research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and DFT study of 8-hy­dr­oxy-1,2,3,5,6,7-hexa­hydro­pyrido[3,2,1-ij]quinoline-9-carbaldehyde

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36 Al-Khod 123, Muscat, Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: maria_malysheva@mail.univ.kiev.ua

Edited by P. C. Healy, Griffith University, Australia (Received 22 March 2017; accepted 19 April 2017; online 28 April 2017)

In the title compound, C13H15NO2, the fused non-aromatic rings of the julolidine moiety adopt envelope conformations. The hy­droxy group forms an intra­molecular hydrogen bond to the aldehyde O atom, generating an S(6) ring motif. Weak inter­molecular C—H⋯O hydrogen bonds help to stabilize the crystal structure. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.

1. Chemical context

Julolidine is chemically an aniline derivative with two N-alkyl substituents forming rings back to the aromatic ring; the fused rings lock the nitro­gen lone-pair of electrons into conjugation with the aromatic ring leading to unusual reactivity. The presence of the julolidine ring system in some mol­ecules makes them useful for chromogenic naked-eye detection of copper, zinc, iron and aluminium ions as well as fluoride ions (Wang et al., 2013[Wang, L., Li, H. & Cao, D. (2013). Sens. Actuators B Chem. 181, 749-755.]; Choi et al., 2015[Choi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 86463-86472.]; Kim et al., 2015[Kim, Y. S., Park, G. J., Lee, J. J., Lee, S. Y., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 11229-11239.]; Jo et al., 2015[Jo, T. G., Na, Y. J., Lee, J. J., Lee, M. M., Lee, S. Y. & Kim, C. (2015). New J. Chem. 39, 2580-2587.]). Julolidine dyes exhibit excited-state intra­molecular proton transfer (Nano et al., 2015[Nano, A., Gullo, M. P., Ventura, B., Armaroli, N., Barbieri, A. & Ziessel, R. (2015). Chem. Commun. 51, 3351-3354.]). Compounds containing lulolidine rings are also used as fluorescent probes for the measurement of cell-membrane viscosity. Julolidine-based materials are also used as red emitters in OLEDs when linked to di­cyano­methyl­pyran modules (Lee, et al., 2012[Lee, K. H., Kim, Y. K. & Yoon, S. S. (2012). Bull. Korean Chem. Soc. 33, 3433-3436.]). The julol­idine unit plays an important role as it has strong electronic-donating properties for chelating (Nano, et al., 2013[Nano, A., Ziessel, R., Stachelek, P. & Harriman, A. (2013). Chem. Eur. J. 19, 13528-13537.]). Julol­idine malono­nitrile acts as a `push–pull' mol­ecule with large hyperpolarizability and is used as a model system for understanding the non-linear optical properties of mol­ecules (Mennucci et al., 2009[Mennucci, B., Cappelli, C., Guido, C. A., Cammi, R. & Tomasi, J. (2009). J. Phys. Chem. A, 113, 3009-3020.]).

There are many reports in the literature on julolidine-based Schiff bases and their applications as sensors for metal ions (Park et al., 2014[Park, G. J., Park, D. Y., Park, K.-M., Kim, Y., Kim, S.-J., Chang, P.-S. & Kim, C. (2014). Tetrahedron, 70, 7429-7438.]; Lee et al., 2014[Lee, S. A., You, G. R., Choi, Y. W., Jo, H. Y., Kim, A. R., Noh, I., Kim, S.-J., Kim, Y. & Kim, C. (2014). Dalton Trans. 43, 6650-6659.]; Kim et al., 2016[Kim, Y. S., Lee, J. J., Choi, Y. W., You, G. R., Nguyen, L., Noh, I. & Kim, C. (2016). Dyes Pigments, 129, 43-53.]). The present work is a part of an ongoing structural study of Schiff bases based on the julolidine ring system (Faizi et al., 2016[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366-1369.], 2017[Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017). Acta Cryst. E73, 38-40.]). We report here the crystal structure and DFT computational calculation of the title julolidine compound (I)[link]. The results of calculations by density functional theory (DFT) on (I)[link] carried out at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound (I)[link] is shown in Fig. 1[link]. The π-conjugated system is nearly planar, with a 2.5 (1)° twist between the aromatic and aldehyde groups. The julol­idine ring system comprises three fused rings and one locked nitro­gen atom. The C1—O1 and C3—O2 bond lengths are of 1.231 (3) and 1.345 (3) Å, respectively, indicate double- and single-bond character for these bonds. The two fused non-aromatic rings of the julolidine moiety adopt slightly distorted envelope conformations with atoms C9 and C12 displaced from the plane through the remaining ring atoms by 0.654 (2) and 0.648 (2) Å, respectively. The intra­molecular O2—H2⋯O1 hydrogen bond forms an S(6) ring motif (Fig. 1[link] and Table 1[link]) between the phenol and aldehyde groups. Such an intra­molecular hydrogen bond is common in salicyl­aldehyde derivatives, and the metrical parameters are comparable to those for related structures such as hy­droxy­benzaldehyde (Kirchner et al., 2011[Kirchner, M. T., Bläser, D., Boese, R., Thakur, T. S. & Desiraju, G. R. (2011). Acta Cryst. C67, o387-o390.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.89 2.621 (2) 148
C9—H9A⋯O2i 0.97 2.50 3.324 (3) 143
C9—H9B⋯O1ii 0.97 2.55 3.438 (3) 152
O2—H2⋯O1 0.82 1.89 2.621 (2) 148
C9—H9A⋯O2i 0.97 2.50 3.324 (3) 143
C9—H9B⋯O1ii 0.97 2.55 3.438 (3) 152
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular O—H⋯O hydrogen bond is shown as a dashed line (see Table 1[link]).

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming an AB--ABAB arrangement through the inversion centre and propagating along the c-axis direction (see Fig. 2[link] and Table 1[link]). There are no other significant inter­molecular contacts present in the mol­ecule.

[Figure 2]
Figure 2
A view of the ABABAB arrangement in the crystal structure of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, only the H atoms involved in hydrogen bonding have been included. The packing structure exhibits R22(16) and R44(10) graph-set motifs.

4. DFT study

The DFT quantum-chemical calculations were performed at the B3LYP/6–311 G(d,p) level (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]) as implemented in GAUSSIAN09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.]). DFT structure optimization of (I)[link] was performed starting from the X-ray geometry and the values compared with experimental values (see Table 2[link]). From these results we can conclude that basis set 6–311 G(d,p) is well suited in its approach to the experimental data.

Table 2
Comparison of selected geometric data for (I)[link] (Å, °) from calculated (DFT) and X-ray data

Bonds X-ray B3LYP/6–311G(d,p)
C1—O1 1.231 (3) 1.231
C3—O2 1.345 (3) 1.345
C1—C2 1.431 (3) 1.431
N1—C5 1.381 (2) 1.381
O1—C1—C2 126.2 (2) 126.22
C1—C2—C3 121.34 (18) 120.25
C11—N1—C10 116.83 (15) 116.81

The DFT study of (I)[link] shows that the HOMO and LUMO are localized in the plane extending from the whole julolidine ring to the salicyl­aldehyde ring. The electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels are shown in Fig. 3[link]. The mol­ecular orbital of HOMO contain both σ and π character whereas HOMO-1 is dominated by π-orbital density. The LUMO is mainly composed of σ density while LUMO+1 has both σ and π electronic density. The HOMO–LUMO gap was found to be 0.154 a.u. and the frontier mol­ecular orbital energies, EHOMO and ELUMO were f −0.19624 and −0.04201 a.u., respectively.

[Figure 3]
Figure 3
Electron distribution of the HOMO-1, HOMO, LUMO and the LUMO+1 energy levels for (I)[link].

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 121 hits for the julolidine moiety. Of these, six have an OH group in position 8, and four also have a C=N group in position 1. The very similar compound 2-[(2,3,6,7-tetra­hydro-1H,5H-benzo[ij]-quinolizin-9-yl)methyl­ene]propanedi­nitrile (II) reported by Liang et al. (2009[Liang, M., Yennawar, H. & Maroncelli, M. (2009). Acta Cryst. E65, o1687.]) has the aldehydic group in (I)[link] replaced by di­cyano­vinyl groups and the hy­droxy group replaced by hydrogen. The N1—C5 bond length [1.381 (2) Å] in the title compound is longer than in (II) [1.365 (3) Å] due to conjugation with di­cyano­vinyl group. In the julolidine-1,6-dione compound reported by Wu et al. (2007[Wu, W.-B., Wang, M.-L., Ye, H.-Y. & Sun, Y.-M. (2007). Acta Cryst. E63, o4699.]), the N atom of the julolidine moiety lies approximately in the plane of the benzene ring with a deviation of 0.023 (2) Å, similar to that in title compound [0.043 (2) Å], as might be expected for the maximum conjugation normally found for N-atom substit­uents on benzene rings.

6. Crystallization

2,3,6,7-Tetra­hydro-8-hy­droxy-1H,5H-benzo[ij]quinolizine-9-carboxaldehyde was purchased from Sigma Aldrich and crystallized by slow evaporation of methanol solution over a period of 2-3 days to yield quality crystal suitable for X-ray data collection.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located from difference-Fourier maps but in the final cycles of refinement they were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C13H15NO2
Mr 217.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.546 (3), 9.137 (3), 13.662 (4)
β (°) 95.984 (6)
V3) 1061.0 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.18 × 0.15 × 0.11
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.985, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 5787, 2083, 1530
Rint 0.026
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.231, 1.11
No. of reflections 2083
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.27
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

8-Hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinoline-9-carbaldehyde top
Crystal data top
C13H15NO2F(000) = 464
Mr = 217.26Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.546 (3) ÅCell parameters from 1494 reflections
b = 9.137 (3) Åθ = 2.4–28.1°
c = 13.662 (4) ŵ = 0.09 mm1
β = 95.984 (6)°T = 100 K
V = 1061.0 (6) Å3Needle, colorless
Z = 40.18 × 0.15 × 0.11 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
2083 independent reflections
Radiation source: sealed tube1530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.985, Tmax = 0.991k = 811
5787 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.1465P)2 + 0.0857P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2083 reflectionsΔρmax = 0.64 e Å3
145 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.73084 (18)0.25645 (16)0.53899 (11)0.0398 (5)
H20.6915330.2265830.5874710.060*
O10.58740 (18)0.27075 (18)0.69921 (11)0.0460 (5)
N10.83012 (18)0.7058 (2)0.37861 (11)0.0288 (5)
C50.7743 (2)0.6300 (2)0.45521 (12)0.0242 (5)
C40.7801 (2)0.4768 (2)0.45803 (13)0.0269 (5)
C60.7080 (2)0.7115 (2)0.53120 (14)0.0277 (5)
C20.6517 (2)0.4816 (2)0.60979 (14)0.0282 (5)
C70.6468 (2)0.6333 (2)0.60434 (14)0.0282 (5)
H70.5998150.6844120.6523910.034*
C30.7204 (2)0.4032 (2)0.53505 (14)0.0282 (5)
C100.8409 (2)0.8646 (2)0.37928 (14)0.0333 (6)
H10A0.8402810.8997570.3122430.040*
H10B0.9396730.8939520.4154200.040*
C110.9103 (2)0.6288 (2)0.30450 (15)0.0330 (6)
H11A1.0209440.6183180.3276310.040*
H11B0.9022140.6856010.2442230.040*
C130.8464 (2)0.3888 (2)0.37783 (14)0.0336 (6)
H13A0.7862870.2994270.3657920.040*
H13B0.9547480.3623660.3986270.040*
C80.7061 (3)0.8758 (2)0.52940 (15)0.0359 (6)
H8A0.7977200.9126900.5697530.043*
H8B0.6131010.9108140.5572260.043*
C10.5867 (2)0.4043 (3)0.68718 (15)0.0358 (6)
H10.5394100.4602670.7327340.043*
C120.8388 (2)0.4791 (2)0.28373 (14)0.0330 (6)
H12A0.8953510.4289340.2356800.040*
H12B0.7300550.4896890.2563340.040*
C90.7061 (3)0.9339 (2)0.42599 (15)0.0389 (6)
H9A0.7181031.0394380.4274330.047*
H9B0.6071300.9104950.3878130.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0514 (11)0.0255 (10)0.0406 (9)0.0001 (6)0.0050 (7)0.0021 (6)
O10.0469 (11)0.0421 (11)0.0470 (10)0.0075 (7)0.0054 (7)0.0141 (7)
N10.0304 (9)0.0301 (11)0.0264 (9)0.0015 (7)0.0044 (7)0.0016 (6)
C50.0233 (10)0.0269 (13)0.0217 (10)0.0009 (7)0.0011 (8)0.0033 (7)
C40.0289 (12)0.0273 (12)0.0233 (11)0.0013 (7)0.0034 (8)0.0030 (7)
C60.0278 (11)0.0275 (12)0.0270 (10)0.0021 (8)0.0007 (8)0.0016 (8)
C20.0263 (11)0.0314 (13)0.0256 (11)0.0007 (8)0.0041 (8)0.0020 (8)
C70.0289 (11)0.0307 (13)0.0244 (10)0.0010 (8)0.0005 (8)0.0043 (8)
C30.0286 (12)0.0220 (11)0.0319 (12)0.0005 (7)0.0069 (9)0.0005 (8)
C100.0408 (13)0.0294 (13)0.0298 (11)0.0084 (8)0.0032 (9)0.0002 (8)
C110.0290 (11)0.0437 (14)0.0264 (11)0.0013 (9)0.0036 (8)0.0040 (9)
C130.0372 (13)0.0295 (13)0.0332 (12)0.0069 (8)0.0002 (9)0.0071 (8)
C80.0484 (14)0.0272 (13)0.0323 (12)0.0008 (9)0.0050 (9)0.0049 (8)
C10.0291 (12)0.0411 (14)0.0353 (12)0.0037 (9)0.0051 (9)0.0087 (9)
C120.0329 (12)0.0389 (13)0.0265 (11)0.0085 (9)0.0001 (8)0.0099 (8)
C90.0543 (14)0.0252 (12)0.0368 (12)0.0019 (9)0.0028 (10)0.0026 (9)
Geometric parameters (Å, º) top
O2—C31.345 (3)C10—H10A0.9700
O2—H20.8200C10—H10B0.9700
O1—C11.231 (3)C11—C121.512 (3)
N1—C51.381 (2)C11—H11A0.9700
N1—C101.454 (3)C11—H11B0.9700
N1—C111.461 (2)C13—C121.523 (3)
C5—C41.401 (3)C13—H13A0.9700
C5—C61.441 (3)C13—H13B0.9700
C4—C31.390 (3)C8—C91.509 (3)
C4—C131.516 (3)C8—H8A0.9700
C6—C71.376 (3)C8—H8B0.9700
C6—C81.502 (3)C1—H10.9300
C2—C71.389 (3)C12—H12A0.9700
C2—C31.423 (3)C12—H12B0.9700
C2—C11.431 (3)C9—H9A0.9700
C7—H70.9300C9—H9B0.9700
C10—C91.513 (3)
C3—O2—H2109.5N1—C11—H11B109.5
C5—N1—C10121.51 (16)C12—C11—H11B109.5
C5—N1—C11120.49 (19)H11A—C11—H11B108.1
C10—N1—C11116.83 (15)C4—C13—C12109.65 (17)
N1—C5—C4120.54 (16)C4—C13—H13A109.7
N1—C5—C6118.7 (2)C12—C13—H13A109.7
C4—C5—C6120.79 (17)C4—C13—H13B109.7
C3—C4—C5119.32 (17)C12—C13—H13B109.7
C3—C4—C13119.00 (19)H13A—C13—H13B108.2
C5—C4—C13121.66 (17)C6—C8—C9111.45 (16)
C7—C6—C5117.6 (2)C6—C8—H8A109.3
C7—C6—C8121.81 (17)C9—C8—H8A109.3
C5—C6—C8120.62 (17)C6—C8—H8B109.3
C7—C2—C3118.46 (18)C9—C8—H8B109.3
C7—C2—C1121.34 (18)H8A—C8—H8B108.0
C3—C2—C1120.2 (2)O1—C1—C2126.2 (2)
C6—C7—C2123.07 (18)O1—C1—H1116.9
C6—C7—H7118.5C2—C1—H1116.9
C2—C7—H7118.5C11—C12—C13110.52 (16)
O2—C3—C4119.02 (17)C11—C12—H12A109.5
O2—C3—C2120.24 (18)C13—C12—H12A109.5
C4—C3—C2120.7 (2)C11—C12—H12B109.5
N1—C10—C9111.68 (16)C13—C12—H12B109.5
N1—C10—H10A109.3H12A—C12—H12B108.1
C9—C10—H10A109.3C8—C9—C10108.80 (19)
N1—C10—H10B109.3C8—C9—H9A109.9
C9—C10—H10B109.3C10—C9—H9A109.9
H10A—C10—H10B107.9C8—C9—H9B109.9
N1—C11—C12110.87 (16)C10—C9—H9B109.9
N1—C11—H11A109.5H9A—C9—H9B108.3
C12—C11—H11A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.892.621 (2)148
C9—H9A···O2i0.972.503.324 (3)143
C9—H9B···O1ii0.972.553.438 (3)152
O2—H2···O10.821.892.621 (2)148
C9—H9A···O2i0.972.503.324 (3)143
C9—H9B···O1ii0.972.553.438 (3)152
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
Comparison of selected geometric data for (I) (Å ,° ) from calculated (DFT) and X-ray data top
BondsX-rayB3LYP/6–311G(d,p)
C1—O11.231 (3)1.231
C3—O21.345 (3)1.345
C1—C21.431 (3)1.431
N1—C51.381 (2)1.381
O1—C1—C2126.2 (2)126.22
C1—C2—C3121.34 (18)120.25
C11—N1—C10116.83 (15)116.81
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Taras Shevchenko National University of Kyiv, 64, Vladimirska Str., Kiev, Ukraine, for financial support, and Dr Pratik Sen and Dr Manabendra Ray for valuable discussions.

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 86463–86472.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017). Acta Cryst. E73, 38–40.  CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016). Acta Cryst. E72, 1366–1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJo, T. G., Na, Y. J., Lee, J. J., Lee, M. M., Lee, S. Y. & Kim, C. (2015). New J. Chem. 39, 2580–2587.  Web of Science CrossRef CAS Google Scholar
First citationKim, Y. S., Lee, J. J., Choi, Y. W., You, G. R., Nguyen, L., Noh, I. & Kim, C. (2016). Dyes Pigments, 129, 43–53.  Web of Science CrossRef CAS Google Scholar
First citationKim, Y. S., Park, G. J., Lee, J. J., Lee, S. Y., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 11229–11239.  Web of Science CrossRef CAS Google Scholar
First citationKirchner, M. T., Bläser, D., Boese, R., Thakur, T. S. & Desiraju, G. R. (2011). Acta Cryst. C67, o387–o390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, K. H., Kim, Y. K. & Yoon, S. S. (2012). Bull. Korean Chem. Soc. 33, 3433–3436.  CrossRef CAS Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationLee, S. A., You, G. R., Choi, Y. W., Jo, H. Y., Kim, A. R., Noh, I., Kim, S.-J., Kim, Y. & Kim, C. (2014). Dalton Trans. 43, 6650–6659.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiang, M., Yennawar, H. & Maroncelli, M. (2009). Acta Cryst. E65, o1687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMennucci, B., Cappelli, C., Guido, C. A., Cammi, R. & Tomasi, J. (2009). J. Phys. Chem. A, 113, 3009–3020.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNano, A., Gullo, M. P., Ventura, B., Armaroli, N., Barbieri, A. & Ziessel, R. (2015). Chem. Commun. 51, 3351–3354.  Web of Science CrossRef CAS Google Scholar
First citationNano, A., Ziessel, R., Stachelek, P. & Harriman, A. (2013). Chem. Eur. J. 19, 13528–13537.  CrossRef CAS PubMed Google Scholar
First citationPark, G. J., Park, D. Y., Park, K.-M., Kim, Y., Kim, S.-J., Chang, P.-S. & Kim, C. (2014). Tetrahedron, 70, 7429–7438.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Li, H. & Cao, D. (2013). Sens. Actuators B Chem. 181, 749–755.  CrossRef CAS Google Scholar
First citationWu, W.-B., Wang, M.-L., Ye, H.-Y. & Sun, Y.-M. (2007). Acta Cryst. E63, o4699.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds