research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the new cyclo­diphosphazane [EtNP(S)NMe2]2

CROSSMARK_Color_square_no_text.svg

aUniversity of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics, 2092 El Manar II,Tunis, Tunisia, bPreparatory Institute for Engineering Studies of Tunis, Street Jawaher Lel Nehru, 1089 Montfleury, Tunis, Tunisia, and cUniversity of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Electrochemistry, 2092 El Manar II,Tunis, Tunisia
*Correspondence e-mail: chebhamouda@yahoo.fr

Edited by S. Parkin, University of Kentucky, USA (Received 28 February 2017; accepted 4 April 2017; online 11 April 2017)

The cyclic compound 2,4-bis(dimethylamino)-1,3-diethylcyclodiphosphazane-2,4-dithione [systematic name: 2,4-bis(dimethylamino)-1,3-diethyl-1,3,2λ5,4λ5-diazadiphosphetidine-2,4-dithione], C8H22N4P2S2 or [EtNP(S)NMe2]2, is member of a class of mol­ecules that may be used, by virtue of their complexation properties, for the extraction of metals. This compound was characterized in solution by (1H and 31P) NMR, and in the solid state by energy-dispersive X-ray spectroscopy (EDX) and by X-ray crystallography. In the crystal, the mol­ecule sits on an inversion centre such that the P and N atoms form a centrosymmetric cyclic P2N2 arrangement. The crystal packing is dominated by van der Waals inter­actions. The prevalence of these inter­actions is illustrated by an analysis of the three-dimensional Hirshfeld surface (HS) and by two-dimensional fingerprint plots (FP). The relative contribution of different inter­actions to the HS indicates that the H⋯H contacts account for 74.3% of the total HS area.

1. Chemical context

In the study of organo­phospho­rus compounds, one of the aims is to prepare new complexing agents. Indeed, the literature shows many studies of the bidentate organo­phospho­rus ligands HN[P(E)R2]2 (E: O, S, Se; Balazs et al. 1999[Balazs, G., Drake, J. E., Silvestru, C. & Haiduc, I. (1999). Inorg. Chim. Acta, 287, 61-71.]; Silvestru et al. 2000[Silvestru, A., Bîlc, D., Rösler, R., Drake, J. E. & Haiduc, I. (2000). Inorg. Chim. Acta, 305, 106-110.]; Ghesner et al. 2005[Ghesner, M., Silvestru, A., Silvestru, C., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2005). Inorg. Chim. Acta, 358, 3724-3734.]; Cristurean et al. 2008[Cristurean, A., Irisli, S., Marginean, D., Rat, C. & Silvestru, A. (2008). Polyhedron, 27, 2143-2150.]) and RN[P(E)R2]2 (Benabicha et al. 1986[Benabicha, F., Courtois, A., Delpuech, J. J., Elkaïm, E., Hubsch, J., Rodehüser, L. & Rubini, P. (1986). Polyhedron, 5, 2005-2011.]; Ladeveze et al. 1986[Ladeveze, G. D., Azad, Y. J., Rodehüser, L., Rubini, P., Selve, C. & Delpuech, J. J. (1986). Tetrahedron, 42, 371-383.]; Alouani et al. 2002[Alouani, K., Rodehuser, L. & Rubini, P. R. (2002). J. Soc. Alger. Chim. 12, 189-198.], 2007[Alouani, K., Guesmi, A. & Driss, A. (2007). Acta Cryst. E63, o2972.]; Peulecke et al. 2009[Peulecke, N., Aluri, B. R., Wöhl, A., Spannenberg, A. & Al-Hazmi, M. H. (2009). Acta Cryst. E65, o1084.]), etc. All of these ligands may act as chelating agents containing both hard (N) and soft (P) elements. In addition, the flexibility of the (EPNPE) system provides a ready means of altering, and thereby possibly improving, their complexing properties. Several complexes based on these ligands have been reported, such as those described by Bennis & Alouani (2012[Bennis, M. & Alouani, K. (2012). Phosphorus Sulfur Silicon, 187, 1490-1497.]) and by Mejri et al. (2016[Mejri, A., Assili, K. & Alouani, K. (2016). J. Electroanal. Chem. 767, 134-140.]).

[Scheme 1]

We report here the synthesis, characterization by (1H and 31P) NMR and energy-dispersive X-ray (EDX) spectroscopies, and a single-crystal structure of a new cyclo­diphosphazane, 1,3-diethyl-2,4-dimethylamine-2,4-di­thiocyclo­diphosphazane, [EtNP(S)NMe2]2 (I)[link]. In order to evaluate the nature of the inter­molecular inter­actions in the crystal packing and their associated energies, detailed analyses of Hirshfeld surfaces (HS) and fingerprint plot (FP) calculations were performed (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Parkin et al., 2007[Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648-652.]; Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]).

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link], selected crystallographic data are presented in Table 1[link], and an EDX spectrum confirming the presence of C, N, P and S is shown in Fig. 2[link].

Table 1
Experimental details

Crystal data
Chemical formula C8H22N4P2S2
Mr 300.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.1975 (10), 11.448 (2), 9.645 (2)
β (°) 96.39 (3)
V3) 789.8 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.52
Crystal size (mm) 0.40 × 0.40 × 0.30
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al.,1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.999, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3150, 1724, 1463
Rint 0.016
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.127, 1.08
No. of reflections 1724
No. of parameters 76
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.27
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Atomic displacement parameters for the non-H atoms are drawn at the 30% probability level. Unlabelled atoms are related to labelled ones by the symmetry operationx + 1, −y + 1, −z.
[Figure 2]
Figure 2
The EDX spectrum of (I)[link], showing the presence of C, N, P, and S.

Each phospho­rus atom is bonded to one sulfur and three nitro­gen atoms, which are linked to methyl or ethyl groups. Atoms P1 and N1 form a centrosymmetric cyclic P2N2 arrangement about an inversion center (½, ½, 0). The P1—N1 distances in the ring [1.6856 (17) and 1.6719 (16) Å] are longer than the P1—N2 distance [1.6325 (19) Å], and the P1—S1 distance is 1.9291 (9) Å. These geometric parameters are in agreement with those observed in related non-cyclic and cyclic neutral ligands (Hill et al., 1994[Hill, T. G., Haltiwanger, R. C., Thompson, M. L., Katz, S. A. & Norman, A. D. (1994). Inorg. Chem. 33, 1770-1777.]; Alouani et al., 2002[Alouani, K., Rodehuser, L. & Rubini, P. R. (2002). J. Soc. Alger. Chim. 12, 189-198.]; Peulecke et al., 2009[Peulecke, N., Aluri, B. R., Wöhl, A., Spannenberg, A. & Al-Hazmi, M. H. (2009). Acta Cryst. E65, o1084.]; Chandrasekaran et al. 2011[Chandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. pp. 2264-2272.]).

With regard to the conformation of (I)[link], its structure differs from that of P2S2N5C9H27 (S-NIPA) (Benabicha et al. 1986[Benabicha, F., Courtois, A., Delpuech, J. J., Elkaïm, E., Hubsch, J., Rodehüser, L. & Rubini, P. (1986). Polyhedron, 5, 2005-2011.]) primarily by the existence of the P2N2 ring. The literature also shows several similar ligands, for example trans-[(EtNH)P(S)NEt]2 (Hill et al. 1994[Hill, T. G., Haltiwanger, R. C., Thompson, M. L., Katz, S. A. & Norman, A. D. (1994). Inorg. Chem. 33, 1770-1777.]) and cis-P2S2N4C20H42 (Chandrasekaran et al. 2011[Chandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. pp. 2264-2272.]). The most similar known ligand to (I)[link] is the cyclic mol­ecule trans-[(EtNH)P(S)NEt]2 (Hill et al. 1994[Hill, T. G., Haltiwanger, R. C., Thompson, M. L., Katz, S. A. & Norman, A. D. (1994). Inorg. Chem. 33, 1770-1777.]). The two mol­ecules differ in the environments of the nitro­gen atoms, which are all bound to ethyl groups in trans-[(EtNH)P(S)NEt]2, the peripheral carbons of which are all disordered.

3. Supra­molecular features

A perspective view of (I)[link] is presented in Fig. 3[link]. Although there are several intra- and inter­molecular close contacts of the form C—H⋯A (A = S, N), no classical hydrogen bonds are found and the dominant inter­actions are van der Waals contacts.

[Figure 3]
Figure 3
Perspective view of part of the crystal structure of (I)[link], viewed approximately down the a axis. H atoms have been omitted for clarity.

4. Hirshfeld surface analysis

Organic small mol­ecule crystal packings are often dominated by a particular type of inter­action, e.g. hydrogen bonding or van der Waals contacts. However, the overall crystal packing is determined by a combination of many forces, and hence all of the inter­molecular inter­actions of a structure should be taken into account. Visualization and exploration of inter­molecular close contacts of a structure is invaluable, and this can be achieved using the Hirshfeld surface (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). A large range of properties can be visualized on the Hirshfeld surface with the program CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]), including de and di, which represent the distances from a point on the HS to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.

Inter­molecular distance information on the surface can be condensed into a two-dimensional histogram of de and di, which is a unique identifier for mol­ecules in a crystal structure, and is known as a fingerprint plot (Parkin et al., 2007[Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648-652.]; Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]). Instead of plotting de and di on the Hirshfeld surface, contact distances are normalized in CrystalExplorer using the van der Waals radius of the appropriate inter­nal (rivdw) and external (revdw) atom of the surface:

dnorm= (di − rivdw)/rivdw + (de − revdw)/revdw.

For (I)[link], the three-dimensional HS mapped over dnorm is given in Fig. 4[link]. Contacts with distances equal to the sum of the van der Waals radii are shown in white, and contacts with distances shorter than or longer than the related sum values are shown in red (highlighted contacts) or blue, respectively. Two-dimensional FP plots showing the occurrence of all kinds of inter­molecular contacts are presented in Fig. 5[link]a.

[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface (HS) of (I)[link] mapped with dnorm.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots of (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯S and (d) H⋯N inter­actions [de and di represent the distances from a point on the HS to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

The H⋯H inter­actions are shown on the three-dimensional HS as white spots. These contacts appear in the middle of the scattered points in the two-dimensional FP (Fig. 5[link]b), and represent the most significant contribution to the overall three-dimensional HS (74.3%). Significant H⋯S/S⋯H inter­actions (25.5%) can also be seen, indicated by the pair of wings in the two-dimensional FP with a prominent long spike at de + di ∼ 1.9Å (Fig. 5[link]c). The H⋯N/N⋯H inter­actions are shown on the three-dimensional HS marked with a blue spot for long contacts. These comprise only 0.2% of the total Hirshfeld surface, and are represented by two symmetrical narrow pointed spikes with de + di ∼ 2 Å (Fig. 5[link]d). The presence of these inter­actions may also be shown by the Hirshfeld surface mapped as a function of curvedness (Fig. 6[link]).

[Figure 6]
Figure 6
Hirshfeld surface of (I)[link] mapped over curvedness.

5. Synthesis and crystallization

All reagents and solvents were obtained from commercial sources and used without further purification. The synthesis of (I)[link] was carried out in three steps:

• Step 1: Addition of pyridine dropwise to a solution in anhydrous heptane of 2 mol of (EtNH2HCl) and 2 mol of PCl3 at 268 K, gave precipitation in the form of a salt. Then, the reaction mixture was refluxed for 24 h. An oil was obtained after filtration of the pyridinium salt and evaporation of the heptane and the excess PCl3. This step corresponds to the formation of P2N2 cycle, according to the bibliographic data (Chandrasekaran et al. 2011[Chandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. pp. 2264-2272.]; Hill et al. 1994[Hill, T. G., Haltiwanger, R. C., Thompson, M. L., Katz, S. A. & Norman, A. D. (1994). Inorg. Chem. 33, 1770-1777.]). All these operations were conducted under a nitro­gen atmosphere to avoid hydrolysis of the chlorinated compounds. The yield of this step is 85% with respect to ethyl­ammonium chloride.

• Step 2: At a temperature of 263 K, 1 mol of the synthesized [EtNPCl]2 was added dropwise to an ether solution containing 2 mol of di­methyl­amine, 2 mol of tri­ethyl­amine and 4-di­methyl­amino­pyridine (4-DMAP) as catalyst. After 10 h of agitation, Et3NHCl was precipitated. Filtration of the salt and evaporation of the ether gave an oil. All these operations were conducted under a nitro­gen atmosphere. The yield of this step is 40%.

• Step 3: The sulfurization of [EtNPNMe2]2 with 2 mol of sulfur gave the final product, 1,3-diethyl-2,4-dimethyl-2,4-di­thio-cyclo­diphosphazane (I)[link], in a yield of about 80%.

Crystallization was carried out from ethanol by slow evaporation at room temperature. After one week, yellow single crystals suitable for X-ray diffraction analysis were obtained. A qualitative EDX analysis on some crystals confirmed the presence of C, N, P and S.

Yield: (80%), yellow solid, 1H NMR (300 MHz, CDCl3): δ (ppm) 1.17 (t, 1H, 3JHH = 7.26Hz), 2.91 (d, 1H, 3JHP = 12.45Hz), 3.03 (m, 2H); 31P NMR (300 MHz, CDCl3): δ (ppm) 60.13 (1P).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms attached to CH3 and CH2 groups were placed geometrically and refined using a riding model: C—H = 0.96 Å for CH3 group with Uiso(H) = 1.5Ueq(C) and C—H = 0.97Å for CH2 group with Uiso(H) = 1.2Ueq(C).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

2,4-Bis(dimethylamino)-1,3-diethyl-1,3,2λ5,4λ5-diazadiphosphetidine-2,4-dithione top
Crystal data top
C8H22N4P2S2F(000) = 320
Mr = 300.35Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1975 (10) ÅCell parameters from 25 reflections
b = 11.448 (2) Åθ = 10–15°
c = 9.645 (2) ŵ = 0.52 mm1
β = 96.39 (3)°T = 293 K
V = 789.8 (2) Å3Prism, yellow
Z = 20.40 × 0.40 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1463 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.0°, θmin = 2.8°
ω/2θ scansh = 94
Absorption correction: ψ scan
(North et al.,1968)
k = 114
Tmin = 0.999, Tmax = 1.000l = 1212
3150 measured reflections2 standard reflections every 120 reflections
1724 independent reflections intensity decay: 1%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0779P)2 + 0.1315P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1724 reflectionsΔρmax = 0.28 e Å3
76 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.50835 (7)0.50319 (4)0.13083 (5)0.0515 (2)
S10.33563 (10)0.44283 (7)0.25236 (6)0.0790 (3)
N10.4319 (2)0.58738 (14)0.00532 (16)0.0535 (4)
N20.6900 (3)0.56638 (18)0.21583 (18)0.0670 (5)
C10.7415 (5)0.5568 (3)0.3657 (3)0.0952 (9)
H1A0.84110.50130.38380.143*
H1B0.63520.53130.40960.143*
H1C0.78210.63160.40240.143*
C20.8350 (4)0.6172 (3)0.1411 (3)0.0814 (7)
H2A0.86110.69520.17400.122*
H2B0.79320.61900.04310.122*
H2C0.94650.57080.15690.122*
C30.3911 (4)0.7123 (2)0.0151 (3)0.0779 (7)
H3A0.40580.74540.07810.093*
H3B0.48160.74960.06790.093*
C40.2046 (5)0.7387 (3)0.0806 (5)0.1204 (13)
H4A0.18420.70000.16920.181*
H4B0.19210.82160.09400.181*
H4C0.11390.71210.02180.181*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0546 (3)0.0576 (3)0.0405 (3)0.0050 (2)0.0029 (2)0.00125 (18)
S10.0763 (4)0.1040 (5)0.0580 (4)0.0017 (3)0.0128 (3)0.0143 (3)
N10.0607 (9)0.0518 (8)0.0455 (8)0.0091 (7)0.0047 (6)0.0007 (6)
N20.0686 (11)0.0823 (12)0.0463 (8)0.0038 (9)0.0108 (8)0.0049 (8)
C10.099 (2)0.130 (2)0.0502 (12)0.0017 (18)0.0202 (13)0.0108 (14)
C20.0660 (13)0.0974 (18)0.0771 (15)0.0159 (13)0.0078 (11)0.0025 (14)
C30.0919 (17)0.0540 (11)0.0833 (15)0.0127 (11)0.0097 (13)0.0028 (11)
C40.091 (2)0.087 (2)0.178 (4)0.0302 (17)0.007 (2)0.038 (2)
Geometric parameters (Å, º) top
P1—N21.6325 (19)C1—H1C0.9600
P1—N11.6719 (16)C2—H2A0.9600
P1—N1i1.6856 (17)C2—H2B0.9600
P1—S11.9291 (9)C2—H2C0.9600
P1—P1i2.5143 (10)C3—C41.450 (4)
N1—C31.460 (3)C3—H3A0.9700
N1—P1i1.6857 (17)C3—H3B0.9700
N2—C21.455 (3)C4—H4A0.9600
N2—C11.456 (3)C4—H4B0.9600
C1—H1A0.9600C4—H4C0.9600
C1—H1B0.9600
N2—P1—N1108.31 (10)H1B—C1—H1C109.5
N2—P1—N1i112.28 (10)N2—C2—H2A109.5
N1—P1—N1i83.02 (8)N2—C2—H2B109.5
N2—P1—S1112.81 (8)H2A—C2—H2B109.5
N1—P1—S1120.38 (7)N2—C2—H2C109.5
N1i—P1—S1116.69 (7)H2A—C2—H2C109.5
N2—P1—P1i117.58 (8)H2B—C2—H2C109.5
S1—P1—P1i129.60 (4)C4—C3—N1113.7 (2)
C3—N1—P1131.38 (16)C4—C3—H3A108.8
C3—N1—P1i128.43 (17)N1—C3—H3A108.8
P1—N1—P1i96.98 (8)C4—C3—H3B108.8
C2—N2—C1113.9 (2)N1—C3—H3B108.8
C2—N2—P1120.47 (15)H3A—C3—H3B107.7
C1—N2—P1124.5 (2)C3—C4—H4A109.5
N2—C1—H1A109.5C3—C4—H4B109.5
N2—C1—H1B109.5H4A—C4—H4B109.5
H1A—C1—H1B109.5C3—C4—H4C109.5
N2—C1—H1C109.5H4A—C4—H4C109.5
H1A—C1—H1C109.5H4B—C4—H4C109.5
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

Retired Professor Ahmed Driss, University of Tunis El Manar, Faculty of Sciences of Tunis, is thanked for his assistance in the measurement of the X-ray data.

References

First citationAlouani, K., Guesmi, A. & Driss, A. (2007). Acta Cryst. E63, o2972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlouani, K., Rodehuser, L. & Rubini, P. R. (2002). J. Soc. Alger. Chim. 12, 189–198.  CAS Google Scholar
First citationBalazs, G., Drake, J. E., Silvestru, C. & Haiduc, I. (1999). Inorg. Chim. Acta, 287, 61–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenabicha, F., Courtois, A., Delpuech, J. J., Elkaïm, E., Hubsch, J., Rodehüser, L. & Rubini, P. (1986). Polyhedron, 5, 2005–2011.  CSD CrossRef CAS Web of Science Google Scholar
First citationBennis, M. & Alouani, K. (2012). Phosphorus Sulfur Silicon, 187, 1490–1497.  Web of Science CrossRef CAS Google Scholar
First citationChandrasekaran, P., Mague, J. T. & Balakrishna, M. S. (2011). Eur. J. Inorg. Chem. pp. 2264–2272.  Web of Science CSD CrossRef Google Scholar
First citationCristurean, A., Irisli, S., Marginean, D., Rat, C. & Silvestru, A. (2008). Polyhedron, 27, 2143–2150.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhesner, M., Silvestru, A., Silvestru, C., Drake, J. E., Hursthouse, M. B. & Light, M. E. (2005). Inorg. Chim. Acta, 358, 3724–3734.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHill, T. G., Haltiwanger, R. C., Thompson, M. L., Katz, S. A. & Norman, A. D. (1994). Inorg. Chem. 33, 1770–1777.  CSD CrossRef CAS Web of Science Google Scholar
First citationLadeveze, G. D., Azad, Y. J., Rodehüser, L., Rubini, P., Selve, C. & Delpuech, J. J. (1986). Tetrahedron, 42, 371–383.  CrossRef CAS Web of Science Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMejri, A., Assili, K. & Alouani, K. (2016). J. Electroanal. Chem. 767, 134–140.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationParkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). CrystEngComm, 9, 648–652.  Web of Science CrossRef CAS Google Scholar
First citationPeulecke, N., Aluri, B. R., Wöhl, A., Spannenberg, A. & Al-Hazmi, M. H. (2009). Acta Cryst. E65, o1084.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilvestru, A., Bîlc, D., Rösler, R., Drake, J. E. & Haiduc, I. (2000). Inorg. Chim. Acta, 305, 106–110.  CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds