research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ3-Chlorido-μ2-chlorido-(μ3-pyrrolidine-1-carbo­di­thio­ato-κ4S:S,S′:S′)tris­­[(tri­ethyl­phosphane-κP)copper(I)]: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, bDepartment of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom, and cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 April 2017; accepted 10 April 2017; online 18 April 2017)

The title trinuclear compound, [Cu3(C5H8NS2)Cl2(C6H15P)3], has the di­thio­carbamate ligand symmetrically chelating one CuI atom and each of the S atoms bridging to another CuI atom. Both chloride ligands are bridging, one being μ3- and the other μ2-bridging. Each Et3P ligand occupies a terminal position. Two of the CuI atoms exist within Cl2PS donor sets and the third is based on a ClPS2 donor set, with each coordination geometry based on a distorted tetra­hedron. The constituents defining the core of the mol­ecule, i.e. Cu3Cl2S2, occupy seven corners of a distorted cube. In the crystal, linear supra­molecular chains along the c axis are formed via phosphane–methyl­ene-C—H⋯Cl and pyrrolidine–methyl­ene-C—H⋯π(chelate) inter­actions, and these chains pack without directional inter­actions between them. An analysis of the Hirshfeld surface points to the predominance of H atoms at the surface, i.e. contributing 86.6% to the surface, and also highlights the presence of C—H⋯π(chelate) inter­actions.

1. Chemical context

Recent studies have highlighted the potential of ternary coinage metal phosphane/di­thio­carbamates as anti-microbial agents. Motivated by the quite significant activity exhibited by R3PAu(S2CNRR′), R, R′ = alk­yl/aryl (Sim et al., 2014[Sim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225-236.]; Chen et al., 2016[Chen, B.-J., Jamaludin, N. S., Khoo, C.-H., See, T.-H., Sim, J.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2016). J. Inorg. Biochem. 163, 68-80.]), lower congeners, i.e. (Ph3P)2M(S2CNRR′), M = CuI and AgI, were investigated and shown to be also potent in this context (Jamaludin et al., 2016[Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341-349.]). A prominent lead compound, Et3PAu(S2CNEt2), was shown to possess broad-range activity against Gram-positive and Gram-negative bacteria and, notably, was also bactericidal against methicillin-resistant Staphylococcus aureus (MRSA) (Chen et al., 2016[Chen, B.-J., Jamaludin, N. S., Khoo, C.-H., See, T.-H., Sim, J.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2016). J. Inorg. Biochem. 163, 68-80.]). Given that Et3PAu(S2CNEt2) exhibited the most exciting potential amongst the phosphanegold di­thio­carbamates, it was thought of inter­est to extend the chemistry/biological investigations of (R3P)2M(S2CNRR'), M = CuI and AgI, to include trialkyl­phosphane species. It was during these studies that the title compound, (I)[link], was isolated as an incomplete reaction product from the 1:2:1 reaction between CuCl, Et3P and NH4[S2CN(CH2)4]. Herein, the crystal and mol­ecular structures of (I)[link] are described along with a detailed analysis of the Hirshfeld surface.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link], Fig. 1[link], represents a neutral, trinuclear CuI complex comprising three monodentate phosphane ligands, two chlorido anions, one μ3- and the other μ2-bridg­ing, and a di­thio­carbamate ligand. The latter is tetra-coordinat­ing, chelating the Cu3 atom, and each sulfur atom also bridges another CuI atom. As highlighted in Fig. 2[link], the Cu3Cl2S2 atoms of the core occupy the corners of a distorted cube with the putative eighth position being occupied by the quaternary-carbon atom of the di­thio­carbamate ligand. As listed in Table 1[link], there are systematic trends in the Cu—donor-atom bond lengths. To a first approximation, the Cu—P bond lengths are about the same. As anti­cipated for the Cu1 and Cu2 atoms, the Cu—Cl bond lengths involving the μ3-chlorido ligand are systematically longer than those formed with the μ2-chlorido ligand. Despite being chelated by the di­thio­carbamate ligand, the Cu3 atom forms longer Cu—S bond lengths than do the Cu1 and Cu2 atoms, an observation correlated with the presence of two electronegative chloride anions in the donor sets for the latter.

Table 1
Selected geometric parameters (Å, °)

Cu1—Cl1 2.3474 (5) Cu2—P2 2.2018 (6)
Cu1—Cl2 2.5809 (5) Cu3—Cl2 2.3912 (5)
Cu1—S1 2.3282 (5) Cu3—S1 2.4002 (5)
Cu1—P1 2.1936 (5) Cu3—S2 2.4939 (5)
Cu2—Cl1 2.3640 (5) Cu3—P3 2.1841 (5)
Cu2—Cl2 2.5324 (5) S1—C1 1.7367 (19)
Cu2—S2 2.3556 (5) S2—C1 1.7330 (19)
       
Cl1—Cu1—Cl2 96.188 (18) Cl2—Cu2—S2 97.904 (18)
Cl1—Cu1—S1 104.585 (19) Cl2—Cu2—P2 112.82 (2)
Cl1—Cu1—P1 115.51 (2) S2—Cu2—P2 124.87 (2)
Cl2—Cu1—S1 100.954 (18) Cl2—Cu3—S1 104.566 (18)
Cl2—Cu1—P1 108.90 (2) Cl2—Cu3—S2 98.030 (18)
S1—Cu1—P1 125.81 (2) Cl2—Cu3—P3 118.56 (2)
Cl1—Cu2—Cl2 97.080 (18) S1—Cu3—S2 74.935 (17)
Cl1—Cu2—S2 106.406 (19) S1—Cu3—P3 127.39 (2)
Cl1—Cu2—P2 113.35 (2) S2—Cu3—P3 123.04 (2)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2]
Figure 2
The mol­ecular core in (I)[link] highlighting the `incomplete cube'.

The coordination geometries for the Cu1 and Cu2 atoms are based on Cl2PS donor sets while that of Cu3 is based on a ClPS2 donor set, Table 1[link]. While being based on tetra­hedra, the coordination geometries exhibit wide ranges of angles subtended at the copper atoms, i.e. 30, 28 and 53°, respectively. The wider range of angles about the Cu3 atom can be traced, in part, to the acute angle subtended by the di­thio­carbamate ligand. A measure of the geometry defined by a four-atom donor set is τ4 (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). Based on this index, τ4 values of 1 and 0 are computed for ideal tetra­hedral and square-planar geometries, respectively. The τ4 values calculated for the Cu1–Cu3 atoms in (I)[link] are 0.84, 0.86 and 0.78, respectively, i.e. consistent with distortions from tetra­hedral geometries.

Reflecting the near equivalence in the pairs of Cu—S1 and Cu—S2 bonds, the associated C—S bond lengths are equal within experimental error, Table 1[link]. Finally, the pyrrolidine ring is twisted about the C3—C4 bond.

3. Supra­molecular features

The key feature of the mol­ecular packing in (I)[link] is the formation of linear supra­molecular chains along the c axis, Fig. 3[link]a and Table 2[link]. The μ2-chlorido ligand accepts two phosphane-methyl­ene-C—H⋯Cl type inter­actions to form a linear chain. Centrosymmetrically related chains are connected via pyrrolidine–methyl­ene-C—H⋯π(chelate) inter­actions where the chelate ring is defined by the Cu1,S1,S2,C1 atoms. Such C—H⋯π(chelate) inter­actions are now well established in di­thio­carbamate structural chemistry (Tiekink & Zukerman-Schpector, 2011[Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623-6625.]) and are gaining greater recognition in coordination chemistry (Tiekink, 2017[Tiekink, E. R. T. (2017). Coord. Chem. Rev. https://dx.doi.org/10.1016/j.ccr.2017.01.009.]). The supra­molecular chains pack in the crystal with no directional inter­actions between them, Fig. 3[link]b.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the (Cu,S1,S2,C1) chelate ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20B⋯Cl1i 0.99 2.81 3.722 (2) 154
C22—H22B⋯Cl1i 0.99 2.80 3.720 (2) 154
C3—H3BCg1ii 0.99 2.83 3.705 (2) 148
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
The mol­ecular packing in (I)[link]: (a) linear supra­molecular chain mediated by methyl­ene-C—H⋯Cl (orange dashed lines) and methyl­ene-C—H⋯π(chelate) (blue) inter­actions aligned along the c axis and (b) view of the unit-cell contents in projection down the c axis. One chain is highlighted in space-filling mode.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis of (I)[link] was performed in accord with a recent study of a related di­thio­carbamate complex (Jotani et al., 2016[Jotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085-1092.]). The presence of tiny red spots near the Cl1 and methyl­ene-H20B and H22B atoms on the Hirshfeld surfaces mapped over dnorm in Fig. 4[link] is indicative of the double-acceptor (C—H)2⋯Cl inter­action. In the view of the Hirshfeld surface mapped over the calculated electrostatic potential in Fig. 5[link], the light-blue and pale-red regions around the electropositive and electronegative atoms result from the polarization of charges about the donors and acceptors, respectively, of the inter­molecular inter­actions. The immediate environments about a reference mol­ecule within the shape-index-mapped Hirshfeld surfaces in Fig. 6[link]a and b highlight the inter­molecular C—H⋯Cl and C—H⋯π(chelate) inter­actions, respectively.

[Figure 4]
Figure 4
Two views of the Hirshfeld surface for (I)[link] mapped over dnorm over the range −0.016 to 1.529 au.
[Figure 5]
Figure 5
A view of the Hirshfeld surface for (I)[link] mapped over the calculated electrostatic potential in the range −0.071 to 0.030 au. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 6]
Figure 6
Views of Hirshfeld surface for a reference mol­ecule in (I)[link] mapped over the shape-index property highlighting the: (a) C—H⋯Cl inter­actions as red dashed lines and (b) C—H⋯π(chelate) inter­actions as white dashed lines

The two-dimensional fingerprint plots for (I)[link], i.e. the overall, Fig. 7[link]a, and those delineated into H⋯H, Cl⋯H/H⋯Cl and S⋯H/H⋯S contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) in Fig. 7[link]bd, respectively, provide further information on the inter­molecular inter­actions present in the crystal. It is evident from the fingerprint plot delineated into H⋯H contacts, Fig. 7[link]b, that the hydrogen atoms of the tri­ethyl­phosphane and pyrrolidine ligands make the greatest contribution, i.e. 86.6%, to the Hirshfeld surface, but at distances greater than the sum of the van der Waals radii. The pair of tips at de + di ∼ 2.8 Å in the arrow-like distribution of points in the plot for Cl⋯H/H⋯Cl contacts, Fig. 7[link]c, represent the inter­molecular C—H⋯Cl inter­actions. A pair of short spikes at de + di ∼ 3.0 Å in the S⋯H/H⋯S delineated plot, Fig. 7[link]d, and the 5.8% contribution to Hirshfeld surfaces along with the small but significant contributions from C⋯H/H⋯C and Cu⋯H/H⋯Cu contacts, Table 3[link], to the Hirshfeld surface are all indicative of the C—H⋯π(chelate) inter­action, Fig. 3[link]a and Table 2[link]. The small contributions from the other inter­atomic contacts, namely N⋯H/H⋯N and C⋯N/N⋯C, have little effect on the packing of the crystal.

