research communications
ij]quinoline-9-carbaldehyde
and DFT study of 8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: maria_malysheva@mail.univ.kiev.ua
In the title compound, C13H15NO2, the fused non-aromatic rings of the julolidine moiety adopt envelope conformations. The hydroxy group forms an intramolecular hydrogen bond to the aldehyde O atom, generating an S(6) ring motif. Weak intermolecular C—H⋯O hydrogen bonds help to stabilize the Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state.
Keywords: crystal structure; 8-hydroxyjulolidine; julolidine; hydrogen bonding.
CCDC reference: 1533792
1. Chemical context
Julolidine is chemically an aniline derivative with two N-alkyl substituents forming rings back to the aromatic ring; the fused rings lock the nitrogen lone-pair of electrons into conjugation with the aromatic ring leading to unusual reactivity. The presence of the julolidine ring system in some molecules makes them useful for chromogenic naked-eye detection of copper, zinc, iron and aluminium ions as well as fluoride ions (Wang et al., 2013; Choi et al., 2015; Kim et al., 2015; Jo et al., 2015). Julolidine dyes exhibit excited-state intramolecular proton transfer (Nano et al., 2015). Compounds containing lulolidine rings are also used as fluorescent probes for the measurement of cell-membrane viscosity. Julolidine-based materials are also used as red emitters in OLEDs when linked to dicyanomethylpyran modules (Lee, et al., 2012). The julolidine unit plays an important role as it has strong electronic-donating properties for chelating (Nano, et al., 2013). Julolidine malononitrile acts as a `push–pull' molecule with large hyperpolarizability and is used as a model system for understanding the non-linear optical properties of molecules (Mennucci et al., 2009).
There are many reports in the literature on julolidine-based et al., 2014; Lee et al., 2014; Kim et al., 2016). The present work is a part of an ongoing structural study of based on the julolidine ring system (Faizi et al., 2016, 2017). We report here the and DFT computational calculation of the title julolidine compound (I). The results of calculations by density functional theory (DFT) on (I) carried out at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state.
and their applications as sensors for metal ions (Park2. Structural commentary
The molecular structure of the title compound (I) is shown in Fig. 1. The π-conjugated system is nearly planar, with a 2.5 (1)° twist between the aromatic and aldehyde groups. The julolidine ring system comprises three fused rings and one locked nitrogen atom. The C1—O1 and C3—O2 bond lengths are of 1.231 (3) and 1.345 (3) Å, respectively, indicate double- and single-bond character for these bonds. The two fused non-aromatic rings of the julolidine moiety adopt slightly distorted envelope conformations with atoms C9 and C12 displaced from the plane through the remaining ring atoms by 0.654 (2) and 0.648 (2) Å, respectively. The intramolecular O2—H2⋯O1 hydrogen bond forms an S(6) ring motif (Fig. 1 and Table 1) between the phenol and aldehyde groups. Such an intramolecular hydrogen bond is common in salicylaldehyde derivatives, and the metrical parameters are comparable to those for related structures such as hydroxybenzaldehyde (Kirchner et al., 2011).
3. Supramolecular features
In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming an A–B--A–B–A–B arrangement through the inversion centre and propagating along the c-axis direction (see Fig. 2 and Table 1). There are no other significant intermolecular contacts present in the molecule.
4. DFT study
The DFT quantum-chemical calculations were performed at the B3LYP/6–311 G(d,p) level (Becke, 1993; Lee et al., 1988) as implemented in GAUSSIAN09 (Frisch et al., 2009). DFT structure optimization of (I) was performed starting from the X-ray geometry and the values compared with experimental values (see Table 2). From these results we can conclude that basis set 6–311 G(d,p) is well suited in its approach to the experimental data.
|
The DFT study of (I) shows that the HOMO and LUMO are localized in the plane extending from the whole julolidine ring to the salicylaldehyde ring. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 3. The molecular orbital of HOMO contain both σ and π character whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of σ density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap was found to be 0.154 a.u. and the frontier molecular orbital energies, EHOMO and ELUMO were f −0.19624 and −0.04201 a.u., respectively.
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016) gave 121 hits for the julolidine moiety. Of these, six have an OH group in position 8, and four also have a C=N group in position 1. The very similar compound 2-[(2,3,6,7-tetrahydro-1H,5H-benzo[ij]-quinolizin-9-yl)methylene]propanedinitrile (II) reported by Liang et al. (2009) has the aldehydic group in (I) replaced by dicyanovinyl groups and the hydroxy group replaced by hydrogen. The N1—C5 bond length [1.381 (2) Å] in the title compound is longer than in (II) [1.365 (3) Å] due to conjugation with dicyanovinyl group. In the julolidine-1,6-dione compound reported by Wu et al. (2007), the N atom of the julolidine moiety lies approximately in the plane of the benzene ring with a deviation of 0.023 (2) Å, similar to that in title compound [0.043 (2) Å], as might be expected for the maximum conjugation normally found for N-atom substituents on benzene rings.
6. Crystallization
2,3,6,7-Tetrahydro-8-hydroxy-1H,5H-benzo[ij]quinolizine-9-carboxaldehyde was purchased from Sigma Aldrich and crystallized by slow evaporation of methanol solution over a period of 2-3 days to yield quality crystal suitable for X-ray data collection.
7. Refinement
Crystal data, data collection and structure . All H atoms were located from difference-Fourier maps but in the final cycles of they were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 3Supporting information
CCDC reference: 1533792
https://doi.org/10.1107/S2056989017005886/hg5485sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017005886/hg5485Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017005886/hg5485Isup3.cml
Data collection: SMART (Bruker, 2003); cell
SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C13H15NO2 | F(000) = 464 |
Mr = 217.26 | Dx = 1.360 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.546 (3) Å | Cell parameters from 1494 reflections |
b = 9.137 (3) Å | θ = 2.4–28.1° |
c = 13.662 (4) Å | µ = 0.09 mm−1 |
β = 95.984 (6)° | T = 100 K |
V = 1061.0 (6) Å3 | Needle, colorless |
Z = 4 | 0.18 × 0.15 × 0.11 mm |
Bruker SMART CCD area detector diffractometer | 2083 independent reflections |
Radiation source: sealed tube | 1530 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
phi and ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −10→10 |
Tmin = 0.985, Tmax = 0.991 | k = −8→11 |
5787 measured reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.066 | H-atom parameters constrained |
wR(F2) = 0.231 | w = 1/[σ2(Fo2) + (0.1465P)2 + 0.0857P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max < 0.001 |
2083 reflections | Δρmax = 0.64 e Å−3 |
145 parameters | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.73084 (18) | 0.25645 (16) | 0.53899 (11) | 0.0398 (5) | |
H2 | 0.691533 | 0.226583 | 0.587471 | 0.060* | |
O1 | 0.58740 (18) | 0.27075 (18) | 0.69921 (11) | 0.0460 (5) | |
N1 | 0.83012 (18) | 0.7058 (2) | 0.37861 (11) | 0.0288 (5) | |
C5 | 0.7743 (2) | 0.6300 (2) | 0.45521 (12) | 0.0242 (5) | |
C4 | 0.7801 (2) | 0.4768 (2) | 0.45803 (13) | 0.0269 (5) | |
C6 | 0.7080 (2) | 0.7115 (2) | 0.53120 (14) | 0.0277 (5) | |
C2 | 0.6517 (2) | 0.4816 (2) | 0.60979 (14) | 0.0282 (5) | |
C7 | 0.6468 (2) | 0.6333 (2) | 0.60434 (14) | 0.0282 (5) | |
H7 | 0.599815 | 0.684412 | 0.652391 | 0.034* | |
C3 | 0.7204 (2) | 0.4032 (2) | 0.53505 (14) | 0.0282 (5) | |
C10 | 0.8409 (2) | 0.8646 (2) | 0.37928 (14) | 0.0333 (6) | |
H10A | 0.840281 | 0.899757 | 0.312243 | 0.040* | |
H10B | 0.939673 | 0.893952 | 0.415420 | 0.040* | |
C11 | 0.9103 (2) | 0.6288 (2) | 0.30450 (15) | 0.0330 (6) | |
H11A | 1.020944 | 0.618318 | 0.327631 | 0.040* | |
H11B | 0.902214 | 0.685601 | 0.244223 | 0.040* | |
C13 | 0.8464 (2) | 0.3888 (2) | 0.37783 (14) | 0.0336 (6) | |
H13A | 0.786287 | 0.299427 | 0.365792 | 0.040* | |
H13B | 0.954748 | 0.362366 | 0.398627 | 0.040* | |
C8 | 0.7061 (3) | 0.8758 (2) | 0.52940 (15) | 0.0359 (6) | |
H8A | 0.797720 | 0.912690 | 0.569753 | 0.043* | |
H8B | 0.613101 | 0.910814 | 0.557226 | 0.043* | |
C1 | 0.5867 (2) | 0.4043 (3) | 0.68718 (15) | 0.0358 (6) | |
H1 | 0.539410 | 0.460267 | 0.732734 | 0.043* | |
C12 | 0.8388 (2) | 0.4791 (2) | 0.28373 (14) | 0.0330 (6) | |
H12A | 0.895351 | 0.428934 | 0.235680 | 0.040* | |
H12B | 0.730055 | 0.489689 | 0.256334 | 0.040* | |
C9 | 0.7061 (3) | 0.9339 (2) | 0.42599 (15) | 0.0389 (6) | |
H9A | 0.718103 | 1.039438 | 0.427433 | 0.047* | |
H9B | 0.607130 | 0.910495 | 0.387813 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0514 (11) | 0.0255 (10) | 0.0406 (9) | −0.0001 (6) | −0.0050 (7) | 0.0021 (6) |
O1 | 0.0469 (11) | 0.0421 (11) | 0.0470 (10) | −0.0075 (7) | −0.0054 (7) | 0.0141 (7) |
N1 | 0.0304 (9) | 0.0301 (11) | 0.0264 (9) | −0.0015 (7) | 0.0044 (7) | −0.0016 (6) |
C5 | 0.0233 (10) | 0.0269 (13) | 0.0217 (10) | −0.0009 (7) | −0.0011 (8) | −0.0033 (7) |
C4 | 0.0289 (12) | 0.0273 (12) | 0.0233 (11) | 0.0013 (7) | −0.0034 (8) | −0.0030 (7) |
C6 | 0.0278 (11) | 0.0275 (12) | 0.0270 (10) | 0.0021 (8) | −0.0007 (8) | −0.0016 (8) |
C2 | 0.0263 (11) | 0.0314 (13) | 0.0256 (11) | −0.0007 (8) | −0.0041 (8) | 0.0020 (8) |
C7 | 0.0289 (11) | 0.0307 (13) | 0.0244 (10) | 0.0010 (8) | −0.0005 (8) | −0.0043 (8) |
C3 | 0.0286 (12) | 0.0220 (11) | 0.0319 (12) | 0.0005 (7) | −0.0069 (9) | −0.0005 (8) |
C10 | 0.0408 (13) | 0.0294 (13) | 0.0298 (11) | −0.0084 (8) | 0.0032 (9) | 0.0002 (8) |
C11 | 0.0290 (11) | 0.0437 (14) | 0.0264 (11) | 0.0013 (9) | 0.0036 (8) | −0.0040 (9) |
C13 | 0.0372 (13) | 0.0295 (13) | 0.0332 (12) | 0.0069 (8) | −0.0002 (9) | −0.0071 (8) |
C8 | 0.0484 (14) | 0.0272 (13) | 0.0323 (12) | 0.0008 (9) | 0.0050 (9) | −0.0049 (8) |
C1 | 0.0291 (12) | 0.0411 (14) | 0.0353 (12) | −0.0037 (9) | −0.0051 (9) | 0.0087 (9) |
C12 | 0.0329 (12) | 0.0389 (13) | 0.0265 (11) | 0.0085 (9) | 0.0001 (8) | −0.0099 (8) |
C9 | 0.0543 (14) | 0.0252 (12) | 0.0368 (12) | −0.0019 (9) | 0.0028 (10) | −0.0026 (9) |
O2—C3 | 1.345 (3) | C10—H10A | 0.9700 |
O2—H2 | 0.8200 | C10—H10B | 0.9700 |
O1—C1 | 1.231 (3) | C11—C12 | 1.512 (3) |
N1—C5 | 1.381 (2) | C11—H11A | 0.9700 |
N1—C10 | 1.454 (3) | C11—H11B | 0.9700 |
N1—C11 | 1.461 (2) | C13—C12 | 1.523 (3) |
C5—C4 | 1.401 (3) | C13—H13A | 0.9700 |
C5—C6 | 1.441 (3) | C13—H13B | 0.9700 |
C4—C3 | 1.390 (3) | C8—C9 | 1.509 (3) |
C4—C13 | 1.516 (3) | C8—H8A | 0.9700 |
C6—C7 | 1.376 (3) | C8—H8B | 0.9700 |
C6—C8 | 1.502 (3) | C1—H1 | 0.9300 |
C2—C7 | 1.389 (3) | C12—H12A | 0.9700 |
C2—C3 | 1.423 (3) | C12—H12B | 0.9700 |
C2—C1 | 1.431 (3) | C9—H9A | 0.9700 |
C7—H7 | 0.9300 | C9—H9B | 0.9700 |
C10—C9 | 1.513 (3) | ||
C3—O2—H2 | 109.5 | N1—C11—H11B | 109.5 |
C5—N1—C10 | 121.51 (16) | C12—C11—H11B | 109.5 |
C5—N1—C11 | 120.49 (19) | H11A—C11—H11B | 108.1 |
C10—N1—C11 | 116.83 (15) | C4—C13—C12 | 109.65 (17) |
N1—C5—C4 | 120.54 (16) | C4—C13—H13A | 109.7 |
N1—C5—C6 | 118.7 (2) | C12—C13—H13A | 109.7 |
C4—C5—C6 | 120.79 (17) | C4—C13—H13B | 109.7 |
C3—C4—C5 | 119.32 (17) | C12—C13—H13B | 109.7 |
C3—C4—C13 | 119.00 (19) | H13A—C13—H13B | 108.2 |
C5—C4—C13 | 121.66 (17) | C6—C8—C9 | 111.45 (16) |
C7—C6—C5 | 117.6 (2) | C6—C8—H8A | 109.3 |
C7—C6—C8 | 121.81 (17) | C9—C8—H8A | 109.3 |
C5—C6—C8 | 120.62 (17) | C6—C8—H8B | 109.3 |
C7—C2—C3 | 118.46 (18) | C9—C8—H8B | 109.3 |
C7—C2—C1 | 121.34 (18) | H8A—C8—H8B | 108.0 |
C3—C2—C1 | 120.2 (2) | O1—C1—C2 | 126.2 (2) |
C6—C7—C2 | 123.07 (18) | O1—C1—H1 | 116.9 |
C6—C7—H7 | 118.5 | C2—C1—H1 | 116.9 |
C2—C7—H7 | 118.5 | C11—C12—C13 | 110.52 (16) |
O2—C3—C4 | 119.02 (17) | C11—C12—H12A | 109.5 |
O2—C3—C2 | 120.24 (18) | C13—C12—H12A | 109.5 |
C4—C3—C2 | 120.7 (2) | C11—C12—H12B | 109.5 |
N1—C10—C9 | 111.68 (16) | C13—C12—H12B | 109.5 |
N1—C10—H10A | 109.3 | H12A—C12—H12B | 108.1 |
C9—C10—H10A | 109.3 | C8—C9—C10 | 108.80 (19) |
N1—C10—H10B | 109.3 | C8—C9—H9A | 109.9 |
C9—C10—H10B | 109.3 | C10—C9—H9A | 109.9 |
H10A—C10—H10B | 107.9 | C8—C9—H9B | 109.9 |
N1—C11—C12 | 110.87 (16) | C10—C9—H9B | 109.9 |
N1—C11—H11A | 109.5 | H9A—C9—H9B | 108.3 |
C12—C11—H11A | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1 | 0.82 | 1.89 | 2.621 (2) | 148 |
C9—H9A···O2i | 0.97 | 2.50 | 3.324 (3) | 143 |
C9—H9B···O1ii | 0.97 | 2.55 | 3.438 (3) | 152 |
O2—H2···O1 | 0.82 | 1.89 | 2.621 (2) | 148 |
C9—H9A···O2i | 0.97 | 2.50 | 3.324 (3) | 143 |
C9—H9B···O1ii | 0.97 | 2.55 | 3.438 (3) | 152 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1. |
Bonds | X-ray | B3LYP/6–311G(d,p) |
C1—O1 | 1.231 (3) | 1.231 |
C3—O2 | 1.345 (3) | 1.345 |
C1—C2 | 1.431 (3) | 1.431 |
N1—C5 | 1.381 (2) | 1.381 |
O1—C1—C2 | 126.2 (2) | 126.22 |
C1—C2—C3 | 121.34 (18) | 120.25 |
C11—N1—C10 | 116.83 (15) | 116.81 |
Acknowledgements
The authors are grateful to the Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev, Ukraine, for financial support, and Dr Pratik Sen and Dr Manabendra Ray for valuable discussions.
References
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 86463–86472. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017). Acta Cryst. E73, 38–40. CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369. Web of Science CSD CrossRef IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jo, T. G., Na, Y. J., Lee, J. J., Lee, M. M., Lee, S. Y. & Kim, C. (2015). New J. Chem. 39, 2580–2587. Web of Science CrossRef CAS Google Scholar
Kim, Y. S., Lee, J. J., Choi, Y. W., You, G. R., Nguyen, L., Noh, I. & Kim, C. (2016). Dyes Pigments, 129, 43–53. Web of Science CrossRef CAS Google Scholar
Kim, Y. S., Park, G. J., Lee, J. J., Lee, S. Y., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 11229–11239. Web of Science CrossRef CAS Google Scholar
Kirchner, M. T., Bläser, D., Boese, R., Thakur, T. S. & Desiraju, G. R. (2011). Acta Cryst. C67, o387–o390. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lee, K. H., Kim, Y. K. & Yoon, S. S. (2012). Bull. Korean Chem. Soc. 33, 3433–3436. CrossRef CAS Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Lee, S. A., You, G. R., Choi, Y. W., Jo, H. Y., Kim, A. R., Noh, I., Kim, S.-J., Kim, Y. & Kim, C. (2014). Dalton Trans. 43, 6650–6659. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liang, M., Yennawar, H. & Maroncelli, M. (2009). Acta Cryst. E65, o1687. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mennucci, B., Cappelli, C., Guido, C. A., Cammi, R. & Tomasi, J. (2009). J. Phys. Chem. A, 113, 3009–3020. Web of Science CrossRef PubMed CAS Google Scholar
Nano, A., Gullo, M. P., Ventura, B., Armaroli, N., Barbieri, A. & Ziessel, R. (2015). Chem. Commun. 51, 3351–3354. Web of Science CrossRef CAS Google Scholar
Nano, A., Ziessel, R., Stachelek, P. & Harriman, A. (2013). Chem. Eur. J. 19, 13528–13537. CrossRef CAS PubMed Google Scholar
Park, G. J., Park, D. Y., Park, K.-M., Kim, Y., Kim, S.-J., Chang, P.-S. & Kim, C. (2014). Tetrahedron, 70, 7429–7438. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, L., Li, H. & Cao, D. (2013). Sens. Actuators B Chem. 181, 749–755. CrossRef CAS Google Scholar
Wu, W.-B., Wang, M.-L., Ye, H.-Y. & Sun, Y.-M. (2007). Acta Cryst. E63, o4699. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.