research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­bromo­meth­­oxy­seselin (DBMS), a photobiologically active pyran­ocoumarin

CROSSMARK_Color_square_no_text.svg

aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cDepartment of Applied Chemistry & Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh
*Correspondence e-mail: mustafizacce@du.ac.bd

Edited by A. J. Lough, University of Toronto, Canada (Received 22 March 2017; accepted 24 April 2017; online 28 April 2017)

The title compound, C15H14Br2O4 [systematic name: rac-(9S,10R)-3,9-dibromo-10-methoxy-8,8-dimethyl-9,10-dihydropyrano[2,3-h]chromen-2(8H)-one], is a pyran­ocoumarin derivative formed by the bromination of seselin, which is a naturally occurring angular pyran­ocoumarin isolated from the Indian herb Trachyspermum stictocarpum. In the mol­ecule, the benzo­pyran ring system is essentially planar, with a maximum deviation of 0.044 (2) Å for the O atom. The di­hydro­pyran ring is in a half-chair conformation and the four essentially planar atoms of this ring form a dihedral angle of 4.6 (2)° with the benzo­pyran ring system. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming chains propagating along [010]. In addition, ππ stacking inter­actions, with centroid–centroid distances of 3.902 (2) and 3.908 (2) Å, link the hydrogen-bonded chains into layers parallel to (001).

1. Chemical context

The title compound is a substituted product of seselin containing two bromine atoms and a meth­oxy group. This class of pyran­ocoumarins have an absorption band in the near-UV region due to the presence of extended conjugated double bonds and exhibit photomutagenic (Appendino et al., 2004[Appendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532-536.]) and photocarcinogenic properties to bind with the purin base of DNA in a living cell to yield photoadducts (Conforti et al., 2009[Conforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. & Menichini, F. (2009). Current Drug Ther. 4, 38-58.]). Based on the properties of these mol­ecules, they are employed for the treatment of numerous inflammatory skin diseases such as atopic dermatitis and the pigment disorders vitiligo and psoriasis on exposure to ultra violet (UV) radiation in photodynamic therapy (PDT). It has also been found that as a result of their strong ability for absorption of UV radiation, they are utilized as photoprotective agents to prevent the absorption of harmful UV radiation by the skin in the form of a variety of sun-screening lotions widely used in dermatological applications in the cosmetic and pharmaceutical industries (Chen et al., 2007[Chen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926-936.], 2009[Chen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695-702.]). In addition to these activities, anti­proliferative activity and photo-toxicity of related coumarin mol­ecules has been reported against numerous cancer cell lines such as HL60, A431 (Conconi et al., 1998[Conconi, M. T., Montesi, F. & Parnigotto, P. P. (1998). Basic Clin. Pharmacol. Toxicol. 82, 193-198.]). Inhibited proliferation in the human hepatocellular carcinoma cell line has also been reported (March et al., 1993[March, K. L., Patton, B. L., Wilensky, R. L. & Hathaway, D. R. (1993). Circulation, 87, 184-191.]). Recently, this type of mol­ecule has been connected as a spacer with porphyrin moieties to obtain a scaffold-type macromolecule (mol­ecular nanotweezers) and has been employed to study the inter­action (host–guest inter­action) with fullerenes such as C60 and C70 (Banerjee et al., 2014[Banerjee, S., Ghosh, B. K., Bauri, A. K. & Bhattacharya, S. (2014). J Spectrosc Dyn, 4, 29-34.]; Ghosh et al., 2014[Ghosh, B. K., Bauri, A. K., Bhattacharya, S. & Banerjee, S. (2014). Spectrochim. Acta Part A, 125, 90-98.]) in supra­molecular chemistry and material science. Mol­ecular tweezers containing a coumarin moiety showed better quantum yield and fluorescence absorption as a result of the presence of the extended conjugated enone of pyran­ocoumarin. As part of our ongoing studies in this area, we herein describe the synthesis and structure of the title mol­ecule.

[Scheme 1]

2. Structural commentary

The title mol­ecule (Fig. 1[link]) is composed of three different types of rings viz. benzene, pyran and di­hydro­pyran. The benzo­pyran ring system C1/C5–C12/O2 is essentially planar with a maximum deviation of 0.044 (2) Å for atom O2. The di­hydro­pyran ring C1–C5/O1 is in a half-chair conformation and atoms C2 and C3 deviate by −0.385 (4) and 0.280 (4) Å from the plane through the other four essentially planar atoms (mean deviation 0.003 Å), which makes a dihedral angle of 4.6 (2)° with the benzo­pyran ring system. The relative stereochemistry at atoms C3 and C4 is R/S and S/R.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level

3. Supra­molecular features

In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds (Table 1[link]), forming chains propagating along [010] (Fig. 2[link]). In addition, ππ stacking inter­actions with centroid–centroid distances Cg1⋯Cg1(2 − x, −y, 1 − z) of 3.902 (2) Å and Cg1⋯Cg2(1 − x, −y, 1 − z) of 3.908 (2) Å where Cg1 and Cg2 are the centroids of the C1/C5/C6/C10–C12 and O2/C6–C10 rings, respectively, link the hydrogen-bonded chains, forming layers parallel (001) (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O4i 0.93 2.57 3.188 (6) 124
Symmetry code: (i) x, y-1, z.
[Figure 2]
Figure 2
Part of the crystal structure with weak C—H⋯O hydrogen bonds shown as dashed lines. Only the H atoms involved in hydrogen bonds are shown.
[Figure 3]
Figure 3
Part of the crystal structure showing layers of mol­ecules parallel to (001).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update November, 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave more than thirty five hits for both linear and angular pyran­ocoumarin (psoralen class) structures. They include closely related structures [CSD refcodes AMYROL (Kato, 1970[Kato, K. (1970). Acta Cryst. B26, 2022-2029.]), FUGVOS (Thailambal & Pattabhi, 1987[Thailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369-2372.]), AMYROL01 (Bauri et al., 2006[Bauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340-o1341.], 2017[Bauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017). Acta Cryst. E73, 453-455.])] and a number of structures with various substituents at C3 and C4, many of which are natural products.

5. Synthesis and crystallization

The title compound is a colourless solid substance formed on bromination of the naturally occurring seseline isolated from the methanol extract of T. stictocarpum by means of column chromatography over SiO2 gel with gradient elution by using a mixture of the binary solvents hexane and ethyl acetate. The bromination was conducted using NBS in methanol at room temperature with continuous stirring by means of mechanical stirrer over a period of 12 h. The reaction product was worked up by the usual method to yield crude product, which was then purified by solvent elution to yield the title compound. A colourless prism-shaped crystal was obtained after recrystallization (×3) from ethyl acetate:hexane (1:4) at room temperature by slow evaporation of the solvents. NMR analysis: 1H NMR data (CDCl3, 200 MHz): δH 8.02 (s, 1H, H-9), 7.32 (d, 1H, J = 8.80 Hz, H-12), 6.82 (d, 1H, J = 8.80 Hz, H-11), 5.36 (d, 1H, J = 6.8 Hz, H-4), 4.26 (d, 1H, J = 6.8 Hz, H-3), 3.56 (s, 3H, –OCH3, H-13), 1.50 (s, 3H, CH3, H-13), 1.54 (s, 3H, CH3, H-14).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were included in calculated positions and treated as riding atoms with C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C15H14Br2O4
Mr 418.08
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 299
a, b, c (Å) 7.119 (1), 8.519 (1), 13.366 (2)
α, β, γ (°) 105.34 (2), 90.45 (1), 103.38 (2)
V3) 758.4 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.36
Crystal size (mm) 0.20 × 0.20 × 0.16
 
Data collection
Diffractometer Oxford Diffraction Xcalibur single-crystal X-ray diffractometer with a Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.364, 0.423
No. of measured, independent and observed [I > 2σ(I)] reflections 5172, 2764, 2144
Rint 0.015
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.116, 0.85
No. of reflections 2764
No. of parameters 193
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.42
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

rac-(9S,10R)-3,9-Dibromo-10-methoxy-8,8-dimethyl-9,10-dihydropyrano[2,3-h]chromen-2(8H)-one top
Crystal data top
C15H14Br2O4Z = 2
Mr = 418.08F(000) = 412
Triclinic, P1Dx = 1.831 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.119 (1) ÅCell parameters from 2165 reflections
b = 8.519 (1) Åθ = 2.6–27.9°
c = 13.366 (2) ŵ = 5.36 mm1
α = 105.34 (2)°T = 299 K
β = 90.45 (1)°Prism, colourless
γ = 103.38 (2)°0.20 × 0.20 × 0.16 mm
V = 758.4 (2) Å3
Data collection top
Oxford Diffraction Xcalibur single-crystal X-ray
diffractometer with a Sapphire CCD detector
2764 independent reflections
Radiation source: fine-focus sealed tube2144 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Rotation method data acquisition using ω and phi scans.θmax = 25.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 88
Tmin = 0.364, Tmax = 0.423k = 810
5172 measured reflectionsl = 1612
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2764 reflections(Δ/σ)max = 0.004
193 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.17651 (6)0.02924 (6)0.16407 (4)0.04731 (18)
Br20.74960 (8)0.46658 (6)0.74871 (4)0.0602 (2)
O10.8143 (4)0.2513 (3)0.2144 (2)0.0405 (7)
O20.7746 (4)0.2766 (3)0.4357 (2)0.0399 (7)
O30.6525 (4)0.1428 (3)0.2086 (2)0.0416 (7)
O40.7816 (6)0.5300 (4)0.5337 (3)0.0694 (11)
C10.7877 (5)0.1487 (5)0.3085 (3)0.0322 (8)
C20.7930 (6)0.1956 (5)0.1231 (3)0.0407 (9)
C30.8945 (5)0.0109 (5)0.1422 (3)0.0345 (8)
H30.86630.02400.08070.041*
C40.8264 (5)0.1028 (5)0.2368 (3)0.0319 (8)
H40.92740.20700.26190.038*
C50.7908 (5)0.0188 (5)0.3224 (3)0.0305 (8)
C60.7703 (5)0.1103 (4)0.4232 (3)0.0299 (8)
C70.7715 (6)0.3884 (5)0.5309 (3)0.0437 (10)
C80.7530 (6)0.3147 (5)0.6187 (3)0.0357 (9)
C90.7392 (5)0.1528 (5)0.6078 (3)0.0352 (9)
H90.72320.11080.66560.042*
C100.7488 (5)0.0428 (5)0.5074 (3)0.0305 (8)
C110.7447 (5)0.1286 (5)0.4888 (3)0.0345 (9)
H110.72900.17810.54350.041*
C120.7636 (6)0.2230 (5)0.3909 (3)0.0355 (9)
H120.76050.33620.37900.043*
C130.5762 (7)0.2223 (6)0.0942 (4)0.0553 (12)
H13A0.56090.18190.03480.066*
H13B0.51820.16190.15180.066*
H13C0.51420.33970.07800.066*
C140.8775 (8)0.3121 (6)0.0381 (4)0.0590 (13)
H14A1.01330.29490.05530.071*
H14B0.85970.28800.02700.071*
H14C0.81280.42650.03250.071*
C150.6827 (8)0.2953 (7)0.1849 (5)0.0697 (16)
H15A0.75530.38270.24210.084*
H15B0.56020.31820.17230.084*
H15C0.75370.29040.12380.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0397 (3)0.0566 (3)0.0543 (3)0.0166 (2)0.0127 (2)0.0253 (2)
Br20.0801 (4)0.0457 (3)0.0433 (3)0.0097 (2)0.0166 (2)0.0031 (2)
O10.0586 (18)0.0296 (14)0.0347 (15)0.0149 (13)0.0110 (13)0.0074 (12)
O20.0640 (19)0.0262 (14)0.0344 (15)0.0166 (13)0.0096 (13)0.0114 (11)
O30.0400 (15)0.0435 (17)0.0481 (17)0.0152 (13)0.0043 (13)0.0197 (14)
O40.127 (3)0.0293 (18)0.060 (2)0.0305 (19)0.021 (2)0.0158 (15)
C10.0314 (19)0.031 (2)0.036 (2)0.0078 (16)0.0052 (16)0.0104 (17)
C20.051 (2)0.039 (2)0.031 (2)0.0126 (19)0.0068 (18)0.0062 (17)
C30.036 (2)0.040 (2)0.032 (2)0.0129 (17)0.0100 (16)0.0139 (17)
C40.035 (2)0.031 (2)0.033 (2)0.0101 (16)0.0032 (16)0.0112 (16)
C50.0319 (19)0.0293 (19)0.033 (2)0.0083 (16)0.0065 (15)0.0120 (16)
C60.0313 (19)0.0245 (19)0.035 (2)0.0061 (15)0.0039 (16)0.0096 (15)
C70.051 (3)0.038 (3)0.043 (2)0.016 (2)0.008 (2)0.0089 (19)
C80.038 (2)0.034 (2)0.034 (2)0.0105 (17)0.0062 (17)0.0061 (16)
C90.035 (2)0.040 (2)0.032 (2)0.0077 (17)0.0048 (16)0.0122 (17)
C100.0287 (18)0.032 (2)0.032 (2)0.0075 (16)0.0067 (15)0.0103 (16)
C110.036 (2)0.033 (2)0.039 (2)0.0070 (17)0.0029 (17)0.0181 (17)
C120.042 (2)0.027 (2)0.041 (2)0.0099 (17)0.0039 (18)0.0131 (17)
C130.055 (3)0.050 (3)0.048 (3)0.005 (2)0.001 (2)0.008 (2)
C140.088 (4)0.041 (3)0.044 (3)0.019 (2)0.020 (3)0.002 (2)
C150.068 (4)0.065 (4)0.091 (4)0.029 (3)0.003 (3)0.035 (3)
Geometric parameters (Å, º) top
Br1—C31.963 (4)C6—C101.388 (5)
Br2—C81.876 (4)C7—C81.463 (6)
O1—C11.371 (4)C8—C91.328 (5)
O1—C21.440 (5)C9—C101.432 (5)
O2—C61.375 (4)C9—H90.9300
O2—C71.377 (5)C10—C111.408 (5)
O3—C151.386 (5)C11—C121.369 (5)
O3—C41.431 (4)C11—H110.9300
O4—C71.183 (5)C12—H120.9300
C1—C51.384 (5)C13—H13A0.9600
C1—C121.401 (5)C13—H13B0.9600
C2—C31.524 (6)C13—H13C0.9600
C2—C141.526 (5)C14—H14A0.9600
C2—C131.538 (6)C14—H14B0.9600
C3—C41.533 (5)C14—H14C0.9600
C3—H30.9800C15—H15A0.9600
C4—C51.496 (5)C15—H15B0.9600
C4—H40.9800C15—H15C0.9600
C5—C61.394 (5)
C1—O1—C2117.6 (3)C9—C8—C7122.9 (4)
C6—O2—C7123.4 (3)C9—C8—Br2122.2 (3)
C15—O3—C4114.0 (3)C7—C8—Br2114.9 (3)
O1—C1—C5122.4 (3)C8—C9—C10120.1 (4)
O1—C1—C12115.6 (3)C8—C9—H9119.9
C5—C1—C12122.0 (3)C10—C9—H9119.9
O1—C2—C3111.0 (3)C6—C10—C11117.6 (3)
O1—C2—C14104.5 (3)C6—C10—C9118.1 (3)
C3—C2—C14113.4 (3)C11—C10—C9124.3 (3)
O1—C2—C13109.0 (3)C12—C11—C10120.4 (3)
C3—C2—C13109.7 (3)C12—C11—H11119.8
C14—C2—C13109.1 (4)C10—C11—H11119.8
C2—C3—C4113.0 (3)C11—C12—C1119.9 (3)
C2—C3—Br1112.1 (3)C11—C12—H12120.0
C4—C3—Br1107.3 (3)C1—C12—H12120.0
C2—C3—H3108.1C2—C13—H13A109.5
C4—C3—H3108.1C2—C13—H13B109.5
Br1—C3—H3108.1H13A—C13—H13B109.5
O3—C4—C5109.4 (3)C2—C13—H13C109.5
O3—C4—C3110.3 (3)H13A—C13—H13C109.5
C5—C4—C3110.5 (3)H13B—C13—H13C109.5
O3—C4—H4108.8C2—C14—H14A109.5
C5—C4—H4108.8C2—C14—H14B109.5
C3—C4—H4108.8H14A—C14—H14B109.5
C1—C5—C6116.3 (3)C2—C14—H14C109.5
C1—C5—C4122.9 (3)H14A—C14—H14C109.5
C6—C5—C4120.7 (3)H14B—C14—H14C109.5
O2—C6—C10120.6 (3)O3—C15—H15A109.5
O2—C6—C5115.6 (3)O3—C15—H15B109.5
C10—C6—C5123.8 (3)H15A—C15—H15B109.5
O4—C7—O2118.2 (4)O3—C15—H15C109.5
O4—C7—C8127.1 (4)H15A—C15—H15C109.5
O2—C7—C8114.7 (3)H15B—C15—H15C109.5
C2—O1—C1—C516.8 (6)C7—O2—C6—C104.5 (6)
C2—O1—C1—C12165.3 (3)C7—O2—C6—C5174.8 (3)
C1—O1—C2—C344.2 (5)C1—C5—C6—O2179.7 (3)
C1—O1—C2—C14166.8 (3)C4—C5—C6—O23.4 (5)
C1—O1—C2—C1376.7 (4)C1—C5—C6—C100.4 (6)
O1—C2—C3—C455.3 (4)C4—C5—C6—C10176.0 (3)
C14—C2—C3—C4172.6 (4)C6—O2—C7—O4177.8 (4)
C13—C2—C3—C465.1 (4)C6—O2—C7—C83.0 (6)
O1—C2—C3—Br166.0 (3)O4—C7—C8—C9178.8 (5)
C14—C2—C3—Br151.3 (4)O2—C7—C8—C90.3 (6)
C13—C2—C3—Br1173.5 (3)O4—C7—C8—Br21.1 (7)
C15—O3—C4—C5142.1 (4)O2—C7—C8—Br2179.8 (3)
C15—O3—C4—C396.1 (4)C7—C8—C9—C102.2 (6)
C2—C3—C4—O383.3 (4)Br2—C8—C9—C10178.0 (3)
Br1—C3—C4—O3152.6 (2)O2—C6—C10—C11179.7 (3)
C2—C3—C4—C537.8 (4)C5—C6—C10—C111.0 (6)
Br1—C3—C4—C586.2 (3)O2—C6—C10—C92.5 (5)
O1—C1—C5—C6177.2 (3)C5—C6—C10—C9176.8 (3)
C12—C1—C5—C60.5 (6)C8—C9—C10—C60.8 (6)
O1—C1—C5—C41.0 (6)C8—C9—C10—C11176.9 (4)
C12—C1—C5—C4176.8 (3)C6—C10—C11—C120.7 (5)
O3—C4—C5—C1111.1 (4)C9—C10—C11—C12177.0 (4)
C3—C4—C5—C110.6 (5)C10—C11—C12—C10.1 (6)
O3—C4—C5—C672.7 (4)O1—C1—C12—C11177.1 (3)
C3—C4—C5—C6165.6 (3)C5—C1—C12—C110.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.932.573.188 (6)124
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank Professor Dr Hartmut, FG Strukturforschung, Material-und Geowissenschaften, Technische Universität Darmstadt, for his kind cooperation with the data collection and providing diffractometer time.

References

First citationAppendino, G., Bianchi, F., Bader, A., Campagnuolo, C., Fattorusso, E., Taglialatela-Scafati, O., Blanco-Molina, M., Macho, A., Fiebich, B. L., Bremner, P., Heinrich, M., Ballero, M. & Muñoz, E. (2004). J. Nat. Prod. 67, 532–536.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBanerjee, S., Ghosh, B. K., Bauri, A. K. & Bhattacharya, S. (2014). J Spectrosc Dyn, 4, 29–34.  Google Scholar
First citationBauri, A. K., Foro, S., Lindner, H.-J. & Nayak, S. K. (2006). Acta Cryst. E62, o1340–o1341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBauri, A. K., Foro, S. & Rahman, A. F. M. M. (2017). Acta Cryst. E73, 453–455.  CrossRef IUCr Journals Google Scholar
First citationChen, Y., Fan, G., Zhang, Q., Wu, H. & Wu, Y. (2007). J. Pharm. Biomed. Anal. 43, 926–936.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChen, D., Wang, J., Jiang, Y., Zhou, T., Fan, G. & Wu, Y. (2009). J. Pharm. Biomed. Anal. 50, 695–702.  Web of Science CrossRef PubMed CAS Google Scholar
First citationConconi, M. T., Montesi, F. & Parnigotto, P. P. (1998). Basic Clin. Pharmacol. Toxicol. 82, 193–198.  CrossRef CAS Google Scholar
First citationConforti, F., Marrelli, M., Menichini, F., Bonesi, M., Statti, G., Provenzano, E. & Menichini, F. (2009). Current Drug Ther. 4, 38–58.  CrossRef CAS Google Scholar
First citationGhosh, B. K., Bauri, A. K., Bhattacharya, S. & Banerjee, S. (2014). Spectrochim. Acta Part A, 125, 90–98.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKato, K. (1970). Acta Cryst. B26, 2022–2029.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMarch, K. L., Patton, B. L., Wilensky, R. L. & Hathaway, D. R. (1993). Circulation, 87, 184–191.  CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThailambal, V. G. & Pattabhi, V. (1987). Acta Cryst. C43, 2369–2372.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds