research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-chloro-1,3-bis­­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine 2-oxide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Saint Mary's University, 923 Robie St., Halifax, Nova Scotia, B3H 3C3, Canada
*Correspondence e-mail: jason.masuda@smu.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 April 2017; accepted 18 April 2017; online 21 April 2017)

The title compound, C26H38ClN2OP, was synthesized by reacting phosphoryl chloride with N,N′-bis­(2,6-diiso­propyl­phen­yl)ethane-1,2-di­amine in the presence of N-methyl­morpholine which acted as an auxilliary base to quench the HCl released as a by-product. The resultant N-heterocyclic phosphine five-membered ring adopts a half-chair conformation and features a tetra­coordinate P atom ligated by the chelating di­amine [P—N = 1.6348 (14) and 1.6192 (14) Å], one double-bonded O atom [P1—O1 = 1.4652 (12) Å] and one Cl atom [P1—Cl1 = 2.0592 (7) Å]. The sterically hindered 2,6-diiso­propyl­phenyl (Dipp) groups twist away from the central heterocycle, with torsion angles of −75.66 (19) and 83.39 (19)° for the P—N—Car—Car links. A number of intra­molecular C—H⋯N, C—H⋯O and C—H⋯Cl close contacts occur. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds to generate [010] chains. C—H⋯π inter­actions are also observed.

1. Chemical context

1,3,2-Di­aza­phospho­lidines are a class of N-heterocyclic phosphines (NHPs) that feature an N—P—N moiety bridged by a C2H4 fragment, thus forming a five-membered ring. Derivatives are often substituted by alkyl, aryl, or halogen groups at the phospho­rus position (denoted as position 2), allowing them to serve as both ligands and/or precursors in organometallic chemistry (Gudat, 2010[Gudat, D. (2010). Recent Developments in the Chemistry of N-Heterocyclic Phosphines, edited by R. K. Bansal, pp. 63-102. Berlin: Springer.]). The title compound, 2-chloro-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­li­dine 2-oxide, is closely related to these compounds and its analogs are commonly used as precursor mol­ecules for the synthesis of pharmaceuticals targeted towards immunosuppressants and chemotherapy medications (Gholivand & Mojahed, 2005[Gholivand, K. & Mojahed, F. (2005). Z. Anorg. Allg. Chem. 631, 1912-1918.]). The crystal structure of the title compound is reported herein and features a saturated five-membered NHP substituted at the phospho­rus position by both O and Cl atoms.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The title compound crystallizes in the monoclinic space group P21/n with one mol­ecule present in the asymmetric unit. Bond lengths between the flanking nitro­gen atoms show a statistical difference when compared to each other [P1—N1 = 1.6348 (14) Å and P1—N2 = 1.6192 (14) Å] and is likely caused by the half-chair (or envelope) conformation of the heterocycle at the C2 position. The N—P—N bond angle of 95.60 (7)° deviates significantly from an ideal tetra­hedral geometry. Bond lengths between P1—Cl1 and P1—O1 are 2.0592 (7) and 1.4652 (12) Å, respectively, with a bond angle of 105.51 (5)° for the O—P—Cl atoms. The isopropyl groups are oriented away from the central five-membered ring and lead to intra­molecular short-contact D—H⋯A inter­actions between methine atoms H9, H12, H21, and H24, and N1 and N2. Intra­molecular short-contact D—H⋯A inter­actions are also present for Cl1 and O1 atoms and are summarized in Table 1[link]. The steric demands of the bulky 2,6-diiso­propyl­phenyl groups cause the aromatic rings to twist away from the central five-membered ring with torsion angles of −75.66 (19) and 83.39 (19)° for P1—N1—C3—C4 and P1—N2—C15—C20, respectively. The dihedral angles between the heterocyclic ring (all atoms) and the C3–C8 and C15–C20 aromatic rings are 76.61 (9) and 88.75 (9)°, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cl1 1.00 2.91 3.543 (2) 122
C21—H21⋯Cl1 1.00 2.88 3.6006 (19) 130
C9—H9⋯O1 1.00 2.63 3.273 (2) 122
C25—H25C⋯O1 0.98 2.61 3.407 (2) 138
C9—H9⋯N1 1.00 2.43 2.927 (2) 110
C12—H12⋯N1 1.00 2.41 2.904 (2) 110
C21—H21⋯N2 1.00 2.42 2.930 (2) 111
C24—H24⋯N2 1.00 2.41 2.915 (2) 110
C2—H2A⋯O1i 0.99 2.36 3.319 (2) 164
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

3. Supra­molecular features

The crystal of the title compound contains inter­molecular short-contact D—H⋯A π-inter­actions between C6—H6 and the centroid of the C3–C8 ring of a neighboring mol­ecule (transformation = [{3\over 2}] − x, −1 + y, [{3\over 2}] − z), with an H⋯centroid distance of 2.740 (3) Å. The isopropyl groups of the flanking aromatic rings also display short contacts for Cl1 and O1, with H⋯Cl distances measuring 2.950 (5) and 3.086 (6) Å between H14A⋯Cl1 and H23B⋯Cl1, respectively. A significantly short contact of 2.357 (2) Å occurs for H2A⋯O1. A distance this small is likely indicative of C—H⋯O hydrogen bonding (Fig. 2[link], Table 1[link]) accepted by the O atom from a neighbouring ethyl­ene bridge related by symmetry (transformation = x, y − 1, z).

[Figure 2]
Figure 2
The packing of the title compound, showing the formation of C—H⋯O hydrogen bonds (red and cyan lines).

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) produced two matches for 1,3,2-(di­aryl­amino)­phospho­lidine-2-oxide-2-halide derivatives; 1,3-di(p-tol­yl)-2-chloro-1,3,2-di­aza­phospho­lidine-2-oxide (p-tolyl = 4-methyl­phen­yl), and the analogous fluorine derivative (CSD identifiers WASFEC and SIVJEN, respectively; Gholivand & Mojahed, 2005[Gholivand, K. & Mojahed, F. (2005). Z. Anorg. Allg. Chem. 631, 1912-1918.]). One other closely related bicyclic structure was found (CSD identifier NUMBAY; Koeller et al., 1995[Koeller, K. J., Rath, N. P. & Spilling, C. D. (1995). Phosphorus Sulfur Silicon, 103, 171-181.]), which features N-benzyl substituents and a cyclo­hexyl ring fused to the bridging ethyl­ene C atoms.

5. Synthesis and crystallization

The synthesis of the title compound was achieved using a similar method as used for 2-chloro-1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3,2-di­aza­phospho­lidine (Caputo et al., 2008[Caputo, C. A., Price, J. T., Jennings, M. C., McDonald, R. & Jones, N. D. (2008). Dalton Trans. pp. 3461-3469.]), except phosphoryl chloride was used instead of phospho­rus trichloride. In a 200 ml Schlenk flask, 1.142 g (3.00 mmol, 1 eq.) of N,N′-bis­(2,6-diiso­propyl­phen­yl)ethane-1,2-di­amine were dissolved in 45 ml of THF producing a colourless solution. Separately 0.478 g (3.11 mmol, 1.04 eq.) of phosphoryl chloride and 0.959 g (9.48 mmol, 3.16 eq.) of N-methyl­morpholine were dissolved in 75 ml of THF producing a colourless solution, and transferred to a 125 ml pressure-equalizing dropping funnel. The di­amine solution was cooled to 195 K using a liquid nitro­gen/acetone bath and monitored using a thermocouple, and once cold (ca 10 minutes) the phosphoryl chloride mixture was added dropwise to the di­amine solution over 30 minutes. Once the addition was complete, the colourless reaction mixture was left to stir at 195 K for 60 minutes, after which it was allowed to warm to room temperature and left to stir for two days at room temperature. The reaction was monitored by 31P{1H} NMR spectroscopy, and became pale yellow in colour with a slight amount of colourless precipitate as it proceeded. Once the starting material was completely consumed, the reaction mixture was dried in vacuo to give a pale-yellow coloured solid. Extraction of this solid with 50 ml of a 3:2 mixture of penta­ne:THF produced the desired product as a pale-yellow coloured solution following filtration through Celite, which when dried in vacuo afforded 0.919 g (66%) of the desired product as a faintly yellow coloured powder. Crystals of the product in the form of colourless blocks were obtained by concentrating the filtrate and storing in a 238 K freezer overnight.

1H NMR (CDCl3): δ 7.32 (t, 3JHH = 7.6 Hz, 2H, p-Dipp), 7.21 (m, 3JHH = 7.4 Hz, 4H, m-Dipp), 3.86–3.50 (m, 8H, iPr—CH, NHC—CH2), 1.38 (d, 3JHH = 6.8 Hz, 6H, iPr—CH3), 1.35 (d, 3JHH = 6.8 Hz, 6H, iPr—CH3), 1.28 (d, 3JHH = 6.9 Hz, 6H, iPr—CH3), 1.26 ppm (d, 3JHH = 6.9 Hz, 6H, iPr—CH3). 13C{1H} NMR (CDCl3): δ 149.8, 149.6, 131.8, 129.1, 125.0, 124.9, 48.8, 29.0, 25.9, 24.5, 23.9 ppm. 31P{1H} NMR (CDCl3): δ 15.1 ppm. IR (KBr pellet): ν 3068 (w), 2967 (s), 2929 (m), 2869 (m), 1681 (w), 1588 (w), 1464 (s), 1448 (s), 1383 (w), 1368 (w), 1348 (w) 1323 (m), 1268 (s), 1217 (w), 1194 (w), 1106 (m), 1093 (m), 1077 (m), 1056 (m), 1043 (w), 934 (w), 860 (w), 803 (s), 756 (w), 747 (w), 733 (w), 648 (w), 592 (w), 575 (w), 558 (w), 544 (w), 496 (s) 466 (w), 437 (w), 412 cm−1 (w). m.p. 509.7–511.0 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were included in geometrically idealized positions and refined using a riding model [C—H = 0.95–0.99; Uiso(H) = 1.2–1.5Ueq(C)]. The methyl H atoms were allowed to rotate, but not to tip, to best fit the electron density.

Table 2
Experimental details

Crystal data
Chemical formula C26H38ClN2OP
Mr 461.00
Crystal system, space group Monoclinic, P21/n
Temperature (K) 104
a, b, c (Å) 19.984 (3), 6.6328 (11), 20.140 (3)
β (°) 106.818 (2)
V3) 2555.4 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.25 × 0.21 × 0.17
 
Data collection
Diffractometer Siemens/Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.578, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 30194, 6307, 4640
Rint 0.073
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.04
No. of reflections 6307
No. of parameters 288
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Chloro-1,3-bis(2,6-diisopropylphenyl)-1,3,2-diazaphospholidine 2-oxide top
Crystal data top
C26H38ClN2OPF(000) = 992
Mr = 461.00Dx = 1.198 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 19.984 (3) ÅCell parameters from 4093 reflections
b = 6.6328 (11) Åθ = 2.5–24.5°
c = 20.140 (3) ŵ = 0.23 mm1
β = 106.818 (2)°T = 104 K
V = 2555.4 (7) Å3Block, colourless
Z = 40.25 × 0.21 × 0.17 mm
Data collection top
Siemens/Bruker APEXII
diffractometer
4640 reflections with I > 2σ(I)
Detector resolution: 66 pixels mm-1Rint = 0.073
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2626
Tmin = 0.578, Tmax = 0.746k = 88
30194 measured reflectionsl = 2626
6307 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.5837P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6307 reflectionsΔρmax = 0.43 e Å3
288 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
CL10.60905 (2)0.77730 (7)0.42592 (2)0.02113 (12)
P10.70785 (2)0.65590 (7)0.46135 (2)0.01383 (11)
O10.75532 (6)0.81335 (17)0.45109 (6)0.0181 (3)
N10.71214 (7)0.5695 (2)0.53850 (7)0.0149 (3)
N20.70937 (7)0.4369 (2)0.42630 (7)0.0147 (3)
C10.72101 (10)0.3487 (3)0.54424 (9)0.0196 (4)
H1A0.6924500.2907170.5723210.024*
H1B0.7706250.3129930.5660360.024*
C20.69615 (9)0.2713 (3)0.46958 (9)0.0183 (4)
H2A0.7225310.1491080.4641190.022*
H2B0.6457300.2379470.4565230.022*
C30.71736 (9)0.6963 (2)0.59765 (8)0.0149 (3)
C40.78155 (9)0.7887 (3)0.63099 (9)0.0189 (4)
C50.78352 (10)0.9197 (3)0.68551 (9)0.0245 (4)
H50.8259510.9871030.7080890.029*
C60.72518 (11)0.9539 (3)0.70750 (10)0.0273 (4)
H60.7277631.0442730.7447560.033*
C70.66305 (10)0.8570 (3)0.67543 (9)0.0256 (4)
H70.6234180.8795690.6914790.031*
C80.65767 (9)0.7266 (3)0.61984 (9)0.0192 (4)
C90.84815 (9)0.7422 (3)0.61222 (9)0.0223 (4)
H90.8348510.6623550.5682250.027*
C100.88538 (10)0.9329 (3)0.59894 (11)0.0314 (5)
H10A0.9269520.8952800.5852710.047*
H10B0.8993931.0142110.6413480.047*
H10C0.8536661.0113820.5616870.047*
C110.89651 (10)0.6108 (3)0.66826 (11)0.0309 (5)
H11A0.9388290.5789750.6550730.046*
H11B0.8723660.4854910.6731510.046*
H11C0.9093290.6835720.7124990.046*
C120.58966 (9)0.6166 (3)0.58712 (10)0.0247 (4)
H120.5936980.5492910.5440100.030*
C130.52710 (11)0.7590 (4)0.56644 (11)0.0407 (6)
H13A0.5358870.8648930.5360690.061*
H13B0.5200440.8204570.6081590.061*
H13C0.4851790.6831690.5418190.061*
C140.57816 (11)0.4518 (4)0.63611 (11)0.0373 (5)
H14A0.5356800.3758920.6131760.056*
H14B0.5731010.5139550.6785390.056*
H14C0.6183490.3601440.6479300.056*
C150.72566 (9)0.4045 (2)0.36189 (9)0.0155 (4)
C160.67152 (9)0.3889 (2)0.29983 (9)0.0172 (4)
C170.68940 (10)0.3713 (3)0.23813 (9)0.0197 (4)
H170.6534750.3617790.1953990.024*
C180.75855 (10)0.3673 (3)0.23807 (9)0.0203 (4)
H180.7699880.3592640.1955320.024*
C190.81087 (10)0.3752 (3)0.30022 (9)0.0196 (4)
H190.8582280.3682680.2998030.023*
C200.79627 (9)0.3931 (3)0.36346 (9)0.0173 (4)
C210.59508 (9)0.3881 (3)0.29800 (9)0.0188 (4)
H210.5927750.4106350.3463820.023*
C220.55404 (10)0.5564 (3)0.25268 (10)0.0295 (5)
H22A0.5554770.5378430.2048350.044*
H22B0.5748410.6868400.2701260.044*
H22C0.5053860.5528220.2539050.044*
C230.56189 (11)0.1827 (3)0.27379 (11)0.0306 (5)
H23A0.5133390.1823300.2753820.046*
H23B0.5881610.0768210.3043370.046*
H23C0.5629270.1575140.2261460.046*
C240.85570 (9)0.3942 (3)0.43053 (9)0.0195 (4)
H240.8344540.3990670.4697680.023*
C250.90220 (10)0.5797 (3)0.43636 (10)0.0270 (4)
H25A0.9253770.5762850.3996350.041*
H25B0.9375390.5803060.4817320.041*
H25C0.8735360.7017850.4314550.041*
C260.89855 (11)0.2004 (3)0.43818 (10)0.0289 (5)
H26A0.8678060.0838790.4359110.043*
H26B0.9348410.2010060.4829420.043*
H26C0.9204870.1919190.4005960.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
CL10.0179 (2)0.0199 (2)0.0225 (2)0.00405 (17)0.00101 (17)0.00066 (17)
P10.0146 (2)0.0125 (2)0.0134 (2)0.00099 (17)0.00254 (17)0.00000 (17)
O10.0209 (7)0.0144 (6)0.0190 (6)0.0012 (5)0.0058 (5)0.0009 (5)
N10.0180 (8)0.0122 (7)0.0139 (7)0.0010 (6)0.0035 (6)0.0002 (6)
N20.0183 (8)0.0135 (7)0.0129 (7)0.0003 (6)0.0054 (6)0.0011 (6)
C10.0260 (10)0.0132 (9)0.0198 (9)0.0013 (7)0.0068 (8)0.0021 (7)
C20.0230 (9)0.0135 (9)0.0187 (9)0.0013 (7)0.0066 (7)0.0008 (7)
C30.0191 (9)0.0131 (8)0.0111 (8)0.0009 (7)0.0024 (7)0.0003 (6)
C40.0231 (9)0.0170 (9)0.0153 (8)0.0007 (7)0.0034 (7)0.0017 (7)
C50.0304 (11)0.0233 (10)0.0156 (9)0.0080 (8)0.0001 (8)0.0017 (8)
C60.0406 (12)0.0220 (10)0.0185 (9)0.0009 (9)0.0074 (9)0.0056 (8)
C70.0286 (11)0.0297 (11)0.0196 (10)0.0059 (9)0.0088 (8)0.0023 (8)
C80.0197 (9)0.0214 (9)0.0157 (9)0.0017 (7)0.0039 (7)0.0006 (7)
C90.0166 (9)0.0291 (11)0.0185 (9)0.0024 (8)0.0008 (7)0.0016 (8)
C100.0215 (10)0.0386 (12)0.0308 (11)0.0073 (9)0.0023 (9)0.0077 (9)
C110.0242 (11)0.0321 (12)0.0318 (11)0.0004 (9)0.0007 (9)0.0051 (9)
C120.0181 (10)0.0374 (12)0.0192 (9)0.0009 (8)0.0062 (8)0.0030 (8)
C130.0225 (11)0.0671 (17)0.0309 (12)0.0118 (11)0.0052 (9)0.0062 (11)
C140.0280 (12)0.0538 (15)0.0309 (12)0.0152 (10)0.0096 (9)0.0020 (10)
C150.0209 (9)0.0115 (8)0.0155 (8)0.0002 (7)0.0072 (7)0.0014 (7)
C160.0217 (9)0.0119 (8)0.0191 (9)0.0007 (7)0.0076 (7)0.0019 (7)
C170.0253 (10)0.0162 (9)0.0160 (9)0.0010 (7)0.0035 (8)0.0017 (7)
C180.0275 (10)0.0175 (9)0.0190 (9)0.0004 (8)0.0116 (8)0.0024 (7)
C190.0211 (9)0.0159 (9)0.0237 (9)0.0004 (7)0.0097 (8)0.0007 (7)
C200.0203 (9)0.0128 (8)0.0196 (9)0.0011 (7)0.0070 (7)0.0004 (7)
C210.0177 (9)0.0220 (10)0.0151 (9)0.0019 (7)0.0021 (7)0.0018 (7)
C220.0210 (10)0.0392 (12)0.0280 (11)0.0049 (9)0.0068 (9)0.0092 (9)
C230.0312 (11)0.0328 (12)0.0304 (11)0.0131 (9)0.0130 (9)0.0099 (9)
C240.0163 (9)0.0225 (10)0.0199 (9)0.0013 (7)0.0056 (7)0.0004 (7)
C250.0213 (10)0.0251 (10)0.0305 (11)0.0029 (8)0.0010 (8)0.0019 (8)
C260.0305 (11)0.0273 (11)0.0270 (11)0.0081 (9)0.0052 (9)0.0032 (9)
Geometric parameters (Å, º) top
CL1—P12.0592 (7)C13—H13A0.9800
P1—O11.4652 (12)C13—H13B0.9800
P1—N21.6192 (14)C13—H13C0.9800
P1—N11.6348 (14)C14—H14A0.9800
N1—C31.437 (2)C14—H14B0.9800
N1—C11.476 (2)C14—H14C0.9800
N2—C151.442 (2)C15—C161.400 (2)
N2—C21.473 (2)C15—C201.404 (2)
C1—C21.529 (2)C16—C171.394 (2)
C1—H1A0.9900C16—C211.517 (2)
C1—H1B0.9900C17—C181.382 (3)
C2—H2A0.9900C17—H170.9500
C2—H2B0.9900C18—C191.380 (3)
C3—C81.404 (2)C18—H180.9500
C3—C41.405 (2)C19—C201.392 (2)
C4—C51.392 (2)C19—H190.9500
C4—C91.517 (2)C20—C241.519 (2)
C5—C61.380 (3)C21—C221.523 (3)
C5—H50.9500C21—C231.532 (3)
C6—C71.381 (3)C21—H211.0000
C6—H60.9500C22—H22A0.9800
C7—C81.394 (2)C22—H22B0.9800
C7—H70.9500C22—H22C0.9800
C8—C121.515 (3)C23—H23A0.9800
C9—C111.529 (3)C23—H23B0.9800
C9—C101.530 (3)C23—H23C0.9800
C9—H91.0000C24—C251.526 (3)
C10—H10A0.9800C24—C261.527 (3)
C10—H10B0.9800C24—H241.0000
C10—H10C0.9800C25—H25A0.9800
C11—H11A0.9800C25—H25B0.9800
C11—H11B0.9800C25—H25C0.9800
C11—H11C0.9800C26—H26A0.9800
C12—C131.526 (3)C26—H26B0.9800
C12—C141.534 (3)C26—H26C0.9800
C12—H121.0000
O1—P1—N2118.91 (7)C12—C13—H13A109.5
O1—P1—N1121.71 (7)C12—C13—H13B109.5
N2—P1—N195.60 (7)H13A—C13—H13B109.5
O1—P1—CL1105.51 (5)C12—C13—H13C109.5
N2—P1—CL1109.68 (6)H13A—C13—H13C109.5
N1—P1—CL1104.35 (5)H13B—C13—H13C109.5
C3—N1—C1122.51 (14)C12—C14—H14A109.5
C3—N1—P1123.66 (12)C12—C14—H14B109.5
C1—N1—P1113.22 (11)H14A—C14—H14B109.5
C15—N2—C2123.16 (13)C12—C14—H14C109.5
C15—N2—P1124.30 (11)H14A—C14—H14C109.5
C2—N2—P1112.45 (11)H14B—C14—H14C109.5
N1—C1—C2105.00 (13)C16—C15—C20121.87 (15)
N1—C1—H1A110.7C16—C15—N2119.78 (15)
C2—C1—H1A110.7C20—C15—N2118.34 (15)
N1—C1—H1B110.7C17—C16—C15118.09 (16)
C2—C1—H1B110.7C17—C16—C21119.61 (16)
H1A—C1—H1B108.8C15—C16—C21122.30 (15)
N2—C2—C1105.58 (13)C18—C17—C16121.10 (17)
N2—C2—H2A110.6C18—C17—H17119.5
C1—C2—H2A110.6C16—C17—H17119.5
N2—C2—H2B110.6C19—C18—C17119.58 (16)
C1—C2—H2B110.6C19—C18—H18120.2
H2A—C2—H2B108.8C17—C18—H18120.2
C8—C3—C4121.87 (15)C18—C19—C20121.92 (17)
C8—C3—N1118.87 (15)C18—C19—H19119.0
C4—C3—N1119.25 (15)C20—C19—H19119.0
C5—C4—C3117.57 (16)C19—C20—C15117.35 (16)
C5—C4—C9119.80 (16)C19—C20—C24119.82 (16)
C3—C4—C9122.55 (16)C15—C20—C24122.81 (15)
C6—C5—C4121.46 (18)C16—C21—C22112.06 (15)
C6—C5—H5119.3C16—C21—C23110.57 (15)
C4—C5—H5119.3C22—C21—C23110.65 (16)
C5—C6—C7120.12 (17)C16—C21—H21107.8
C5—C6—H6119.9C22—C21—H21107.8
C7—C6—H6119.9C23—C21—H21107.8
C6—C7—C8120.96 (18)C21—C22—H22A109.5
C6—C7—H7119.5C21—C22—H22B109.5
C8—C7—H7119.5H22A—C22—H22B109.5
C7—C8—C3117.96 (16)C21—C22—H22C109.5
C7—C8—C12119.95 (16)H22A—C22—H22C109.5
C3—C8—C12122.05 (16)H22B—C22—H22C109.5
C4—C9—C11110.16 (15)C21—C23—H23A109.5
C4—C9—C10112.46 (16)C21—C23—H23B109.5
C11—C9—C10111.41 (16)H23A—C23—H23B109.5
C4—C9—H9107.5C21—C23—H23C109.5
C11—C9—H9107.5H23A—C23—H23C109.5
C10—C9—H9107.5H23B—C23—H23C109.5
C9—C10—H10A109.5C20—C24—C25111.98 (15)
C9—C10—H10B109.5C20—C24—C26110.92 (15)
H10A—C10—H10B109.5C25—C24—C26111.09 (15)
C9—C10—H10C109.5C20—C24—H24107.5
H10A—C10—H10C109.5C25—C24—H24107.5
H10B—C10—H10C109.5C26—C24—H24107.5
C9—C11—H11A109.5C24—C25—H25A109.5
C9—C11—H11B109.5C24—C25—H25B109.5
H11A—C11—H11B109.5H25A—C25—H25B109.5
C9—C11—H11C109.5C24—C25—H25C109.5
H11A—C11—H11C109.5H25A—C25—H25C109.5
H11B—C11—H11C109.5H25B—C25—H25C109.5
C8—C12—C13112.45 (17)C24—C26—H26A109.5
C8—C12—C14110.23 (15)C24—C26—H26B109.5
C13—C12—C14110.69 (17)H26A—C26—H26B109.5
C8—C12—H12107.8C24—C26—H26C109.5
C13—C12—H12107.8H26A—C26—H26C109.5
C14—C12—H12107.8H26B—C26—H26C109.5
O1—P1—N1—C346.64 (16)C5—C4—C9—C1171.0 (2)
N2—P1—N1—C3175.81 (13)C3—C4—C9—C11105.6 (2)
CL1—P1—N1—C372.20 (13)C5—C4—C9—C1053.9 (2)
O1—P1—N1—C1124.54 (12)C3—C4—C9—C10129.42 (18)
N2—P1—N1—C14.63 (13)C7—C8—C12—C1352.4 (2)
CL1—P1—N1—C1116.61 (11)C3—C8—C12—C13130.01 (18)
O1—P1—N2—C1531.45 (16)C7—C8—C12—C1471.7 (2)
N1—P1—N2—C15162.56 (14)C3—C8—C12—C14106.0 (2)
CL1—P1—N2—C1590.01 (14)C2—N2—C15—C1688.2 (2)
O1—P1—N2—C2145.24 (11)P1—N2—C15—C1695.46 (18)
N1—P1—N2—C214.13 (13)C2—N2—C15—C2093.0 (2)
CL1—P1—N2—C293.30 (11)P1—N2—C15—C2083.39 (19)
C3—N1—C1—C2168.22 (14)C20—C15—C16—C173.1 (3)
P1—N1—C1—C220.48 (17)N2—C15—C16—C17175.75 (15)
C15—N2—C2—C1149.38 (15)C20—C15—C16—C21176.14 (16)
P1—N2—C2—C127.36 (17)N2—C15—C16—C215.0 (2)
N1—C1—C2—N228.46 (18)C15—C16—C17—C180.6 (3)
C1—N1—C3—C886.2 (2)C21—C16—C17—C18178.65 (16)
P1—N1—C3—C8103.40 (17)C16—C17—C18—C191.9 (3)
C1—N1—C3—C494.7 (2)C17—C18—C19—C201.9 (3)
P1—N1—C3—C475.66 (19)C18—C19—C20—C150.5 (3)
C8—C3—C4—C52.7 (3)C18—C19—C20—C24177.98 (16)
N1—C3—C4—C5176.29 (15)C16—C15—C20—C193.0 (3)
C8—C3—C4—C9173.98 (16)N2—C15—C20—C19175.83 (15)
N1—C3—C4—C97.0 (2)C16—C15—C20—C24175.40 (16)
C3—C4—C5—C61.8 (3)N2—C15—C20—C245.8 (2)
C9—C4—C5—C6175.06 (17)C17—C16—C21—C2258.1 (2)
C4—C5—C6—C70.1 (3)C15—C16—C21—C22122.71 (18)
C5—C6—C7—C81.2 (3)C17—C16—C21—C2365.9 (2)
C6—C7—C8—C30.2 (3)C15—C16—C21—C23113.34 (19)
C6—C7—C8—C12177.92 (17)C19—C20—C24—C2565.7 (2)
C4—C3—C8—C71.8 (3)C15—C20—C24—C25115.96 (19)
N1—C3—C8—C7177.25 (16)C19—C20—C24—C2659.0 (2)
C4—C3—C8—C12175.87 (16)C15—C20—C24—C26119.31 (18)
N1—C3—C8—C125.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Cl11.002.913.543 (2)122
C21—H21···Cl11.002.883.6006 (19)130
C9—H9···O11.002.633.273 (2)122
C25—H25C···O10.982.613.407 (2)138
C9—H9···N11.002.432.927 (2)110
C12—H12···N11.002.412.904 (2)110
C21—H21···N21.002.422.930 (2)111
C24—H24···N21.002.412.915 (2)110
C2—H2A···O1i0.992.363.319 (2)164
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada (through the Discovery Grants Program to JDM). JDM also acknowledges support from the Canadian Foundation for Innovation, the Nova Scotia Research and Innovation Trust Fund and Saint Mary's University.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaputo, C. A., Price, J. T., Jennings, M. C., McDonald, R. & Jones, N. D. (2008). Dalton Trans. pp. 3461–3469.  CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGholivand, K. & Mojahed, F. (2005). Z. Anorg. Allg. Chem. 631, 1912–1918.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGudat, D. (2010). Recent Developments in the Chemistry of N-Heterocyclic Phosphines, edited by R. K. Bansal, pp. 63–102. Berlin: Springer.  Google Scholar
First citationKoeller, K. J., Rath, N. P. & Spilling, C. D. (1995). Phosphorus Sulfur Silicon, 103, 171–181.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds