research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Hy­dr­oxy-2-phenyl-2,3,3a,7a-tetra­hydro-1H,5H-pyrano[3,2-b]pyrrol-5-one: crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartmento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bInstituto de Química, Universidade Estadual de Campinas, UNICAMP, CP 6154, 13084-971, Campinas, São Paulo, Brazil, cInstituto de Química, Universidade Federal do Rio Grande do Sul – UFRGS, CEP 91501-970 Porto Alegre, RS, Brazil, dInstituto de Ciências da Saúde, Universidade Paulista, CEP 70390-130, Brasília, DF, Brazil, eDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and fResearch Centre for Chemical Crystallography, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: julio@power.ufscar.br

Edited by P. C. Healy, Griffith University, Australia (Received 10 April 2017; accepted 13 April 2017; online 21 April 2017)

The title isoaltholactone derivative, C13H13NO3, has an NH group in place of the ether-O atom in the five-membered ring of the natural product. The five-membered ring is twisted about the N—C bond linking it to the six-membered ring, which has a half-chair conformation with the O atom connected to the ether-O atom lying above the plane defined by the remaining atoms. The dihedral angle between the mean planes of the rings comprising the fused-ring system is 75.10 (8)°. In the crystal, hy­droxy-O—H⋯N(amine) hydrogen bonding sustains linear supra­molecular chains along the a axis. Chains are linked into a three-dimensional architecture via amine-N—H⋯π(phen­yl) and phenyl-C—H⋯O(hy­droxy) inter­actions. The influence of the amine-N—H⋯π(phen­yl) contact on the mol­ecular packing is revealed by an analysis of the Hirshfeld surface.

1. Chemical context

Styryllactones are a diverse group of secondary metabolites which have demonstrated significant potency against a broad spectrum of human tumour cells, including breast, colon, kidney and pancreas cancer lines (Tian et al., 2006[Tian, Z., Chen, S., Zhang, Y., Huang, M., Shi, L., Huang, F., Fong, C., Yang, M. & Xiao, P. (2006). Phytomedicine, 13, 181-186.]). Other biological activities have also been revealed for this class of compound, namely anti-inflammatory, anti-microbial, anti-fertility and immunosuppressant (de Fatima et al., 2006[Fátima, A. de, Modolo, L. V., Conegero, L. S., Pilli, R. A., Ferreira, C. V., Kohn, L. K. & de Carvalho, J. E. (2006). Curr. Med. Chem. 13, 3371-3384.]). A member of the styryllactone family of compounds is iso­altho­lactone, a natural product which comprises an α,β-unsaturated furan­opyran­one unit, i.e. there is an oxygen atom in place of the NH group in (I)[link] shown in the Scheme. Iso­altho­lactone is structurally notable for its central tetra-substituted tetra­hydro­furan ring, which has four consecutive stereogenic centres. Compound (I)[link], described herein, was originally prepared to enhance the biological activity of isoaltholactone (Moro et al., 2011[Moro, A. V., Rodrigues dos Santos, M. & Correia, C. R. D. (2011). Eur. J. Org. Chem. pp. 7259-7270.]). Crystals of (I)[link] have subsequently become available and the present report details the crystal and mol­ecular structures of (I)[link] along with an analysis of the Hirshfeld surface of (I)[link] in order to provide more information on the supra­molecular association.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The configurations about the chain of four chiral centres, i.e. C4–C7, are R, S, R and R, respectively. The five-membered pyrrolyl ring is twisted about the N1—C4 bond. The six-membered pyranyl ring is best described as having a half-chair conformation where the O1, C1–C4 atoms are co-planar (r.m.s. deviation = 0.0453 Å) and the C5 atom lies 0.435 (3) Å out of the plane. The fused-ring system has, to a first approximation, the shape of the letter V with the dihedral angle between the mean planes through each of the rings being 75.10 (8)°. The oxygen atoms all lie to one side of the plane through the pyrrolyl ring. Finally, the dihedral angle between the pyrrolyl and phenyl rings is 33.11 (7)°, indicating a twisted conformation.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

Conventional hy­droxy-O—H⋯N(amine) hydrogen bonding in the crystal of (I)[link] leads to a linear, supra­molecular chain along the a axis as illustrated in Fig. 2[link]a, Table 1[link]. The amine-N—H atom forms an inter­action with the phenyl ring, i.e. amine-N—H⋯π(phen­yl), Table 1[link], linking mol­ecules along the c axis, as shown in Fig. 2[link]b. The hy­droxy-O atom accepts a weak contact from a phenyl-H atom to connect mol­ecules along the b axis, thereby consolidating the three-dimensional mol­ecular packing (Fig. 2[link]b).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N1i 0.86 (2) 2.07 (2) 2.920 (3) 174 (4)
N1—H1NCg3ii 0.87 (1) 2.88 (2) 3.705 (3) 160 (2)
C11—H11⋯O1iii 0.95 2.60 3.280 (3) 129
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z]; (iii) x-1, y, z-1.
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) a view of the supra­molecular chain sustained by hy­droxy-O—H⋯N(amine) hydrogen bonding and (b) a view of the unit-cell contents shown in projection down the a axis. The O—H⋯N, N—H⋯π and C—H⋯O inter­actions are shown as orange, purple and blue dashed lines, respectively.

4. Hirshfeld surface analysis

The Hirshfeld surfaces calculated for the structure of (I)[link] provide additional insight into the supra­molecular association and was performed as per a recent publication (Wardell et al., 2017[Wardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 579-585.]). The appearance of bright-red spots at the hy­droxy-H3O and amine-N1 atoms on the Hirshfeld surfaces mapped over dnorm in Fig. 3[link]a and b, respectively, indicate the presence of conventional O—H⋯N hydrogen bonding leading to the linear supra­molecular shown in Fig. 2[link]a. The donor and acceptor atoms of this inter­action are also evident on the Hirshfeld surface mapped over the calculated electrostatic potential as blue (positive potential) and red regions (negative potential) near the respective atoms in Fig. 4[link]. The presence of a blue region around the amine-H1N atom, Fig. 4[link]a, and a light-red region with a concave surface above the phenyl (C8–C13) ring, Fig. 4[link]b, are indicative of the N—H⋯π inter­action, shown to be influential on the packing. The immediate environments about a reference mol­ecule within shape-indexed-mapped Hirshfeld surface highlighting O—H⋯N hydrogen-bonding, weak inter­molecular C—H⋯O contacts and the N—H⋯π inter­action are illustrated in Fig. 5[link]ac, respectively.

[Figure 3]
Figure 3
Two views of the Hirshfeld surface for (I)[link] mapped over dnorm over the range −0.435 to 1.180 au.
[Figure 4]
Figure 4
Two views of the Hirshfeld surfaces for (I)[link] mapped over the calculated electrostatic potential over the range ±0.116 au. The red and blue regions represent negative and positive electrostatic potentials, respectively.
[Figure 5]
Figure 5
Views of Hirshfeld surface for a reference mol­ecule in (I)[link] mapped over the shape-index property highlighting: (a) O—H⋯N hydrogen bonds (black dashed lines), (b) C—H⋯O inter­actions (black dashed lines) and (c) N—H⋯ ππ⋯H—N inter­actions as red- and white- dotted lines, respectively.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, O⋯H/H⋯O, N⋯H/H⋯N and C⋯H/H⋯C contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]be, respectively; the relative contributions from various contacts to the Hirshfeld surfaces are summarized in Table 2[link]. It is clear from the fingerprint plot delineated into H⋯H contacts, Fig. 6[link]b, that in spite of contributing the maximum, i.e. 50.4%, to the Hirshfeld surface, these contacts do not have a significant influence upon the mol­ecular aggregation as the atoms are separated at distances greater than the sum of their van der Waals radii.

Table 2
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for (I)

Contact percentage contribution
H⋯H 50.4
O⋯H/H⋯O 25.1
C⋯H/H⋯C 18.9
N⋯H/H⋯N 3.0
C⋯O/O⋯C 1.3
O⋯O 1.3
[Figure 6]
Figure 6
(a) The full two-dimensional fingerprint plots for (I)[link] and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) N⋯H/H⋯H and (e) C⋯H/H⋯C contacts.

Despite the absence of characteristic faint-red spots expected on the dnorm-mapped Hirshfeld surface for (I)[link], Fig. 3[link], the two-dimensional fingerprint plot delineated into O⋯H/H⋯O contacts, Fig. 6[link]c, highlights the weak inter­molecular C—H⋯O contacts, Fig. 5[link]b. The distribution of points in the form of two adjoining cones with the peaks at de + di ∼ 2.6 Å confirms the presence of these contacts as well as the short inter-atomic O⋯H/H⋯O contacts listed in Table 3[link]. A pair of well-separated spikes with the tips at de + di  ∼ 2.1 Å in the fingerprint plot delineated into N⋯H/H⋯N contacts, Fig. 6[link]d, results from the presence of the O—H⋯N hydrogen bond. In the fingerprint plot delineated into C⋯H/H⋯C contacts, Fig. 6[link]e, these contacts appear as the distribution of points having a pair of peaks around de + di ∼ 2.8 Å. The short inter-atomic C⋯H/H⋯C contacts involving the amine-HN1, pyranyl-H5 and phenyl-carbon C10, C12 and C13 atoms, Table 3[link], arise from the presence of N—H⋯π(phen­yl) inter­actions. Their reciprocal, i.e. π⋯H—N inter­actions, are recognized from similar short inter-atomic contacts involving pyranyl-H7 and phenyl-carbon atoms C9 and C10, Fig. 5[link]c and Table 3[link]. The small contribution of 1.3% from O⋯O and C⋯O/O⋯C contacts exert a negligible influence on the packing.

Table 3
Summary of short inter-atomic contacts (Å) in (I)

Contact distance symmetry operation
H1N⋯C12 2.888 (18) 1 − x, −[{1\over 2}] + y, −z
H1N⋯C13 2.875 (19) 1 − x, −[{1\over 2}] + y, −z
H5⋯C10 2.89 1 − x, −[{1\over 2}] + y, −z
H7⋯C9 2.84 1 − x, [{1\over 2}] + y, −z
H7⋯C10 2.80 1 − x, [{1\over 2}] + y, −z
H2⋯O2 2.64 2 − x, [{1\over 2}] + y, 1 − z
H3⋯O1 2.62 −1 + x, y, z
C3⋯O1 3.209 (3) −1 + x, y, z

5. Database survey

As mentioned in the Chemical context, compound (I)[link] is an aza derivative of the biologically active species (+)-isoaltholactone whereby the ether-oxygen atom of the five-membered ring of the latter has been substituted with a NH group. Indeed, the structure of (+)-isoaltholactone (Colegate et al., 1990[Colegate, S. M., Din, L. B., Latiff, A., Salleh, K. M., Samsudin, M. W., Skelton, B. W., Tadano, K., White, A. H. & Zakaria, Z. (1990). Phytochemistry, 29, 1701-1704.]) is the most closely related structure to (I)[link] in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). A structural overlay diagram of (I)[link] and (+)-isoaltholactone is shown in Fig. 7[link] from which it can be seen the conformations exhibit a high degree of agreement, the only difference relating to the relative orientations of the terminal phenyl group. The mol­ecular framework of (I)[link] comprising the two fused-rings linked by a Csp3—Csp3 single bond is without precedent in the crystallographic literature. However, there are two examples where the link between the five- and six-membered rings is a double bond, namely 3-acetyl-2-methyl­isochromeno[4,3-b]pyrrol-5(1H)-one (Pathak et al., 2011[Pathak, S., Kundu, A. & Pramanik, A. (2011). Tetrahedron Lett. 52, 5180-5183.]) and 8-methyl­isochromeno[4,3-b]indol-5(11H)-one (Meng et al., 2014[Meng, X.-Y., Sun, M.-Y., Zhao, F.-J., Dang, Y.-J., Jiang, B. & Tu, S.-J. (2014). Synthesis, 46, 3207-3212.]).

[Figure 7]
Figure 7
Mol­ecular overlay diagram of (I)[link] and (+)-isoaltholactone shown as red and blue images, respectively.

6. Synthesis and crystallization

The compound was prepared as described in the literature (Moro, et al., 2011[Moro, A. V., Rodrigues dos Santos, M. & Correia, C. R. D. (2011). Eur. J. Org. Chem. pp. 7259-7270.]). Crystals for the present study were obtained by vapour diffusion of hexane into ethyl ether solution of (I)[link].

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The O- and N-bound H atoms were located from a difference map, but refined with O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). As the value of the Flack parameter was ambiguous, the absolute structure is based on that of the starting material employed in the reaction (Moro, et al., 2011[Moro, A. V., Rodrigues dos Santos, M. & Correia, C. R. D. (2011). Eur. J. Org. Chem. pp. 7259-7270.]).

Table 4
Experimental details

Crystal data
Chemical formula C13H13NO3
Mr 231.24
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 5.9638 (2), 8.4266 (3), 11.0246 (4)
β (°) 92.779 (3)
V3) 553.39 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.40 × 0.40 × 0.20
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.914, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4550, 2377, 2149
Rint 0.017
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.03
No. of reflections 2377
No. of parameters 160
No. of restraints 3
H-atom treatment H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.14, −0.19
Absolute structure Flack x determined using 856 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.7 (5)
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

3-Hydroxy-2-phenyl-2,3,3a,7a-tetrahydro-1H,5H-pyrano[3,2-b]pyrrol-5-one top
Crystal data top
C13H13NO3F(000) = 244
Mr = 231.24Dx = 1.388 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.9638 (2) ÅCell parameters from 2450 reflections
b = 8.4266 (3) Åθ = 2.4–27.3°
c = 11.0246 (4) ŵ = 0.10 mm1
β = 92.779 (3)°T = 100 K
V = 553.39 (3) Å3Block, colourless
Z = 20.40 × 0.40 × 0.20 mm
Data collection top
Bruker SMART APEXII
diffractometer
2377 independent reflections
Radiation source: sealed tube2149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.914, Tmax = 1.000k = 1010
4550 measured reflectionsl = 1414
Refinement top
Refinement on F2H-atom parameters not refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0534P)2 + 0.049P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max < 0.001
wR(F2) = 0.094Δρmax = 0.14 e Å3
S = 1.03Δρmin = 0.19 e Å3
2377 reflectionsAbsolute structure: Flack x determined using 856 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
160 parametersAbsolute structure parameter: 0.7 (5)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1372 (3)0.1225 (4)0.51075 (18)0.0772 (7)
O21.0038 (3)0.0413 (2)0.37308 (15)0.0519 (5)
O31.0370 (3)0.1267 (2)0.16741 (16)0.0474 (4)
H3O1.171 (3)0.091 (5)0.176 (3)0.071*
N10.4839 (3)0.0156 (3)0.18328 (16)0.0399 (4)
H1N0.463 (4)0.1113 (19)0.156 (2)0.048*
C10.9838 (4)0.0886 (4)0.44096 (19)0.0497 (6)
C20.7749 (4)0.1800 (3)0.4292 (2)0.0499 (6)
H20.76920.28170.46610.060*
C30.5947 (4)0.1256 (4)0.3691 (2)0.0452 (5)
H30.46120.18730.36640.054*
C40.5952 (4)0.0302 (3)0.3053 (2)0.0424 (5)
H40.52020.11330.35380.051*
C50.8350 (4)0.0795 (3)0.2802 (2)0.0427 (5)
H50.83610.19710.26830.051*
C60.8844 (3)0.0009 (3)0.15679 (18)0.0371 (5)
H60.93890.08210.09900.044*
C70.6538 (3)0.0636 (3)0.11123 (18)0.0325 (4)
H70.65100.17880.13300.039*
C80.6046 (3)0.0531 (3)0.02427 (19)0.0343 (4)
C90.3983 (4)0.0059 (3)0.0742 (2)0.0429 (5)
H90.28240.02270.02220.051*
C100.3576 (4)0.0004 (3)0.1992 (2)0.0483 (6)
H100.21530.03420.23190.058*
C110.5227 (4)0.0422 (3)0.2758 (2)0.0495 (6)
H110.49470.03840.36140.059*
C120.7296 (4)0.0904 (4)0.2272 (2)0.0513 (6)
H120.84460.11970.27960.062*
C130.7697 (4)0.0962 (3)0.1027 (2)0.0457 (6)
H130.91220.13020.07030.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0479 (11)0.130 (2)0.0521 (10)0.0000 (13)0.0175 (9)0.0153 (14)
O20.0411 (9)0.0693 (12)0.0437 (8)0.0104 (8)0.0133 (7)0.0077 (9)
O30.0286 (7)0.0602 (10)0.0528 (9)0.0071 (7)0.0035 (7)0.0029 (9)
N10.0318 (9)0.0502 (11)0.0374 (9)0.0081 (9)0.0018 (7)0.0015 (9)
C10.0378 (12)0.0800 (19)0.0307 (10)0.0039 (12)0.0044 (9)0.0034 (12)
C20.0434 (13)0.0707 (17)0.0356 (11)0.0002 (12)0.0022 (10)0.0095 (11)
C30.0333 (11)0.0673 (15)0.0351 (10)0.0030 (11)0.0037 (8)0.0010 (11)
C40.0341 (11)0.0546 (14)0.0383 (11)0.0068 (10)0.0009 (8)0.0079 (11)
C50.0398 (12)0.0440 (12)0.0433 (12)0.0033 (10)0.0084 (10)0.0047 (10)
C60.0278 (9)0.0451 (12)0.0379 (10)0.0038 (9)0.0027 (8)0.0032 (10)
C70.0258 (9)0.0366 (10)0.0348 (10)0.0011 (8)0.0010 (8)0.0003 (9)
C80.0309 (10)0.0354 (10)0.0363 (10)0.0033 (8)0.0025 (9)0.0000 (8)
C90.0322 (10)0.0561 (14)0.0400 (11)0.0028 (10)0.0014 (9)0.0019 (11)
C100.0391 (11)0.0620 (15)0.0426 (12)0.0018 (12)0.0098 (10)0.0040 (12)
C110.0535 (14)0.0582 (14)0.0363 (11)0.0033 (12)0.0036 (11)0.0019 (11)
C120.0468 (13)0.0663 (18)0.0410 (12)0.0055 (12)0.0039 (10)0.0090 (12)
C130.0373 (12)0.0560 (14)0.0433 (12)0.0076 (10)0.0032 (9)0.0050 (11)
Geometric parameters (Å, º) top
O1—C11.201 (3)C5—H51.0000
O2—C11.334 (4)C6—C71.540 (3)
O2—C51.437 (3)C6—H61.0000
O3—C61.409 (3)C7—C81.511 (3)
O3—H3O0.852 (13)C7—H71.0000
N1—C41.476 (3)C8—C91.382 (3)
N1—C71.477 (3)C8—C131.390 (3)
N1—H1N0.869 (13)C9—C101.388 (3)
C1—C21.465 (4)C9—H90.9500
C2—C31.317 (3)C10—C111.376 (4)
C2—H20.9500C10—H100.9500
C3—C41.490 (4)C11—C121.383 (4)
C3—H30.9500C11—H110.9500
C4—C51.527 (3)C12—C131.383 (3)
C4—H41.0000C12—H120.9500
C5—C61.554 (3)C13—H130.9500
C1—O2—C5120.30 (18)C7—C6—C5103.38 (16)
C6—O3—H3O110 (3)O3—C6—H6110.3
C4—N1—C7103.78 (16)C7—C6—H6110.3
C4—N1—H1N107.0 (17)C5—C6—H6110.3
C7—N1—H1N108.7 (18)N1—C7—C8113.57 (17)
O1—C1—O2117.9 (3)N1—C7—C6106.87 (16)
O1—C1—C2123.3 (3)C8—C7—C6115.42 (17)
O2—C1—C2118.7 (2)N1—C7—H7106.8
C3—C2—C1122.1 (3)C8—C7—H7106.8
C3—C2—H2119.0C6—C7—H7106.8
C1—C2—H2119.0C9—C8—C13118.11 (19)
C2—C3—C4121.6 (2)C9—C8—C7122.51 (19)
C2—C3—H3119.2C13—C8—C7119.36 (19)
C4—C3—H3119.2C8—C9—C10121.1 (2)
N1—C4—C3110.2 (2)C8—C9—H9119.5
N1—C4—C5103.95 (18)C10—C9—H9119.5
C3—C4—C5110.40 (19)C11—C10—C9120.3 (2)
N1—C4—H4110.7C11—C10—H10119.9
C3—C4—H4110.7C9—C10—H10119.9
C5—C4—H4110.7C10—C11—C12119.4 (2)
O2—C5—C4116.09 (19)C10—C11—H11120.3
O2—C5—C6111.85 (19)C12—C11—H11120.3
C4—C5—C6105.18 (17)C13—C12—C11120.2 (2)
O2—C5—H5107.8C13—C12—H12119.9
C4—C5—H5107.8C11—C12—H12119.9
C6—C5—H5107.8C12—C13—C8121.0 (2)
O3—C6—C7108.71 (18)C12—C13—H13119.5
O3—C6—C5113.67 (18)C8—C13—H13119.5
C5—O2—C1—O1174.2 (2)C4—N1—C7—C8164.56 (19)
C5—O2—C1—C27.4 (3)C4—N1—C7—C636.1 (2)
O1—C1—C2—C3167.4 (3)O3—C6—C7—N1137.08 (18)
O2—C1—C2—C310.9 (4)C5—C6—C7—N116.0 (2)
C1—C2—C3—C42.3 (4)O3—C6—C7—C895.6 (2)
C7—N1—C4—C376.7 (2)C5—C6—C7—C8143.36 (19)
C7—N1—C4—C541.6 (2)N1—C7—C8—C913.6 (3)
C2—C3—C4—N1135.3 (2)C6—C7—C8—C9137.5 (2)
C2—C3—C4—C521.0 (3)N1—C7—C8—C13168.2 (2)
C1—O2—C5—C432.2 (3)C6—C7—C8—C1344.3 (3)
C1—O2—C5—C688.5 (3)C13—C8—C9—C100.8 (4)
N1—C4—C5—O2155.49 (19)C7—C8—C9—C10179.1 (2)
C3—C4—C5—O237.3 (3)C8—C9—C10—C110.7 (4)
N1—C4—C5—C631.3 (2)C9—C10—C11—C120.3 (4)
C3—C4—C5—C686.9 (2)C10—C11—C12—C130.2 (4)
O2—C5—C6—O318.5 (3)C11—C12—C13—C80.4 (4)
C4—C5—C6—O3108.4 (2)C9—C8—C13—C120.7 (4)
O2—C5—C6—C7136.12 (18)C7—C8—C13—C12179.0 (2)
C4—C5—C6—C79.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3O···N1i0.86 (2)2.07 (2)2.920 (3)174 (4)
N1—H1N···Cg3ii0.87 (1)2.88 (2)3.705 (3)160 (2)
C11—H11···O1iii0.952.603.280 (3)129
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z; (iii) x1, y, z1.
Percentage contributions of inter-atomic contacts to the Hirshfeld surface for (I) top
Contactpercentage contribution
H···H50.4
O···H/H···O25.1
C···H/H···C18.9
N···H/H···N3.0
C···O/O···C1.3
O···O1.3
Summary of short inter-atomic contacts (Å) in (I) top
Contactdistancesymmetry operation
H1N···C122.888 (18)1 - x, -1/2 + y, -z
H1N···C132.875 (19)1 - x, -1/2 + y, -z
H5···C102.891 - x, -1/2 + y, -z
H7···C92.841 - x, 1/2 + y, -z
H7···C102.801 - x, 1/2 + y, -z
H2···O22.642 - x, 1/2 + y, 1 - z
H3···O12.62-1 + x, y, z
C3···O13.209 (3)-1 + x, y, z
 

Acknowledgements

The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES and National Council for Scientific and Technological Development, CNPq, for a scholarship to JZ-S (305626/2013–2) are acknowledged for support. The authors are also grateful to Sunway University (INT-RRO-2017-096) for supporting this research.

Funding information

Funding for this research was provided by: Conselho Nacional de Desenvolvimento Científico e Tecnológico (award No. 305626/2013–2); Sunway University (award No. INT-RRO-2017-096).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColegate, S. M., Din, L. B., Latiff, A., Salleh, K. M., Samsudin, M. W., Skelton, B. W., Tadano, K., White, A. H. & Zakaria, Z. (1990). Phytochemistry, 29, 1701–1704.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFátima, A. de, Modolo, L. V., Conegero, L. S., Pilli, R. A., Ferreira, C. V., Kohn, L. K. & de Carvalho, J. E. (2006). Curr. Med. Chem. 13, 3371–3384.  PubMed Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMeng, X.-Y., Sun, M.-Y., Zhao, F.-J., Dang, Y.-J., Jiang, B. & Tu, S.-J. (2014). Synthesis, 46, 3207–3212.  CAS Google Scholar
First citationMoro, A. V., Rodrigues dos Santos, M. & Correia, C. R. D. (2011). Eur. J. Org. Chem. pp. 7259–7270.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPathak, S., Kundu, A. & Pramanik, A. (2011). Tetrahedron Lett. 52, 5180–5183.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTian, Z., Chen, S., Zhang, Y., Huang, M., Shi, L., Huang, F., Fong, C., Yang, M. & Xiao, P. (2006). Phytomedicine, 13, 181–186.  CrossRef PubMed CAS Google Scholar
First citationWardell, J. L., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 579–585.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds