structural variability in these systems arising in part from the ability of the dithiocarbamate ligands to adopt quite diverse coordination modes.
containing copper with dithiocarbamate and phosphane ligands in the crystallographic literature (Groom6. Synthesis and crystallization
Complex (I) is an unexpected product from the in situ reaction of CuCl, Et3P, and NH4[S2CN(CH2)4] in a 1:2:1 ratio. The preparation was as follows: NH4[S2CN(CH2)4] (Sigma–Aldrich, 0.5 mmol, 0.082 g) dissolved in isopropanol (5 ml) was added to an isopropanol solution (5 ml) of CuCl (Sigma–Aldrich, 0.5 mmol, 0.05 g) at room temperature. Then, a THF solution of Et3P (Sigma–Aldrich; 1 ml (= 0.118 g), 1.0 mmol) was added to the reaction mixture followed by stirring for 2 h. The resulting mixture was filtered, diluted with hexane (2 ml) and mixed well. The mixture was left for evaporation at 227 K. A small number of yellow crystals of (I) were obtained after 5 d. Yield: 0.0095 g (4.26%), m.p. 330.8 K. IR (cm−1): 1429(s) v(C—N); 1045(m), 993(m) v(C—S).
7. Refinement
Crystal data, data collection and structure . Carbon-bound H atoms were placed in calculated positions (C—H = 0.98–0.99 Å) and were included in the in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).
details are summarized in Table 4Supporting information
CCDC reference: 1543298
https://doi.org/10.1107/S2056989017005382/hb7670sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017005382/hb7670Isup2.hkl
Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu3(C5H8NS2)Cl2(C6H15P)3] | F(000) = 1584 |
Mr = 762.21 | Dx = 1.473 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 10.6489 (2) Å | Cell parameters from 16968 reflections |
b = 31.7578 (4) Å | θ = 2.8–76.3° |
c = 10.7212 (2) Å | µ = 6.14 mm−1 |
β = 108.607 (2)° | T = 100 K |
V = 3436.24 (11) Å3 | Prism, yellow |
Z = 4 | 0.20 × 0.09 × 0.07 mm |
Agilent SuperNova, Dual, Cu at zero, AtlasS2 diffractometer | 7186 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 6699 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 10.4607 pixels mm-1 | θmax = 76.6°, θmin = 2.8° |
ω scans | h = −13→12 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku Oxford Diffraction, 2015) | k = −39→29 |
Tmin = 0.684, Tmax = 1.000 | l = −13→13 |
34566 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.073 | w = 1/[σ2(Fo2) + (0.0334P)2 + 3.4591P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
7186 reflections | Δρmax = 1.50 e Å−3 |
316 parameters | Δρmin = −0.79 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.15403 (3) | 0.60427 (2) | 0.46213 (3) | 0.02150 (8) | |
Cu2 | 0.41213 (3) | 0.65484 (2) | 0.54323 (3) | 0.02075 (8) | |
Cu3 | 0.29958 (3) | 0.60979 (2) | 0.26251 (3) | 0.02196 (8) | |
Cl1 | 0.29973 (4) | 0.62046 (2) | 0.67210 (4) | 0.01860 (9) | |
Cl2 | 0.21102 (4) | 0.66892 (2) | 0.34453 (4) | 0.01933 (9) | |
S1 | 0.26010 (4) | 0.55091 (2) | 0.38531 (4) | 0.01620 (9) | |
S2 | 0.50822 (4) | 0.60146 (2) | 0.45081 (4) | 0.01641 (9) | |
P1 | −0.05739 (5) | 0.60624 (2) | 0.44227 (5) | 0.01844 (10) | |
P2 | 0.51349 (5) | 0.71293 (2) | 0.63413 (5) | 0.02172 (11) | |
P3 | 0.29464 (5) | 0.61039 (2) | 0.05729 (5) | 0.01832 (10) | |
N1 | 0.46529 (16) | 0.53980 (5) | 0.60120 (15) | 0.0162 (3) | |
C1 | 0.41813 (18) | 0.56133 (6) | 0.49156 (18) | 0.0152 (3) | |
C2 | 0.38664 (19) | 0.50826 (6) | 0.64599 (19) | 0.0190 (4) | |
H2A | 0.3621 | 0.4843 | 0.5840 | 0.023* | |
H2B | 0.3049 | 0.5210 | 0.6546 | 0.023* | |
C3 | 0.4799 (2) | 0.49415 (6) | 0.78003 (19) | 0.0222 (4) | |
H3A | 0.4297 | 0.4867 | 0.8403 | 0.027* | |
H3B | 0.5338 | 0.4697 | 0.7709 | 0.027* | |
C4 | 0.5667 (2) | 0.53283 (6) | 0.82932 (19) | 0.0238 (4) | |
H4A | 0.5202 | 0.5540 | 0.8665 | 0.029* | |
H4B | 0.6510 | 0.5250 | 0.8972 | 0.029* | |
C5 | 0.59098 (19) | 0.54950 (6) | 0.70556 (19) | 0.0201 (4) | |
H5A | 0.6084 | 0.5802 | 0.7119 | 0.024* | |
H5B | 0.6666 | 0.5349 | 0.6896 | 0.024* | |
C6 | −0.0943 (2) | 0.58600 (9) | 0.5866 (2) | 0.0350 (5) | |
H6A | −0.0571 | 0.6055 | 0.6612 | 0.042* | |
H6B | −0.1916 | 0.5853 | 0.5674 | 0.042* | |
C7 | −0.0388 (3) | 0.54232 (9) | 0.6268 (3) | 0.0417 (6) | |
H7A | −0.0801 | 0.5224 | 0.5558 | 0.063* | |
H7B | −0.0576 | 0.5337 | 0.7068 | 0.063* | |
H7C | 0.0572 | 0.5426 | 0.6437 | 0.063* | |
C8 | −0.1738 (2) | 0.57717 (7) | 0.3059 (2) | 0.0285 (4) | |
H8A | −0.1613 | 0.5466 | 0.3233 | 0.034* | |
H8B | −0.2656 | 0.5844 | 0.3014 | 0.034* | |
C9 | −0.1549 (3) | 0.58705 (9) | 0.1739 (2) | 0.0379 (6) | |
H9A | −0.1690 | 0.6172 | 0.1553 | 0.057* | |
H9B | −0.2189 | 0.5709 | 0.1043 | 0.057* | |
H9C | −0.0647 | 0.5794 | 0.1772 | 0.057* | |
C10 | −0.1319 (2) | 0.65879 (8) | 0.4228 (3) | 0.0332 (5) | |
H10A | −0.1436 | 0.6691 | 0.3326 | 0.040* | |
H10B | −0.2207 | 0.6569 | 0.4335 | 0.040* | |
C11 | −0.0480 (3) | 0.69041 (8) | 0.5220 (3) | 0.0432 (6) | |
H11A | −0.0424 | 0.6817 | 0.6112 | 0.065* | |
H11B | −0.0890 | 0.7183 | 0.5040 | 0.065* | |
H11C | 0.0412 | 0.6915 | 0.5144 | 0.065* | |
C12 | 0.4059 (2) | 0.75778 (7) | 0.6313 (2) | 0.0287 (5) | |
H12A | 0.4587 | 0.7807 | 0.6861 | 0.034* | |
H12B | 0.3690 | 0.7683 | 0.5400 | 0.034* | |
C13 | 0.2925 (3) | 0.74600 (9) | 0.6827 (3) | 0.0435 (6) | |
H13A | 0.2441 | 0.7219 | 0.6328 | 0.065* | |
H13B | 0.2322 | 0.7700 | 0.6723 | 0.065* | |
H13C | 0.3284 | 0.7385 | 0.7761 | 0.065* | |
C14 | 0.6344 (3) | 0.73513 (8) | 0.5657 (3) | 0.0387 (6) | |
H14A | 0.6573 | 0.7640 | 0.5999 | 0.046* | |
H14B | 0.7163 | 0.7180 | 0.5937 | 0.046* | |
C15 | 0.5811 (4) | 0.73634 (9) | 0.4171 (3) | 0.0517 (8) | |
H15A | 0.5621 | 0.7076 | 0.3830 | 0.078* | |
H15B | 0.6471 | 0.7491 | 0.3828 | 0.078* | |
H15C | 0.4995 | 0.7531 | 0.3893 | 0.078* | |
C16 | 0.6077 (2) | 0.70895 (7) | 0.8114 (2) | 0.0322 (5) | |
H16A | 0.6675 | 0.7335 | 0.8377 | 0.039* | |
H16B | 0.5451 | 0.7098 | 0.8626 | 0.039* | |
C17 | 0.6886 (3) | 0.66909 (9) | 0.8443 (3) | 0.0393 (6) | |
H17A | 0.6292 | 0.6447 | 0.8289 | 0.059* | |
H17B | 0.7439 | 0.6697 | 0.9369 | 0.059* | |
H17C | 0.7454 | 0.6669 | 0.7884 | 0.059* | |
C18 | 0.2471 (2) | 0.56150 (6) | −0.03875 (19) | 0.0223 (4) | |
H18A | 0.2167 | 0.5687 | −0.1335 | 0.027* | |
H18B | 0.3265 | 0.5434 | −0.0219 | 0.027* | |
C19 | 0.1383 (2) | 0.53638 (7) | −0.0080 (2) | 0.0291 (5) | |
H19A | 0.1670 | 0.5292 | 0.0858 | 0.044* | |
H19B | 0.1209 | 0.5105 | −0.0604 | 0.044* | |
H19C | 0.0573 | 0.5533 | −0.0297 | 0.044* | |
C20 | 0.1873 (2) | 0.65065 (7) | −0.0452 (2) | 0.0262 (4) | |
H20A | 0.2228 | 0.6788 | −0.0128 | 0.031* | |
H20B | 0.1890 | 0.6478 | −0.1366 | 0.031* | |
C21 | 0.0443 (2) | 0.64775 (8) | −0.0457 (2) | 0.0336 (5) | |
H21A | 0.0058 | 0.6210 | −0.0855 | 0.050* | |
H21B | −0.0069 | 0.6712 | −0.0969 | 0.050* | |
H21C | 0.0422 | 0.6492 | 0.0448 | 0.050* | |
C22 | 0.4553 (2) | 0.62219 (7) | 0.0359 (2) | 0.0237 (4) | |
H22A | 0.5156 | 0.5980 | 0.0675 | 0.028* | |
H22B | 0.4427 | 0.6259 | −0.0590 | 0.028* | |
C23 | 0.5198 (3) | 0.66167 (8) | 0.1099 (2) | 0.0358 (5) | |
H23A | 0.4631 | 0.6861 | 0.0754 | 0.054* | |
H23B | 0.6064 | 0.6660 | 0.0981 | 0.054* | |
H23C | 0.5312 | 0.6583 | 0.2038 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01310 (14) | 0.02656 (16) | 0.02473 (15) | −0.00123 (11) | 0.00588 (11) | −0.00501 (12) |
Cu2 | 0.02180 (15) | 0.01514 (14) | 0.02611 (15) | −0.00383 (11) | 0.00876 (12) | −0.00443 (11) |
Cu3 | 0.03038 (17) | 0.02277 (15) | 0.01416 (14) | 0.00065 (12) | 0.00914 (12) | 0.00068 (11) |
Cl1 | 0.0220 (2) | 0.0212 (2) | 0.01358 (18) | 0.00073 (16) | 0.00701 (16) | −0.00123 (15) |
Cl2 | 0.0218 (2) | 0.0185 (2) | 0.0179 (2) | 0.00308 (16) | 0.00661 (17) | 0.00183 (15) |
S1 | 0.0173 (2) | 0.0152 (2) | 0.0159 (2) | −0.00239 (15) | 0.00490 (16) | −0.00200 (15) |
S2 | 0.0158 (2) | 0.0155 (2) | 0.0199 (2) | −0.00078 (15) | 0.00855 (17) | −0.00004 (16) |
P1 | 0.0128 (2) | 0.0219 (2) | 0.0203 (2) | −0.00112 (17) | 0.00482 (18) | −0.00132 (18) |
P2 | 0.0190 (2) | 0.0146 (2) | 0.0294 (3) | −0.00147 (17) | 0.0047 (2) | −0.00271 (19) |
P3 | 0.0240 (2) | 0.0181 (2) | 0.0136 (2) | 0.00122 (18) | 0.00702 (18) | −0.00037 (17) |
N1 | 0.0171 (7) | 0.0130 (7) | 0.0189 (7) | 0.0005 (6) | 0.0064 (6) | −0.0003 (6) |
C1 | 0.0172 (8) | 0.0131 (8) | 0.0169 (8) | 0.0018 (6) | 0.0078 (7) | −0.0028 (6) |
C2 | 0.0225 (9) | 0.0150 (9) | 0.0210 (9) | 0.0001 (7) | 0.0088 (8) | 0.0029 (7) |
C3 | 0.0296 (11) | 0.0186 (9) | 0.0196 (9) | 0.0032 (8) | 0.0096 (8) | 0.0026 (7) |
C4 | 0.0299 (11) | 0.0213 (10) | 0.0177 (9) | 0.0030 (8) | 0.0038 (8) | −0.0001 (7) |
C5 | 0.0190 (9) | 0.0173 (9) | 0.0212 (9) | 0.0013 (7) | 0.0024 (7) | 0.0000 (7) |
C6 | 0.0254 (11) | 0.0531 (15) | 0.0265 (11) | −0.0062 (10) | 0.0082 (9) | 0.0025 (10) |
C7 | 0.0346 (13) | 0.0498 (16) | 0.0327 (12) | −0.0154 (11) | −0.0005 (10) | 0.0135 (11) |
C8 | 0.0230 (10) | 0.0317 (11) | 0.0286 (11) | −0.0046 (9) | 0.0050 (8) | −0.0029 (9) |
C9 | 0.0364 (13) | 0.0504 (15) | 0.0243 (11) | −0.0012 (11) | 0.0062 (10) | −0.0042 (10) |
C10 | 0.0245 (11) | 0.0307 (12) | 0.0426 (13) | 0.0035 (9) | 0.0083 (10) | −0.0036 (10) |
C11 | 0.0314 (13) | 0.0334 (13) | 0.0651 (18) | −0.0017 (10) | 0.0159 (12) | −0.0186 (12) |
C12 | 0.0337 (12) | 0.0184 (10) | 0.0300 (11) | 0.0038 (8) | 0.0045 (9) | −0.0029 (8) |
C13 | 0.0337 (13) | 0.0317 (13) | 0.0680 (18) | 0.0024 (10) | 0.0204 (13) | −0.0126 (12) |
C14 | 0.0443 (14) | 0.0300 (12) | 0.0513 (15) | −0.0103 (10) | 0.0286 (13) | −0.0079 (11) |
C15 | 0.085 (2) | 0.0332 (14) | 0.0538 (17) | −0.0146 (14) | 0.0455 (17) | −0.0111 (12) |
C16 | 0.0313 (12) | 0.0290 (11) | 0.0310 (11) | −0.0019 (9) | 0.0027 (9) | −0.0041 (9) |
C17 | 0.0324 (13) | 0.0386 (14) | 0.0374 (13) | −0.0003 (10) | −0.0021 (10) | 0.0007 (11) |
C18 | 0.0281 (10) | 0.0209 (9) | 0.0181 (9) | −0.0013 (8) | 0.0076 (8) | −0.0014 (7) |
C19 | 0.0319 (12) | 0.0264 (11) | 0.0281 (11) | −0.0069 (9) | 0.0084 (9) | −0.0022 (8) |
C20 | 0.0341 (11) | 0.0236 (10) | 0.0232 (10) | 0.0101 (8) | 0.0123 (9) | 0.0034 (8) |
C21 | 0.0300 (12) | 0.0345 (12) | 0.0349 (12) | 0.0096 (9) | 0.0082 (10) | 0.0020 (10) |
C22 | 0.0269 (10) | 0.0260 (10) | 0.0185 (9) | −0.0022 (8) | 0.0074 (8) | −0.0019 (8) |
C23 | 0.0417 (14) | 0.0367 (13) | 0.0304 (12) | −0.0135 (11) | 0.0132 (10) | −0.0083 (10) |
Cu1—Cl1 | 2.3474 (5) | C8—H8B | 0.9900 |
Cu1—Cl2 | 2.5809 (5) | C9—H9A | 0.9800 |
Cu1—S1 | 2.3282 (5) | C9—H9B | 0.9800 |
Cu1—P1 | 2.1936 (5) | C9—H9C | 0.9800 |
Cu2—Cl1 | 2.3640 (5) | C10—C11 | 1.527 (3) |
Cu2—Cl2 | 2.5324 (5) | C10—H10A | 0.9900 |
Cu2—S2 | 2.3556 (5) | C10—H10B | 0.9900 |
Cu2—P2 | 2.2018 (6) | C11—H11A | 0.9800 |
Cu3—Cl2 | 2.3912 (5) | C11—H11B | 0.9800 |
Cu3—S1 | 2.4002 (5) | C11—H11C | 0.9800 |
Cu3—S2 | 2.4939 (5) | C12—C13 | 1.526 (4) |
Cu3—P3 | 2.1841 (5) | C12—H12A | 0.9900 |
Cu1—Cu3 | 3.0216 (4) | C12—H12B | 0.9900 |
S1—C1 | 1.7367 (19) | C13—H13A | 0.9800 |
S2—C1 | 1.7330 (19) | C13—H13B | 0.9800 |
P1—C10 | 1.831 (2) | C13—H13C | 0.9800 |
P1—C8 | 1.836 (2) | C14—C15 | 1.511 (4) |
P1—C6 | 1.830 (2) | C14—H14A | 0.9900 |
P2—C14 | 1.816 (2) | C14—H14B | 0.9900 |
P2—C12 | 1.822 (2) | C15—H15A | 0.9800 |
P2—C16 | 1.849 (2) | C15—H15B | 0.9800 |
P3—C20 | 1.830 (2) | C15—H15C | 0.9800 |
P3—C22 | 1.836 (2) | C16—C17 | 1.508 (3) |
P3—C18 | 1.842 (2) | C16—H16A | 0.9900 |
N1—C1 | 1.313 (2) | C16—H16B | 0.9900 |
N1—C5 | 1.477 (2) | C17—H17A | 0.9800 |
N1—C2 | 1.480 (2) | C17—H17B | 0.9800 |
C2—C3 | 1.530 (3) | C17—H17C | 0.9800 |
C2—H2A | 0.9900 | C18—C19 | 1.526 (3) |
C2—H2B | 0.9900 | C18—H18A | 0.9900 |
C3—C4 | 1.527 (3) | C18—H18B | 0.9900 |
C3—H3A | 0.9900 | C19—H19A | 0.9800 |
C3—H3B | 0.9900 | C19—H19B | 0.9800 |
C4—C5 | 1.526 (3) | C19—H19C | 0.9800 |
C4—H4A | 0.9900 | C20—C21 | 1.523 (3) |
C4—H4B | 0.9900 | C20—H20A | 0.9900 |
C5—H5A | 0.9900 | C20—H20B | 0.9900 |
C5—H5B | 0.9900 | C21—H21A | 0.9800 |
C6—C7 | 1.515 (4) | C21—H21B | 0.9800 |
C6—H6A | 0.9900 | C21—H21C | 0.9800 |
C6—H6B | 0.9900 | C22—C23 | 1.525 (3) |
C7—H7A | 0.9800 | C22—H22A | 0.9900 |
C7—H7B | 0.9800 | C22—H22B | 0.9900 |
C7—H7C | 0.9800 | C23—H23A | 0.9800 |
C8—C9 | 1.524 (3) | C23—H23B | 0.9800 |
C8—H8A | 0.9900 | C23—H23C | 0.9800 |
Cl1—Cu1—Cl2 | 96.188 (18) | C9—C8—P1 | 112.35 (16) |
Cl1—Cu1—S1 | 104.585 (19) | C9—C8—H8A | 109.1 |
Cl1—Cu1—P1 | 115.51 (2) | P1—C8—H8A | 109.1 |
Cl2—Cu1—S1 | 100.954 (18) | C9—C8—H8B | 109.1 |
Cl2—Cu1—P1 | 108.90 (2) | P1—C8—H8B | 109.1 |
S1—Cu1—P1 | 125.81 (2) | H8A—C8—H8B | 107.9 |
Cl1—Cu2—Cl2 | 97.080 (18) | C8—C9—H9A | 109.5 |
Cl1—Cu2—S2 | 106.406 (19) | C8—C9—H9B | 109.5 |
Cl1—Cu2—P2 | 113.35 (2) | H9A—C9—H9B | 109.5 |
Cl2—Cu2—S2 | 97.904 (18) | C8—C9—H9C | 109.5 |
Cl2—Cu2—P2 | 112.82 (2) | H9A—C9—H9C | 109.5 |
S2—Cu2—P2 | 124.87 (2) | H9B—C9—H9C | 109.5 |
Cl2—Cu3—S1 | 104.566 (18) | C11—C10—P1 | 112.60 (17) |
Cl2—Cu3—S2 | 98.030 (18) | C11—C10—H10A | 109.1 |
Cl2—Cu3—P3 | 118.56 (2) | P1—C10—H10A | 109.1 |
S1—Cu3—S2 | 74.935 (17) | C11—C10—H10B | 109.1 |
S1—Cu3—P3 | 127.39 (2) | P1—C10—H10B | 109.1 |
S2—Cu3—P3 | 123.04 (2) | H10A—C10—H10B | 107.8 |
P1—Cu1—Cu3 | 132.231 (19) | C10—C11—H11A | 109.5 |
S1—Cu1—Cu3 | 51.338 (13) | C10—C11—H11B | 109.5 |
Cl1—Cu1—Cu3 | 109.575 (16) | H11A—C11—H11B | 109.5 |
Cl2—Cu1—Cu3 | 49.769 (12) | C10—C11—H11C | 109.5 |
P3—Cu3—Cu1 | 149.44 (2) | H11A—C11—H11C | 109.5 |
Cl2—Cu3—Cu1 | 55.492 (13) | H11B—C11—H11C | 109.5 |
S1—Cu3—Cu1 | 49.237 (13) | C13—C12—P2 | 111.61 (16) |
S2—Cu3—Cu1 | 86.926 (14) | C13—C12—H12A | 109.3 |
Cu1—Cl1—Cu2 | 81.004 (17) | P2—C12—H12A | 109.3 |
Cu3—Cl2—Cu2 | 81.010 (16) | C13—C12—H12B | 109.3 |
Cu3—Cl2—Cu1 | 74.739 (16) | P2—C12—H12B | 109.3 |
Cu2—Cl2—Cu1 | 73.508 (15) | H12A—C12—H12B | 108.0 |
C1—S1—Cu1 | 96.15 (6) | C12—C13—H13A | 109.5 |
C1—S1—Cu3 | 84.76 (6) | C12—C13—H13B | 109.5 |
Cu1—S1—Cu3 | 79.425 (17) | H13A—C13—H13B | 109.5 |
C1—S2—Cu2 | 94.21 (6) | C12—C13—H13C | 109.5 |
C1—S2—Cu3 | 81.97 (6) | H13A—C13—H13C | 109.5 |
Cu2—S2—Cu3 | 82.517 (17) | H13B—C13—H13C | 109.5 |
C10—P1—C8 | 102.12 (11) | C15—C14—P2 | 111.1 (2) |
C10—P1—C6 | 102.40 (12) | C15—C14—H14A | 109.4 |
C8—P1—C6 | 102.94 (11) | P2—C14—H14A | 109.4 |
C10—P1—Cu1 | 115.53 (8) | C15—C14—H14B | 109.4 |
C8—P1—Cu1 | 118.31 (8) | P2—C14—H14B | 109.4 |
C6—P1—Cu1 | 113.48 (8) | H14A—C14—H14B | 108.0 |
C14—P2—C12 | 102.29 (12) | C14—C15—H15A | 109.5 |
C14—P2—C16 | 102.70 (13) | C14—C15—H15B | 109.5 |
C12—P2—C16 | 101.70 (11) | H15A—C15—H15B | 109.5 |
C14—P2—Cu2 | 117.20 (8) | C14—C15—H15C | 109.5 |
C12—P2—Cu2 | 115.53 (8) | H15A—C15—H15C | 109.5 |
C16—P2—Cu2 | 115.24 (8) | H15B—C15—H15C | 109.5 |
C20—P3—C22 | 102.17 (10) | C17—C16—P2 | 112.33 (17) |
C20—P3—C18 | 104.21 (10) | C17—C16—H16A | 109.1 |
C22—P3—C18 | 101.71 (10) | P2—C16—H16A | 109.1 |
C20—P3—Cu3 | 114.89 (7) | C17—C16—H16B | 109.1 |
C22—P3—Cu3 | 113.81 (7) | P2—C16—H16B | 109.1 |
C18—P3—Cu3 | 118.01 (7) | H16A—C16—H16B | 107.9 |
C1—N1—C5 | 124.37 (16) | C16—C17—H17A | 109.5 |
C1—N1—C2 | 123.24 (16) | C16—C17—H17B | 109.5 |
C5—N1—C2 | 111.41 (15) | H17A—C17—H17B | 109.5 |
N1—C1—S2 | 121.62 (14) | C16—C17—H17C | 109.5 |
N1—C1—S1 | 120.11 (14) | H17A—C17—H17C | 109.5 |
S2—C1—S1 | 118.25 (11) | H17B—C17—H17C | 109.5 |
N1—C2—C3 | 103.77 (16) | C19—C18—P3 | 114.33 (14) |
N1—C2—H2A | 111.0 | C19—C18—H18A | 108.7 |
C3—C2—H2A | 111.0 | P3—C18—H18A | 108.7 |
N1—C2—H2B | 111.0 | C19—C18—H18B | 108.7 |
C3—C2—H2B | 111.0 | P3—C18—H18B | 108.7 |
H2A—C2—H2B | 109.0 | H18A—C18—H18B | 107.6 |
C4—C3—C2 | 103.25 (15) | C18—C19—H19A | 109.5 |
C4—C3—H3A | 111.1 | C18—C19—H19B | 109.5 |
C2—C3—H3A | 111.1 | H19A—C19—H19B | 109.5 |
C4—C3—H3B | 111.1 | C18—C19—H19C | 109.5 |
C2—C3—H3B | 111.1 | H19A—C19—H19C | 109.5 |
H3A—C3—H3B | 109.1 | H19B—C19—H19C | 109.5 |
C5—C4—C3 | 103.30 (16) | C21—C20—P3 | 113.07 (16) |
C5—C4—H4A | 111.1 | C21—C20—H20A | 109.0 |
C3—C4—H4A | 111.1 | P3—C20—H20A | 109.0 |
C5—C4—H4B | 111.1 | C21—C20—H20B | 109.0 |
C3—C4—H4B | 111.1 | P3—C20—H20B | 109.0 |
H4A—C4—H4B | 109.1 | H20A—C20—H20B | 107.8 |
N1—C5—C4 | 102.84 (16) | C20—C21—H21A | 109.5 |
N1—C5—H5A | 111.2 | C20—C21—H21B | 109.5 |
C4—C5—H5A | 111.2 | H21A—C21—H21B | 109.5 |
N1—C5—H5B | 111.2 | C20—C21—H21C | 109.5 |
C4—C5—H5B | 111.2 | H21A—C21—H21C | 109.5 |
H5A—C5—H5B | 109.1 | H21B—C21—H21C | 109.5 |
C7—C6—P1 | 113.13 (18) | C23—C22—P3 | 112.66 (16) |
C7—C6—H6A | 109.0 | C23—C22—H22A | 109.1 |
P1—C6—H6A | 109.0 | P3—C22—H22A | 109.1 |
C7—C6—H6B | 109.0 | C23—C22—H22B | 109.1 |
P1—C6—H6B | 109.0 | P3—C22—H22B | 109.1 |
H6A—C6—H6B | 107.8 | H22A—C22—H22B | 107.8 |
C6—C7—H7A | 109.5 | C22—C23—H23A | 109.5 |
C6—C7—H7B | 109.5 | C22—C23—H23B | 109.5 |
H7A—C7—H7B | 109.5 | H23A—C23—H23B | 109.5 |
C6—C7—H7C | 109.5 | C22—C23—H23C | 109.5 |
H7A—C7—H7C | 109.5 | H23A—C23—H23C | 109.5 |
H7B—C7—H7C | 109.5 | H23B—C23—H23C | 109.5 |
C5—N1—C1—S2 | 6.0 (2) | C6—P1—C8—C9 | −176.38 (18) |
C2—N1—C1—S2 | 173.70 (13) | Cu1—P1—C8—C9 | −50.4 (2) |
C5—N1—C1—S1 | −172.23 (14) | C8—P1—C10—C11 | −176.76 (19) |
C2—N1—C1—S1 | −4.5 (2) | C6—P1—C10—C11 | 76.9 (2) |
Cu2—S2—C1—N1 | −93.58 (15) | Cu1—P1—C10—C11 | −47.0 (2) |
Cu3—S2—C1—N1 | −175.40 (15) | C14—P2—C12—C13 | 178.71 (19) |
Cu2—S2—C1—S1 | 84.66 (10) | C16—P2—C12—C13 | −75.3 (2) |
Cu3—S2—C1—S1 | 2.84 (9) | Cu2—P2—C12—C13 | 50.2 (2) |
Cu1—S1—C1—N1 | 96.59 (14) | C12—P2—C14—C15 | −81.4 (2) |
Cu3—S1—C1—N1 | 175.33 (15) | C16—P2—C14—C15 | 173.45 (19) |
Cu1—S1—C1—S2 | −81.67 (10) | Cu2—P2—C14—C15 | 46.1 (2) |
Cu3—S1—C1—S2 | −2.93 (9) | C14—P2—C16—C17 | −84.3 (2) |
C1—N1—C2—C3 | −176.54 (16) | C12—P2—C16—C17 | 170.03 (19) |
C5—N1—C2—C3 | −7.4 (2) | Cu2—P2—C16—C17 | 44.3 (2) |
N1—C2—C3—C4 | 28.69 (19) | C20—P3—C18—C19 | −91.44 (17) |
C2—C3—C4—C5 | −39.4 (2) | C22—P3—C18—C19 | 162.62 (16) |
C1—N1—C5—C4 | 152.09 (17) | Cu3—P3—C18—C19 | 37.36 (18) |
C2—N1—C5—C4 | −16.9 (2) | C22—P3—C20—C21 | 179.63 (16) |
C3—C4—C5—N1 | 34.37 (19) | C18—P3—C20—C21 | 74.03 (18) |
C10—P1—C6—C7 | −178.43 (18) | Cu3—P3—C20—C21 | −56.63 (18) |
C8—P1—C6—C7 | 75.85 (19) | C20—P3—C22—C23 | 73.77 (18) |
Cu1—P1—C6—C7 | −53.22 (19) | C18—P3—C22—C23 | −178.70 (16) |
C10—P1—C8—C9 | 77.7 (2) | Cu3—P3—C22—C23 | −50.70 (18) |
Cg1 is the centroid of the (Cu,S1,S2,C1) chelate ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C20—H20B···Cl1i | 0.99 | 2.81 | 3.722 (2) | 154 |
C22—H22B···Cl1i | 0.99 | 2.80 | 3.720 (2) | 154 |
C3—H3B···Cg1ii | 0.99 | 2.83 | 3.705 (2) | 148 |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+1, −z+1. |
Contact | percentage contribution |
H···H | 86.6 |
Cl···H/H···Cl | 5.8 |
S···H/H···S | 5.7 |
C···H/H···C | 1.1 |
Cu···H/H···Cu | 0.4 |
N···H/H···N | 0.3 |
C···N / N···C | 0.1 |
Footnotes
‡Additional correspondence author, e-mail: mmjotani@rediffmail.com.
Funding information
Funding for this research was provided by: Sunway University (award No. INT-RRO-2017-096).
References
Afzaal, M., Rosenberg, C. L., Malik, M. A., White, A. J. P. & O'Brien, P. (2011). New J. Chem. 35, 2773–2780. CSD CrossRef CAS Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chen, B.-J., Jamaludin, N. S., Khoo, C.-H., See, T.-H., Sim, J.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2016). J. Inorg. Biochem. 163, 68–80. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huang, S.-B. & Situ, Y. (2003). Chin. J. Struct. Chem. 22, 260–264. CAS Google Scholar
Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341–349. CAS Google Scholar
Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085–1092. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kishore, P. V. V. N., Liao, J.-H., Hou, H.-N., Lin, Y.-R. & Liu, C. W. (2016). Inorg. Chem. 55, 3663–3673. CSD CrossRef CAS PubMed Google Scholar
Kumar, A., Mayer-Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. 2009, 2720–2725. CSD CrossRef Google Scholar
Langer, R., Wünsche, L., Fenske, D. & Fuhr, O. Z. (2009). Z. Anorg. Allg. Chem. 635, 2488–2494. CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Rajput, G., Yadav, M. K., Drew, M. G. B. & Singh, N. (2015). Inorg. Chem. 54, 2572–2579. CSD CrossRef CAS PubMed Google Scholar
Raston, C. L. & White, A. H. (1975). J. Chem. Soc. Dalton Trans. pp. 2422–2425. CSD CrossRef Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236. Web of Science CrossRef CAS Google Scholar
Tan, S. L., Yeo, C. I., Heard, P. J., Akien, G. R., Halcovitch, N. R. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1799–1805. CSD CrossRef IUCr Journals Google Scholar
Tiekink, E. R. T. (2017). Coord. Chem. Rev. https://dx.doi.org/10.1016/j.ccr.2017.01.009. Google Scholar
Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.