Table 3
Percentage contribution of inter­atomic contacts to the Hirshfeld surface for (I)

Contact percentage contribution
H⋯H 86.6
Cl⋯H/H⋯Cl 5.8
S⋯H/H⋯S 5.7
C⋯H/H⋯C 1.1
Cu⋯H/H⋯Cu 0.4
N⋯H/H⋯N 0.3
C⋯N / N⋯C 0.1
[Figure 7]
Figure 7
(a) The full two-dimensional fingerprint plot for (I)[link] and fingerprint plots delineated into (b) H⋯H, (c) Cl⋯H/H⋯Cl and (d) S⋯H/H⋯S contacts.

5. Database survey

The isolated Cu3(μ3-Cl)(μ2-Cl)S2 core observed in (I)[link] appears to be rare in the literature, being structurally observed only in one other structure with general formula, M3(μ3-X)(μ2-X)S2, incidentally, a di­thio­carbamate complex. Thus, in the RuII species, Ru3(CO)3(S2CNEt2)4Cl2, a discrete Ru3(μ3-Cl)(μ2-Cl)S2 core is found but where the μ2-S sulfur atoms are derived from four di­thio­carbamate ligands and each RuII atom is coordinated by two additional sulfur donor atoms leading to trans-RuCClS4 octa­hedral coordination geometries (Raston & White, 1975[Raston, C. L. & White, A. H. (1975). J. Chem. Soc. Dalton Trans. pp. 2422-2425.]). While other structures are known with the specified core, the core is embedded within higher nuclearity clusters or in coordination polymers.

There are twenty crystal structure containing copper with di­thio­carbamate and phosphane ligands in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The majority, i.e. 12 conform to the tetra­hedral CuP2S2 motif observed in the biologically active bis­(phosphane)copper(I) di­thio­carbamate compounds mentioned in the Chemical Context (Jamaludin et al. 2016[Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341-349.]; Tan et al., 2016[Tan, S. L., Yeo, C. I., Heard, P. J., Akien, G. R., Halcovitch, N. R. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1799-1805.]). Similar coordination geometries are found in two binuclear structures with bis­(di­thio­carbamate) ligands, as exemplified in (Ph3P)2CuS2CN(CH2CH2)2NCS2Cu(PPh3)2 (Kumar et al., 2009[Kumar, A., Mayer-Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. 2009, 2720-2725.]). There are two related complexes but with a 1:1:1 ratio of copper, di­thio­carbamate and phosphane, as exemplified by [Et3PCu(S2CNEt2)]2 (Afzaal et al., 2011[Afzaal, M., Rosenberg, C. L., Malik, M. A., White, A. J. P. & O'Brien, P. (2011). New J. Chem. 35, 2773-2780.]). One of the remaining structures is neutral and octa­nuclear with formula (Ph3P)4Cu8(μ4-SC6H4Br-4)4(μ2-SC6H4Br-4)2(S2CNMe2)2·MeO(CH2)2OMe (Langer et al., 2009[Langer, R., Wünsche, L., Fenske, D. & Fuhr, O. Z. (2009). Z. Anorg. Allg. Chem. 635, 2488-2494.]). Here, each sulfur atom of the di­thio­carbamate ligand bridges two different CuI atoms. The common feature of the remaining three structures is that they are charged and feature bidentate phosphane ligands. The simplest of these is formulated as [(dppm)2Cu2(S2CNMe2)][ClO4]2·EtOH·0.25H2O where the di­thio­carbamate ligand is bidentate bridging as is the dppm ligand (Huang & Situ, 2003[Huang, S.-B. & Situ, Y. (2003). Chin. J. Struct. Chem. 22, 260-264.]); dppm = Ph2PCH2PPh2. In the trinuclear mono-cation {(dppm)3Cu3(μ3-I)[S2CN(CH2Ph)CH2(2-thien­yl)]}I, the di­thio­carbamate ligand bridges two CuI atoms and simultaneously coordinates a third CuI atom via one of the sulfur atoms only (Rajput et al., 2015[Rajput, G., Yadav, M. K., Drew, M. G. B. & Singh, N. (2015). Inorg. Chem. 54, 2572-2579.]). The final structure to be described is related to the former whereby one bis­(phosphane) ligand has been replaced by a di­thio­carbamate ligand with the ejection of the μ3-iodido species, i.e. {(dppf)2Cu3[S2CN(CH2Ph)CH2Fc]2}PF6·CHCl3 (Kishore et al., 2016[Kishore, P. V. V. N., Liao, J.-H., Hou, H.-N., Lin, Y.-R. & Liu, C. W. (2016). Inorg. Chem. 55, 3663-3673.]); dppf = Ph2P(η5-C5H4)Fe(η5-C5H4)PPh2 and Fc is (η5-C5H4)Fe(η5-C5H5). In this structure, each di­thio­carbamate ligand is tri-coordinate, binding to three different CuI atoms. From the foregoing, it is obvious there is considerable structural variability in these systems arising in part from the ability of the di­thio­carbamate ligands to adopt quite diverse coordination modes.

6. Synthesis and crystallization

Complex (I)[link] is an unexpected product from the in situ reaction of CuCl, Et3P, and NH4[S2CN(CH2)4] in a 1:2:1 ratio. The preparation was as follows: NH4[S2CN(CH2)4] (Sigma–Aldrich, 0.5 mmol, 0.082 g) dissolved in iso­propanol (5 ml) was added to an iso­propanol solution (5 ml) of CuCl (Sigma–Aldrich, 0.5 mmol, 0.05 g) at room temperature. Then, a THF solution of Et3P (Sigma–Aldrich; 1 ml (= 0.118 g), 1.0 mmol) was added to the reaction mixture followed by stirring for 2 h. The resulting mixture was filtered, diluted with hexane (2 ml) and mixed well. The mixture was left for evaporation at 227 K. A small number of yellow crystals of (I)[link] were obtained after 5 d. Yield: 0.0095 g (4.26%), m.p. 330.8 K. IR (cm−1): 1429(s) v(C—N); 1045(m), 993(m) v(C—S).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.98–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula [Cu3(C5H8NS2)Cl2(C6H15P)3]
Mr 762.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.6489 (2), 31.7578 (4), 10.7212 (2)
β (°) 108.607 (2)
V3) 3436.24 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.14
Crystal size (mm) 0.20 × 0.09 × 0.07
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.684, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 34566, 7186, 6699
Rint 0.027
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.04
No. of reflections 7186
No. of parameters 316
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.50, −0.79
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

µ3-Chlorido-µ2-chlorido-(µ3-pyrrolidine-1-carbodithioato-κ4S:S,S':S')tris[(triethylphosphane-κP)copper(I)] top
Crystal data top
[Cu3(C5H8NS2)Cl2(C6H15P)3]F(000) = 1584
Mr = 762.21Dx = 1.473 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.6489 (2) ÅCell parameters from 16968 reflections
b = 31.7578 (4) Åθ = 2.8–76.3°
c = 10.7212 (2) ŵ = 6.14 mm1
β = 108.607 (2)°T = 100 K
V = 3436.24 (11) Å3Prism, yellow
Z = 40.20 × 0.09 × 0.07 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, AtlasS2
diffractometer
7186 independent reflections
Radiation source: micro-focus sealed X-ray tube6699 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4607 pixels mm-1θmax = 76.6°, θmin = 2.8°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlisPro; Rigaku Oxford Diffraction, 2015)
k = 3929
Tmin = 0.684, Tmax = 1.000l = 1313
34566 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0334P)2 + 3.4591P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
7186 reflectionsΔρmax = 1.50 e Å3
316 parametersΔρmin = 0.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.15403 (3)0.60427 (2)0.46213 (3)0.02150 (8)
Cu20.41213 (3)0.65484 (2)0.54323 (3)0.02075 (8)
Cu30.29958 (3)0.60979 (2)0.26251 (3)0.02196 (8)
Cl10.29973 (4)0.62046 (2)0.67210 (4)0.01860 (9)
Cl20.21102 (4)0.66892 (2)0.34453 (4)0.01933 (9)
S10.26010 (4)0.55091 (2)0.38531 (4)0.01620 (9)
S20.50822 (4)0.60146 (2)0.45081 (4)0.01641 (9)
P10.05739 (5)0.60624 (2)0.44227 (5)0.01844 (10)
P20.51349 (5)0.71293 (2)0.63413 (5)0.02172 (11)
P30.29464 (5)0.61039 (2)0.05729 (5)0.01832 (10)
N10.46529 (16)0.53980 (5)0.60120 (15)0.0162 (3)
C10.41813 (18)0.56133 (6)0.49156 (18)0.0152 (3)
C20.38664 (19)0.50826 (6)0.64599 (19)0.0190 (4)
H2A0.36210.48430.58400.023*
H2B0.30490.52100.65460.023*
C30.4799 (2)0.49415 (6)0.78003 (19)0.0222 (4)
H3A0.42970.48670.84030.027*
H3B0.53380.46970.77090.027*
C40.5667 (2)0.53283 (6)0.82932 (19)0.0238 (4)
H4A0.52020.55400.86650.029*
H4B0.65100.52500.89720.029*
C50.59098 (19)0.54950 (6)0.70556 (19)0.0201 (4)
H5A0.60840.58020.71190.024*
H5B0.66660.53490.68960.024*
C60.0943 (2)0.58600 (9)0.5866 (2)0.0350 (5)
H6A0.05710.60550.66120.042*
H6B0.19160.58530.56740.042*
C70.0388 (3)0.54232 (9)0.6268 (3)0.0417 (6)
H7A0.08010.52240.55580.063*
H7B0.05760.53370.70680.063*
H7C0.05720.54260.64370.063*
C80.1738 (2)0.57717 (7)0.3059 (2)0.0285 (4)
H8A0.16130.54660.32330.034*
H8B0.26560.58440.30140.034*
C90.1549 (3)0.58705 (9)0.1739 (2)0.0379 (6)
H9A0.16900.61720.15530.057*
H9B0.21890.57090.10430.057*
H9C0.06470.57940.17720.057*
C100.1319 (2)0.65879 (8)0.4228 (3)0.0332 (5)
H10A0.14360.66910.33260.040*
H10B0.22070.65690.43350.040*
C110.0480 (3)0.69041 (8)0.5220 (3)0.0432 (6)
H11A0.04240.68170.61120.065*
H11B0.08900.71830.50400.065*
H11C0.04120.69150.51440.065*
C120.4059 (2)0.75778 (7)0.6313 (2)0.0287 (5)
H12A0.45870.78070.68610.034*
H12B0.36900.76830.54000.034*
C130.2925 (3)0.74600 (9)0.6827 (3)0.0435 (6)
H13A0.24410.72190.63280.065*
H13B0.23220.77000.67230.065*
H13C0.32840.73850.77610.065*
C140.6344 (3)0.73513 (8)0.5657 (3)0.0387 (6)
H14A0.65730.76400.59990.046*
H14B0.71630.71800.59370.046*
C150.5811 (4)0.73634 (9)0.4171 (3)0.0517 (8)
H15A0.56210.70760.38300.078*
H15B0.64710.74910.38280.078*
H15C0.49950.75310.38930.078*
C160.6077 (2)0.70895 (7)0.8114 (2)0.0322 (5)
H16A0.66750.73350.83770.039*
H16B0.54510.70980.86260.039*
C170.6886 (3)0.66909 (9)0.8443 (3)0.0393 (6)
H17A0.62920.64470.82890.059*
H17B0.74390.66970.93690.059*
H17C0.74540.66690.78840.059*
C180.2471 (2)0.56150 (6)0.03875 (19)0.0223 (4)
H18A0.21670.56870.13350.027*
H18B0.32650.54340.02190.027*
C190.1383 (2)0.53638 (7)0.0080 (2)0.0291 (5)
H19A0.16700.52920.08580.044*
H19B0.12090.51050.06040.044*
H19C0.05730.55330.02970.044*
C200.1873 (2)0.65065 (7)0.0452 (2)0.0262 (4)
H20A0.22280.67880.01280.031*
H20B0.18900.64780.13660.031*
C210.0443 (2)0.64775 (8)0.0457 (2)0.0336 (5)
H21A0.00580.62100.08550.050*
H21B0.00690.67120.09690.050*
H21C0.04220.64920.04480.050*
C220.4553 (2)0.62219 (7)0.0359 (2)0.0237 (4)
H22A0.51560.59800.06750.028*
H22B0.44270.62590.05900.028*
C230.5198 (3)0.66167 (8)0.1099 (2)0.0358 (5)
H23A0.46310.68610.07540.054*
H23B0.60640.66600.09810.054*
H23C0.53120.65830.20380.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01310 (14)0.02656 (16)0.02473 (15)0.00123 (11)0.00588 (11)0.00501 (12)
Cu20.02180 (15)0.01514 (14)0.02611 (15)0.00383 (11)0.00876 (12)0.00443 (11)
Cu30.03038 (17)0.02277 (15)0.01416 (14)0.00065 (12)0.00914 (12)0.00068 (11)
Cl10.0220 (2)0.0212 (2)0.01358 (18)0.00073 (16)0.00701 (16)0.00123 (15)
Cl20.0218 (2)0.0185 (2)0.0179 (2)0.00308 (16)0.00661 (17)0.00183 (15)
S10.0173 (2)0.0152 (2)0.0159 (2)0.00239 (15)0.00490 (16)0.00200 (15)
S20.0158 (2)0.0155 (2)0.0199 (2)0.00078 (15)0.00855 (17)0.00004 (16)
P10.0128 (2)0.0219 (2)0.0203 (2)0.00112 (17)0.00482 (18)0.00132 (18)
P20.0190 (2)0.0146 (2)0.0294 (3)0.00147 (17)0.0047 (2)0.00271 (19)
P30.0240 (2)0.0181 (2)0.0136 (2)0.00122 (18)0.00702 (18)0.00037 (17)
N10.0171 (7)0.0130 (7)0.0189 (7)0.0005 (6)0.0064 (6)0.0003 (6)
C10.0172 (8)0.0131 (8)0.0169 (8)0.0018 (6)0.0078 (7)0.0028 (6)
C20.0225 (9)0.0150 (9)0.0210 (9)0.0001 (7)0.0088 (8)0.0029 (7)
C30.0296 (11)0.0186 (9)0.0196 (9)0.0032 (8)0.0096 (8)0.0026 (7)
C40.0299 (11)0.0213 (10)0.0177 (9)0.0030 (8)0.0038 (8)0.0001 (7)
C50.0190 (9)0.0173 (9)0.0212 (9)0.0013 (7)0.0024 (7)0.0000 (7)
C60.0254 (11)0.0531 (15)0.0265 (11)0.0062 (10)0.0082 (9)0.0025 (10)
C70.0346 (13)0.0498 (16)0.0327 (12)0.0154 (11)0.0005 (10)0.0135 (11)
C80.0230 (10)0.0317 (11)0.0286 (11)0.0046 (9)0.0050 (8)0.0029 (9)
C90.0364 (13)0.0504 (15)0.0243 (11)0.0012 (11)0.0062 (10)0.0042 (10)
C100.0245 (11)0.0307 (12)0.0426 (13)0.0035 (9)0.0083 (10)0.0036 (10)
C110.0314 (13)0.0334 (13)0.0651 (18)0.0017 (10)0.0159 (12)0.0186 (12)
C120.0337 (12)0.0184 (10)0.0300 (11)0.0038 (8)0.0045 (9)0.0029 (8)
C130.0337 (13)0.0317 (13)0.0680 (18)0.0024 (10)0.0204 (13)0.0126 (12)
C140.0443 (14)0.0300 (12)0.0513 (15)0.0103 (10)0.0286 (13)0.0079 (11)
C150.085 (2)0.0332 (14)0.0538 (17)0.0146 (14)0.0455 (17)0.0111 (12)
C160.0313 (12)0.0290 (11)0.0310 (11)0.0019 (9)0.0027 (9)0.0041 (9)
C170.0324 (13)0.0386 (14)0.0374 (13)0.0003 (10)0.0021 (10)0.0007 (11)
C180.0281 (10)0.0209 (9)0.0181 (9)0.0013 (8)0.0076 (8)0.0014 (7)
C190.0319 (12)0.0264 (11)0.0281 (11)0.0069 (9)0.0084 (9)0.0022 (8)
C200.0341 (11)0.0236 (10)0.0232 (10)0.0101 (8)0.0123 (9)0.0034 (8)
C210.0300 (12)0.0345 (12)0.0349 (12)0.0096 (9)0.0082 (10)0.0020 (10)
C220.0269 (10)0.0260 (10)0.0185 (9)0.0022 (8)0.0074 (8)0.0019 (8)
C230.0417 (14)0.0367 (13)0.0304 (12)0.0135 (11)0.0132 (10)0.0083 (10)
Geometric parameters (Å, º) top
Cu1—Cl12.3474 (5)C8—H8B0.9900
Cu1—Cl22.5809 (5)C9—H9A0.9800
Cu1—S12.3282 (5)C9—H9B0.9800
Cu1—P12.1936 (5)C9—H9C0.9800
Cu2—Cl12.3640 (5)C10—C111.527 (3)
Cu2—Cl22.5324 (5)C10—H10A0.9900
Cu2—S22.3556 (5)C10—H10B0.9900
Cu2—P22.2018 (6)C11—H11A0.9800
Cu3—Cl22.3912 (5)C11—H11B0.9800
Cu3—S12.4002 (5)C11—H11C0.9800
Cu3—S22.4939 (5)C12—C131.526 (4)
Cu3—P32.1841 (5)C12—H12A0.9900
Cu1—Cu33.0216 (4)C12—H12B0.9900
S1—C11.7367 (19)C13—H13A0.9800
S2—C11.7330 (19)C13—H13B0.9800
P1—C101.831 (2)C13—H13C0.9800
P1—C81.836 (2)C14—C151.511 (4)
P1—C61.830 (2)C14—H14A0.9900
P2—C141.816 (2)C14—H14B0.9900
P2—C121.822 (2)C15—H15A0.9800
P2—C161.849 (2)C15—H15B0.9800
P3—C201.830 (2)C15—H15C0.9800
P3—C221.836 (2)C16—C171.508 (3)
P3—C181.842 (2)C16—H16A0.9900
N1—C11.313 (2)C16—H16B0.9900
N1—C51.477 (2)C17—H17A0.9800
N1—C21.480 (2)C17—H17B0.9800
C2—C31.530 (3)C17—H17C0.9800
C2—H2A0.9900C18—C191.526 (3)
C2—H2B0.9900C18—H18A0.9900
C3—C41.527 (3)C18—H18B0.9900
C3—H3A0.9900C19—H19A0.9800
C3—H3B0.9900C19—H19B0.9800
C4—C51.526 (3)C19—H19C0.9800
C4—H4A0.9900C20—C211.523 (3)
C4—H4B0.9900C20—H20A0.9900
C5—H5A0.9900C20—H20B0.9900
C5—H5B0.9900C21—H21A0.9800
C6—C71.515 (4)C21—H21B0.9800
C6—H6A0.9900C21—H21C0.9800
C6—H6B0.9900C22—C231.525 (3)
C7—H7A0.9800C22—H22A0.9900
C7—H7B0.9800C22—H22B0.9900
C7—H7C0.9800C23—H23A0.9800
C8—C91.524 (3)C23—H23B0.9800
C8—H8A0.9900C23—H23C0.9800
Cl1—Cu1—Cl296.188 (18)C9—C8—P1112.35 (16)
Cl1—Cu1—S1104.585 (19)C9—C8—H8A109.1
Cl1—Cu1—P1115.51 (2)P1—C8—H8A109.1
Cl2—Cu1—S1100.954 (18)C9—C8—H8B109.1
Cl2—Cu1—P1108.90 (2)P1—C8—H8B109.1
S1—Cu1—P1125.81 (2)H8A—C8—H8B107.9
Cl1—Cu2—Cl297.080 (18)C8—C9—H9A109.5
Cl1—Cu2—S2106.406 (19)C8—C9—H9B109.5
Cl1—Cu2—P2113.35 (2)H9A—C9—H9B109.5
Cl2—Cu2—S297.904 (18)C8—C9—H9C109.5
Cl2—Cu2—P2112.82 (2)H9A—C9—H9C109.5
S2—Cu2—P2124.87 (2)H9B—C9—H9C109.5
Cl2—Cu3—S1104.566 (18)C11—C10—P1112.60 (17)
Cl2—Cu3—S298.030 (18)C11—C10—H10A109.1
Cl2—Cu3—P3118.56 (2)P1—C10—H10A109.1
S1—Cu3—S274.935 (17)C11—C10—H10B109.1
S1—Cu3—P3127.39 (2)P1—C10—H10B109.1
S2—Cu3—P3123.04 (2)H10A—C10—H10B107.8
P1—Cu1—Cu3132.231 (19)C10—C11—H11A109.5
S1—Cu1—Cu351.338 (13)C10—C11—H11B109.5
Cl1—Cu1—Cu3109.575 (16)H11A—C11—H11B109.5
Cl2—Cu1—Cu349.769 (12)C10—C11—H11C109.5
P3—Cu3—Cu1149.44 (2)H11A—C11—H11C109.5
Cl2—Cu3—Cu155.492 (13)H11B—C11—H11C109.5
S1—Cu3—Cu149.237 (13)C13—C12—P2111.61 (16)
S2—Cu3—Cu186.926 (14)C13—C12—H12A109.3
Cu1—Cl1—Cu281.004 (17)P2—C12—H12A109.3
Cu3—Cl2—Cu281.010 (16)C13—C12—H12B109.3
Cu3—Cl2—Cu174.739 (16)P2—C12—H12B109.3
Cu2—Cl2—Cu173.508 (15)H12A—C12—H12B108.0
C1—S1—Cu196.15 (6)C12—C13—H13A109.5
C1—S1—Cu384.76 (6)C12—C13—H13B109.5
Cu1—S1—Cu379.425 (17)H13A—C13—H13B109.5
C1—S2—Cu294.21 (6)C12—C13—H13C109.5
C1—S2—Cu381.97 (6)H13A—C13—H13C109.5
Cu2—S2—Cu382.517 (17)H13B—C13—H13C109.5
C10—P1—C8102.12 (11)C15—C14—P2111.1 (2)
C10—P1—C6102.40 (12)C15—C14—H14A109.4
C8—P1—C6102.94 (11)P2—C14—H14A109.4
C10—P1—Cu1115.53 (8)C15—C14—H14B109.4
C8—P1—Cu1118.31 (8)P2—C14—H14B109.4
C6—P1—Cu1113.48 (8)H14A—C14—H14B108.0
C14—P2—C12102.29 (12)C14—C15—H15A109.5
C14—P2—C16102.70 (13)C14—C15—H15B109.5
C12—P2—C16101.70 (11)H15A—C15—H15B109.5
C14—P2—Cu2117.20 (8)C14—C15—H15C109.5
C12—P2—Cu2115.53 (8)H15A—C15—H15C109.5
C16—P2—Cu2115.24 (8)H15B—C15—H15C109.5
C20—P3—C22102.17 (10)C17—C16—P2112.33 (17)
C20—P3—C18104.21 (10)C17—C16—H16A109.1
C22—P3—C18101.71 (10)P2—C16—H16A109.1
C20—P3—Cu3114.89 (7)C17—C16—H16B109.1
C22—P3—Cu3113.81 (7)P2—C16—H16B109.1
C18—P3—Cu3118.01 (7)H16A—C16—H16B107.9
C1—N1—C5124.37 (16)C16—C17—H17A109.5
C1—N1—C2123.24 (16)C16—C17—H17B109.5
C5—N1—C2111.41 (15)H17A—C17—H17B109.5
N1—C1—S2121.62 (14)C16—C17—H17C109.5
N1—C1—S1120.11 (14)H17A—C17—H17C109.5
S2—C1—S1118.25 (11)H17B—C17—H17C109.5
N1—C2—C3103.77 (16)C19—C18—P3114.33 (14)
N1—C2—H2A111.0C19—C18—H18A108.7
C3—C2—H2A111.0P3—C18—H18A108.7
N1—C2—H2B111.0C19—C18—H18B108.7
C3—C2—H2B111.0P3—C18—H18B108.7
H2A—C2—H2B109.0H18A—C18—H18B107.6
C4—C3—C2103.25 (15)C18—C19—H19A109.5
C4—C3—H3A111.1C18—C19—H19B109.5
C2—C3—H3A111.1H19A—C19—H19B109.5
C4—C3—H3B111.1C18—C19—H19C109.5
C2—C3—H3B111.1H19A—C19—H19C109.5
H3A—C3—H3B109.1H19B—C19—H19C109.5
C5—C4—C3103.30 (16)C21—C20—P3113.07 (16)
C5—C4—H4A111.1C21—C20—H20A109.0
C3—C4—H4A111.1P3—C20—H20A109.0
C5—C4—H4B111.1C21—C20—H20B109.0
C3—C4—H4B111.1P3—C20—H20B109.0
H4A—C4—H4B109.1H20A—C20—H20B107.8
N1—C5—C4102.84 (16)C20—C21—H21A109.5
N1—C5—H5A111.2C20—C21—H21B109.5
C4—C5—H5A111.2H21A—C21—H21B109.5
N1—C5—H5B111.2C20—C21—H21C109.5
C4—C5—H5B111.2H21A—C21—H21C109.5
H5A—C5—H5B109.1H21B—C21—H21C109.5
C7—C6—P1113.13 (18)C23—C22—P3112.66 (16)
C7—C6—H6A109.0C23—C22—H22A109.1
P1—C6—H6A109.0P3—C22—H22A109.1
C7—C6—H6B109.0C23—C22—H22B109.1
P1—C6—H6B109.0P3—C22—H22B109.1
H6A—C6—H6B107.8H22A—C22—H22B107.8
C6—C7—H7A109.5C22—C23—H23A109.5
C6—C7—H7B109.5C22—C23—H23B109.5
H7A—C7—H7B109.5H23A—C23—H23B109.5
C6—C7—H7C109.5C22—C23—H23C109.5
H7A—C7—H7C109.5H23A—C23—H23C109.5
H7B—C7—H7C109.5H23B—C23—H23C109.5
C5—N1—C1—S26.0 (2)C6—P1—C8—C9176.38 (18)
C2—N1—C1—S2173.70 (13)Cu1—P1—C8—C950.4 (2)
C5—N1—C1—S1172.23 (14)C8—P1—C10—C11176.76 (19)
C2—N1—C1—S14.5 (2)C6—P1—C10—C1176.9 (2)
Cu2—S2—C1—N193.58 (15)Cu1—P1—C10—C1147.0 (2)
Cu3—S2—C1—N1175.40 (15)C14—P2—C12—C13178.71 (19)
Cu2—S2—C1—S184.66 (10)C16—P2—C12—C1375.3 (2)
Cu3—S2—C1—S12.84 (9)Cu2—P2—C12—C1350.2 (2)
Cu1—S1—C1—N196.59 (14)C12—P2—C14—C1581.4 (2)
Cu3—S1—C1—N1175.33 (15)C16—P2—C14—C15173.45 (19)
Cu1—S1—C1—S281.67 (10)Cu2—P2—C14—C1546.1 (2)
Cu3—S1—C1—S22.93 (9)C14—P2—C16—C1784.3 (2)
C1—N1—C2—C3176.54 (16)C12—P2—C16—C17170.03 (19)
C5—N1—C2—C37.4 (2)Cu2—P2—C16—C1744.3 (2)
N1—C2—C3—C428.69 (19)C20—P3—C18—C1991.44 (17)
C2—C3—C4—C539.4 (2)C22—P3—C18—C19162.62 (16)
C1—N1—C5—C4152.09 (17)Cu3—P3—C18—C1937.36 (18)
C2—N1—C5—C416.9 (2)C22—P3—C20—C21179.63 (16)
C3—C4—C5—N134.37 (19)C18—P3—C20—C2174.03 (18)
C10—P1—C6—C7178.43 (18)Cu3—P3—C20—C2156.63 (18)
C8—P1—C6—C775.85 (19)C20—P3—C22—C2373.77 (18)
Cu1—P1—C6—C753.22 (19)C18—P3—C22—C23178.70 (16)
C10—P1—C8—C977.7 (2)Cu3—P3—C22—C2350.70 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (Cu,S1,S2,C1) chelate ring.
D—H···AD—HH···AD···AD—H···A
C20—H20B···Cl1i0.992.813.722 (2)154
C22—H22B···Cl1i0.992.803.720 (2)154
C3—H3B···Cg1ii0.992.833.705 (2)148
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.
Percentage contribution of interatomic contacts to the Hirshfeld surface for (I) top
Contactpercentage contribution
H···H86.6
Cl···H/H···Cl5.8
S···H/H···S5.7
C···H/H···C1.1
Cu···H/H···Cu0.4
N···H/H···N0.3
C···N / N···C0.1
 

Footnotes

Additional correspondence author, e-mail: mmjotani@rediffmail.com.

Funding information

Funding for this research was provided by: Sunway University (award No. INT-RRO-2017-096).

References

First citationAfzaal, M., Rosenberg, C. L., Malik, M. A., White, A. J. P. & O'Brien, P. (2011). New J. Chem. 35, 2773–2780.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, B.-J., Jamaludin, N. S., Khoo, C.-H., See, T.-H., Sim, J.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2016). J. Inorg. Biochem. 163, 68–80.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, S.-B. & Situ, Y. (2003). Chin. J. Struct. Chem. 22, 260–264.  CAS Google Scholar
First citationJamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341–349.  CAS Google Scholar
First citationJotani, M. M., Poplaukhin, P., Arman, H. D. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1085–1092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKishore, P. V. V. N., Liao, J.-H., Hou, H.-N., Lin, Y.-R. & Liu, C. W. (2016). Inorg. Chem. 55, 3663–3673.  CSD CrossRef CAS PubMed Google Scholar
First citationKumar, A., Mayer-Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. 2009, 2720–2725.  CSD CrossRef Google Scholar
First citationLanger, R., Wünsche, L., Fenske, D. & Fuhr, O. Z. (2009). Z. Anorg. Allg. Chem. 635, 2488–2494.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRajput, G., Yadav, M. K., Drew, M. G. B. & Singh, N. (2015). Inorg. Chem. 54, 2572–2579.  CSD CrossRef CAS PubMed Google Scholar
First citationRaston, C. L. & White, A. H. (1975). J. Chem. Soc. Dalton Trans. pp. 2422–2425.  CSD CrossRef Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSim, J.-H., Jamaludin, N. S., Khoo, C.-H., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2014). Gold Bull. 47, 225–236.  Web of Science CrossRef CAS Google Scholar
First citationTan, S. L., Yeo, C. I., Heard, P. J., Akien, G. R., Halcovitch, N. R. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1799–1805.  CSD CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2017). Coord. Chem. Rev. https://dx.doi.org/10.1016/j.ccr.2017.01.009Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds