research communications
New M+, M3+-arsenates – the framework structures of AgM3+(HAsO4)2 (M3+ = Al, Ga) and M+GaAs2O7 (M+ = Na, Ag)
aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Wien, Austria, bNaturhistorisches Museum Wien, Burgring 7, 1010 Wien, Austria, and cInstitute for Mineralogy and Crystallography, University of Vienna, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at
The crystal structures of hydrothermally synthesized silver(I) aluminium bis[hydrogen arsenate(V)], AgAl(HAsO4)2, silver(I) gallium bis[hydrogen arsenate(V)], AgGa(HAsO4)2, silver gallium diarsenate(V), AgGaAs2O7, and sodium gallium diarsenate(V), NaGaAs2O7, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of the MCV-3 structure type known for KSc(HAsO4)2, which is characterized by a three-dimensional anionic framework of corner-sharing alternating M3+O6 octahedra (M = Al, Ga) and singly protonated AsO4 tetrahedra. Intersecting channels parallel to [101] and [110] host the Ag+ cations, which are positionally disordered in the Ga compound, but not in the Al compound. The hydrogen bonds are relatively strong, with O⋯O donor–acceptor distances of 2.6262 (17) and 2.6240 (19) Å for the Al and Ga compounds, respectively. The two diarsenate compounds are representatives of the NaAlAs2O7 structure type, characterized by an anionic framework topology built of M3+O6 octahedra (M = Al, Ga) sharing corners with diarsenate groups, and M+ cations (M = Ag) hosted in the voids of the framework. Both structures are characterized by a of the As2O7 groups.
Keywords: crystal structure; AgAl(HAsO4)2; AgGa(HAsO4)2; AgGaAs2O7; NaGaAs2O7.
1. Chemical context
Metal arsenates often form tetrahedral–octahedral framework structures with potentially interesting properties, such as ion conductivity, ion exchange and catalytic properties (Masquelier et al., 1990, 1994a,b, 1995, 1996; Medvedev et al., 2003; Ouerfelli et al., 2007a, 2008; Pintard-Scrépel et al., 1983; Rousse et al., 2013). A detailed study of the system M+–M3+–As–O–(H) was therefore conducted, and a wide variety of new compounds and structure types were found and have been published (Schwendtner, 2006; Schwendtner & Kolitsch, 2004a,b, 2005, 2007a,b,c,d). Thus far, three different structure types for M1+M3+(HAsO4)2 compounds have been reported. Two of them are very common and were first described for isotypic phosphate compounds. The (H3O)Fe(HPO4)2 type (Vencato et al., 1989) is also adopted by β-CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004b), while the (NH4)Fe(HPO4)2 type (Yakubovich, 1993) is adopted by α-CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004) and (NH4)Fe(HAsO4)2 (Ouerfelli et al., 2014). The KSc(HAsO4)2 type (Schwendtner & Kolitsch, 2004a) has so far been the only known example; the two new protonated arsenates presented here are two further representatives of this structure type.
M+M3+As2O7 compounds crystallize in six known structure types, some of them isotypic to phosphates or silicates. The CaZrSi2O7 type (mineral gittinsite; Roelofsen-Ahl & Peterson, 1989) is also adopted by LiFeAs2O7 (Wang et al., 1994), LiM3+As2O7 (M3+ = Al, Ga, Sc) and NaScAs2O7 (Schwendtner & Kolitsch, 2007d). The NaInAs2O7 type (Belam et al., 1997) has no other known members. The TlInAs2O7 type (M+ = Tl, Rb, NH4) (Schwendtner, 2006) is also adopted by KFeAs2O7 (Ouerfelli et al., 2007b). The RbAlAs2O7 type (Boughzala et al., 1993) is also known for M1+ = Tl, Cs (Boughzala & Jouini, 1992), M1+ = K (Boughzala & Jouini, 1995), and is further represented by KGaAs2O7 (Lin & Lii, 1996), KCrAs2O7 (Siegfried et al., 2004) and the mixed (Al/Fe) compound TlAl0.78Fe0.22As2O7 (Ouerfelli et al., 2007a). The KAlP2O7 type is extremely common for phosphates and also has five examples that are arsenates, M+ScAs2O7 with M+ = NH4 (Kolitsch, 2004), Rb (Schwendtner & Kolitsch, 2004a), and Tl (Baran et al., 2006), as well as CsCrAs2O7 (Bouhassine & Boughzala, 2015), and the mixed (Al/Cr) compound K(Al0.75Cr0.25)As2O7 (Bouhassine & Boughzala, 2017). The NaAlAs2O7 type (Driss & Jouini, 1994) is also known for AgFeAs2O7 and NaFeAs2O7 (Ouerfelli et al., 2004), and the M12+M22+ representative CaCuAs2O7 (Chen & Wang, 1996). The two diarsenates presented here also adopt the NaAlAs2O7 structure type.
2. Structural commentary
AgAl(HAsO4)2 and AgGa(HAsO4)2 are isotypic and crystallize in the monoclinic (C2/c) microporous framework structure of KSc(HAsO4)2 (Schwendtner & Kolitsch, 2004a). The contains one Ag, one Ga/Al, one As, four O and one H sites (Fig. 1). The Al/Ga atoms lie on a special position (twofold rotation axis) and the Ag+ cation is situated on an inversion centre. In the case of AgGa(HAsO4)2, the Ag+ cation occupies a split position (Fig. 1b), where Ag1 sits on the inversion centre, with a freely refined occupancy of 0.75 (2). The second site (Ag2) is only 0.31 (3) Å away from Ag1 and has a freely refined occupancy of 0.123 (10). In total, this leads to a composition of one Ag atom per formula unit. The slightly distorted M3+O6 octahedra share corners with six hydrogen arsenate tetrahedra to form a three-dimensional, anionic framework structure with narrow irregular channels parallel to [101] and [110] (Fig. 2), which host the Ag+ cations. The latter show a rather irregular [6 + 2]-coordination in both compounds. However, it is well known that Ag atoms tolerate a broad spectrum of coordination spheres (Müller-Buschbaum, 2004).
The protonated apex of the AsO4 tetrahedron is involved in a relatively strong hydrogen bond with O4⋯O2(x, −y + 1, z + ) = 2.6212 (17) and 2.6240 (19) Å for the Al (Table 2) and Ga compounds (Table 4), respectively, which runs roughly perpendicular to the (101) plane (Fig. 2). The As—OH bond lengths (Tables 1 and 3) are considerably elongated in comparison to the three remaining As—O bonds (Ferraris & Ivaldi, 1984), but at 1.7161 (10) Å for the Al and 1.7096 (12) Å for the Ga compound are slightly shorter than the average As—OH bond length in HAsO42− anions of 1.72 (3) Å (Schwendtner, 2008). The bonds to non-protonated O ligands are shorter than the average mean As—O bond length for inorganic arsenates (1.686 Å; Schwendtner, 2008), and fit well with the data for As bonds to non-protonated O atoms in H1–3AsO4 groups [average 1.669 Å, Schwendtner, 2008; 1.670 Å, AgAl(HAsO4)2; 1.675 Å, AgGa(HAsO4)2]. The average bond lengths for the AlO6 and GaO6 octahedra agree well with published averages (Baur, 1981; Overweg et al., 1999). Bond-valence sums were calculated using the bond-valence parameters of Brown & Altermatt (1985), and amount to 0.88/0.90 (Ag1), 0.89 (Ag2), 3.05/3.16 (Al/Ga), 5.05/5.02 (As), 2.04/2.06 (O1), 1.85/1.85 (O2), 1.90/2.01 (O3) and 1.22/1.21 (O4 = OH; H atom not considered for calculation) valence units for AgAl(HAsO4)2 and AgGa(HAsO4)2, respectively. These results are reasonably close to the ideal values; the underbonded O2 is an acceptor of the strong hydrogen bond. Compared to isotypic KSc(HAsO4)2, the cell lengths and the hydrogen bonds of the two new compounds are considerably shorter. As a result of the similar ionic radii of Al3+ and Ga3+, these two compounds have similar unit-cell parameters. The Ga compound is slightly compressed along the a axis (smaller β), but elongated along the b axis; the c axis is not affected.
|
The two diarsenates AgGaAs2O7 and NaGaAs2O7 crystallize in P21/c and are isotypic to NaAlAs2O7 (Driss & Jouini, 1994). The contains one Ag/Na, one Ga, two As and seven O sites, all of which occupy general positions (Fig. 3). The basic building block is an As2O7 group, which is connected to the GaO6 octahedra by two corners. The other four free O ligands are connected to different GaO6 octahedra to form a three-dimensional framework structure (Fig. 4). The As2—Obridge distances [1.755 (3), 1.756 (3) Å] are nearly identical to the literature value of 1.755 Å for the average As—Obridge bond length in diarsenates (Schwendtner & Kolitsch, 2007d), whereas the As1—Obridge distances [1.781 (3), 1.777 (3) Å] are further elongated. The average bond lengths of both AsO4 tetrahedra are slightly longer than the literature value of 1.688 Å (Schwendtner & Kolitsch, 2007d) for the average As—O bond length in As2O7 groups. The As—O—As angle is very close to the average value of As2O7 groups in a (124.2°, Schwendtner & Kolitsch, 2007d) for both compounds (see Tables 5 and 6).
|
|
The GaO6 octahedra are slightly distorted and the average Ga—O bond lengths are close to the literature values (∼1.96 Å; Overweg et al., 1999). The Na+ and Ag+ cations show a strongly distorted octahedral coordination. The calculated bond-valence sums using the parameters of Brown & Altermatt (1985) for Ag, Ga and As, and Wood & Palenik (1999) for Na, amount to 1.06/1.00 (Ag/Na), 3.11/3.11 (Ga), 4.90/4.93 (As1), 4.96/4.93 (As2), 2.08/2.11 (O1), 1.93/1.92 (O2), 2.01/2.01 (O3), 2.08/2.10 (O4), 1.87/1.86 (O5), 2.03/1.99 (O6), and 2.03/1.99 (O7) valence units for AgGaAs2O7 and NaGaAs2O7, respectively.
3. Synthesis and crystallization
The compounds were grown by hydrothermal synthesis at 493 K (7 d, autogeneous pressure, slow furnace cooling) using Teflon-lined stainless-steel autoclaves with an approximate filling volume of 2 cm3. Reagent-grade Ag2CO3, Ga2O3, α-Al2O3, Na2CO3, and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of M+:M3+:As of 1:1:2. The vessels were filled with distilled water to about 70% of their inner volumes, which led to final pH values of < 1 for all synthesis batches except NaGaAs2O7 (pH 1.5). The reaction products were washed thoroughly with distilled water, filtered and dried at room temperature.
The two hydrogen arsenates formed pseudo-dipyramidal colourless crystals up to 2 mm in length (yield > 95% for the Al compound with minor amounts of AgCl, explained by the reaction of Ag+ with remnants of concentrated hot HCl used for standard cleaning of the Teflon vessels before each new experiment; Fig. 5a). The crystals of AgGa(HAsO4)2 (Fig. 5c) were accompanied by about 20% of AgGaAs2O7 as pseudo-orthorhombic platelets (Fig. 5d). NaGaAs2O7 crystallized as small, colourless platelets with a diamond-shaped outline (yield 100%) (Fig. 5b).
Measured X-ray powder diffraction diagrams of the NaGaAs2O7 and AgAl(HAsO4)2 synthesis batches were deposited at the International Centre for Diffraction Data under PDF number 57-0162 (Prem et al., 2005) for NaGaAs2O7 and 57-0161 (Prem et al., 2005) for AgAl(HAsO4)2.
4. Refinement
Crystal data, data collection and structure .
details are summarized in Table 7
|
For easier comparison, the atomic positions of the isotypic compounds KSc(HAsO4)2 (Schwendtner & Kolitsch, 2004) and NaAlAs2O7 (Driss & Jouini, 1994) were used for the final The O—H distance was restrained to 0.9 (2) Å for AgAl(HAsO4)2 and refined freely for AgGa(HAsO4)2.
Remaining electron densities are below 1 e Å−3 for the two hydrogen arsenates. The remaining maximum and minimum electron densities in the final difference-Fourier maps are located close to the As1 atom (0.87/0.78 Å) for NaGaAs2O7, and close to the Ag atom (0.73/0.66 Å) for AgGaAs2O7.
Supporting information
https://doi.org/10.1107/S2056989017005631/pk2600sup1.cif
contains datablocks AgAlHAsO42, AgGaHAsO42, AgGaAs2O7, NaGaAs2O7. DOI:Structure factors: contains datablock AgAlHAsO42. DOI: https://doi.org/10.1107/S2056989017005631/pk2600AgAlHAsO42sup2.hkl
Structure factors: contains datablock AgGaHAsO42. DOI: https://doi.org/10.1107/S2056989017005631/pk2600AgGaHAsO42sup3.hkl
Structure factors: contains datablock AgGaAs2O7. DOI: https://doi.org/10.1107/S2056989017005631/pk2600AgGaAs2O7sup4.hkl
Structure factors: contains datablock NaGaAs2O7. DOI: https://doi.org/10.1107/S2056989017005631/pk2600NaGaAs2O7sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017005631/pk2600NaGaAs2O7sup6.cml
For all compounds, data collection: COLLECT (Nonius, 2003); cell
HKL SCALEPACK (Otwinowski et al., 2003); data reduction: HKL DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).AgAl(HAsO4)2 | F(000) = 768 |
Mr = 414.71 | Dx = 4.290 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.842 (2) Å | Cell parameters from 1477 reflections |
b = 9.937 (2) Å | θ = 2.0–35.0° |
c = 8.686 (2) Å | µ = 13.51 mm−1 |
β = 108.45 (3)° | T = 293 K |
V = 642.1 (3) Å3 | Pseudo-dipyramidal glassy, colourless |
Z = 4 | 0.15 × 0.08 × 0.07 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 1354 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.011 |
φ and ω scans | θmax = 34.9°, θmin = 3.4° |
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) | h = −12→12 |
Tmin = 0.236, Tmax = 0.451 | k = −16→16 |
2751 measured reflections | l = −13→13 |
1408 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.014 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.037 | w = 1/[σ2(Fo2) + (0.018P)2 + 0.890P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
1408 reflections | Δρmax = 0.55 e Å−3 |
62 parameters | Δρmin = −0.60 e Å−3 |
1 restraint | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0114 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.250000 | 0.250000 | 0.000000 | 0.03518 (7) | |
Al | 0.000000 | 0.13916 (5) | 0.250000 | 0.00554 (9) | |
As | 0.27443 (2) | 0.40001 (2) | 0.35945 (2) | 0.00508 (5) | |
O1 | 0.17964 (13) | 0.26607 (10) | 0.24940 (12) | 0.00972 (16) | |
O2 | 0.32668 (13) | 0.50141 (10) | 0.22800 (11) | 0.00973 (16) | |
O3 | 0.44856 (12) | 0.35479 (10) | 0.51919 (11) | 0.00870 (15) | |
O4 | 0.12010 (13) | 0.48544 (12) | 0.42496 (12) | 0.01492 (19) | |
H | 0.153 (4) | 0.487 (3) | 0.5324 (12) | 0.047 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.06317 (16) | 0.02460 (10) | 0.03540 (12) | −0.01037 (9) | 0.04068 (11) | −0.00702 (8) |
Al | 0.0059 (2) | 0.0053 (2) | 0.0052 (2) | 0.000 | 0.00145 (16) | 0.000 |
As | 0.00555 (6) | 0.00526 (7) | 0.00416 (6) | −0.00071 (3) | 0.00115 (4) | 0.00007 (3) |
O1 | 0.0112 (4) | 0.0086 (4) | 0.0102 (4) | −0.0057 (3) | 0.0045 (3) | −0.0046 (3) |
O2 | 0.0113 (4) | 0.0100 (4) | 0.0069 (3) | −0.0043 (3) | 0.0014 (3) | 0.0027 (3) |
O3 | 0.0087 (3) | 0.0117 (4) | 0.0045 (3) | 0.0024 (3) | 0.0004 (3) | 0.0009 (3) |
O4 | 0.0113 (4) | 0.0234 (5) | 0.0104 (4) | 0.0070 (4) | 0.0038 (3) | −0.0026 (4) |
Ag1—O1i | 2.4040 (11) | Al—O2vii | 1.8955 (11) |
Ag1—O1 | 2.4040 (11) | Al—O2v | 1.8955 (11) |
Ag1—O3ii | 2.6362 (11) | Al—O3viii | 1.9167 (10) |
Ag1—O3iii | 2.6362 (11) | Al—O3iii | 1.9167 (10) |
Ag1—O4iv | 2.8202 (13) | As—O2 | 1.6683 (9) |
Ag1—O4v | 2.8202 (13) | As—O1 | 1.6697 (10) |
Ag1—O2 | 3.1259 (11) | As—O3 | 1.6710 (11) |
Ag1—O2i | 3.1259 (11) | As—O4 | 1.7161 (10) |
Al—O1 | 1.8920 (10) | O4—H | 0.886 (10) |
Al—O1vi | 1.8920 (10) | ||
O1—Al—O1vi | 96.40 (7) | O1vi—Al—O3iii | 94.10 (5) |
O1—Al—O2vii | 172.66 (4) | O2vii—Al—O3iii | 90.59 (5) |
O1vi—Al—O2vii | 88.33 (5) | O2v—Al—O3iii | 92.00 (5) |
O1—Al—O2v | 88.33 (5) | O3viii—Al—O3iii | 176.41 (7) |
O1vi—Al—O2v | 172.66 (4) | O2—As—O1 | 104.53 (5) |
O2vii—Al—O2v | 87.54 (7) | O2—As—O3 | 114.68 (5) |
O1—Al—O3viii | 94.10 (5) | O1—As—O3 | 111.09 (5) |
O1vi—Al—O3viii | 83.49 (5) | O2—As—O4 | 106.25 (6) |
O2vii—Al—O3viii | 92.00 (5) | O1—As—O4 | 110.56 (5) |
O2v—Al—O3viii | 90.59 (5) | O3—As—O4 | 109.54 (5) |
O1—Al—O3iii | 83.49 (5) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x+1, y, −z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) x, −y+1, z−1/2; (v) −x+1/2, y−1/2, −z+1/2; (vi) −x, y, −z+1/2; (vii) x−1/2, y−1/2, z; (viii) −x+1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H···O2ix | 0.89 (1) | 1.81 (2) | 2.6212 (17) | 151 (3) |
Symmetry code: (ix) x, −y+1, z+1/2. |
AgGa(HAsO4)2 | F(000) = 840 |
Mr = 457.45 | Dx = 4.590 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.826 (2) Å | Cell parameters from 1519 reflections |
b = 10.216 (2) Å | θ = 2.0–35.0° |
c = 8.694 (2) Å | µ = 16.96 mm−1 |
β = 107.77 (3)° | T = 293 K |
V = 661.9 (3) Å3 | Large pseudo-dipyramidal glassy, colourless |
Z = 4 | 0.18 × 0.10 × 0.10 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 1402 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.012 |
φ and ω scans | θmax = 35.0°, θmin = 3.4° |
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) | h = −12→12 |
Tmin = 0.150, Tmax = 0.282 | k = −16→16 |
2852 measured reflections | l = −14→13 |
1460 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.015 | All H-atom parameters refined |
wR(F2) = 0.037 | w = 1/[σ2(Fo2) + (0.015P)2 + 0.940P] where P = (Fo2 + 2Fc2)/3 |
S = 1.15 | (Δ/σ)max = 0.037 |
1460 reflections | Δρmax = 0.66 e Å−3 |
73 parameters | Δρmin = −0.50 e Å−3 |
0 restraints | Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0133 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.250000 | 0.250000 | 0.000000 | 0.0335 (9) | 0.75 (2) |
Ag2 | 0.284 (3) | 0.2351 (14) | 0.019 (2) | 0.0316 (18) | 0.123 (10) |
Ga | 0.000000 | 0.13670 (2) | 0.250000 | 0.00500 (5) | |
As | 0.27567 (2) | 0.39556 (2) | 0.35733 (2) | 0.00482 (5) | |
O1 | 0.18942 (15) | 0.26190 (10) | 0.24943 (13) | 0.00983 (18) | |
O2 | 0.32045 (15) | 0.49738 (11) | 0.22405 (13) | 0.01055 (19) | |
O3 | 0.45491 (14) | 0.35629 (11) | 0.51333 (13) | 0.00948 (18) | |
O4 | 0.11608 (16) | 0.46896 (14) | 0.42534 (15) | 0.0169 (2) | |
H | 0.148 (4) | 0.487 (3) | 0.519 (4) | 0.033 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.051 (2) | 0.0368 (14) | 0.0271 (9) | −0.0173 (12) | 0.0327 (12) | −0.0125 (9) |
Ag2 | 0.049 (4) | 0.0249 (16) | 0.035 (3) | −0.015 (2) | 0.034 (3) | −0.0064 (14) |
Ga | 0.00555 (9) | 0.00478 (9) | 0.00482 (9) | 0.000 | 0.00182 (6) | 0.000 |
As | 0.00564 (7) | 0.00525 (7) | 0.00364 (7) | −0.00073 (4) | 0.00153 (5) | −0.00003 (4) |
O1 | 0.0114 (4) | 0.0093 (4) | 0.0101 (5) | −0.0057 (3) | 0.0053 (4) | −0.0045 (3) |
O2 | 0.0122 (4) | 0.0110 (4) | 0.0068 (4) | −0.0060 (3) | 0.0003 (3) | 0.0036 (4) |
O3 | 0.0085 (4) | 0.0135 (4) | 0.0053 (4) | 0.0032 (3) | 0.0004 (3) | 0.0011 (4) |
O4 | 0.0116 (5) | 0.0299 (6) | 0.0094 (5) | 0.0081 (4) | 0.0035 (4) | −0.0047 (4) |
Ag1—O1i | 2.3600 (12) | Ag2—O2 | 3.185 (17) |
Ag1—O1 | 2.3600 (12) | Ga—O1 | 1.9591 (11) |
Ag1—O3ii | 2.5864 (12) | Ga—O1vi | 1.9591 (11) |
Ag1—O3iii | 2.5864 (12) | Ga—O2vii | 1.9641 (11) |
Ag1—O4iv | 3.0574 (15) | Ga—O2v | 1.9641 (11) |
Ag1—O4v | 3.0574 (15) | Ga—O3viii | 1.9799 (12) |
Ag1—O2 | 3.1352 (12) | Ga—O3iii | 1.9799 (12) |
Ag2—O1 | 2.357 (17) | As—O2 | 1.6719 (11) |
Ag2—O1i | 2.402 (18) | As—O3 | 1.6753 (12) |
Ag2—O3ii | 2.48 (2) | As—O1 | 1.6773 (11) |
Ag2—O3iii | 2.73 (3) | As—O4 | 1.7096 (12) |
Ag2—O4v | 2.83 (2) | O4—H | 0.80 (3) |
Ag2—O2i | 3.116 (18) | ||
O1—Ga—O1vi | 98.48 (7) | O3viii—Ga—O3iii | 175.86 (6) |
O1—Ga—O2vii | 171.19 (5) | O2—As—O3 | 114.16 (6) |
O1vi—Ga—O2vii | 87.59 (5) | O2—As—O1 | 104.63 (6) |
O1—Ga—O2v | 87.59 (5) | O3—As—O1 | 110.64 (6) |
O1vi—Ga—O2v | 171.19 (5) | O2—As—O4 | 107.25 (7) |
O2vii—Ga—O2v | 87.12 (7) | O3—As—O4 | 110.16 (6) |
O1—Ga—O3viii | 94.82 (5) | O1—As—O4 | 109.80 (6) |
O1vi—Ga—O3viii | 82.46 (5) | O2—As—O3 | 114.16 (6) |
O2vii—Ga—O3viii | 92.29 (5) | O2—As—O1 | 104.63 (6) |
O2v—Ga—O3viii | 90.71 (5) | O3—As—O1 | 110.64 (6) |
O1—Ga—O3iii | 82.46 (5) | O2—As—O4 | 107.25 (7) |
O1vi—Ga—O3iii | 94.82 (5) | O3—As—O4 | 110.16 (6) |
O2vii—Ga—O3iii | 90.71 (5) | O1—As—O4 | 109.80 (6) |
O2v—Ga—O3iii | 92.29 (5) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) −x+1, y, −z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) x, −y+1, z−1/2; (v) −x+1/2, y−1/2, −z+1/2; (vi) −x, y, −z+1/2; (vii) x−1/2, y−1/2, z; (viii) −x+1/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H···O2ix | 0.80 (3) | 1.89 (3) | 2.6240 (19) | 153 (3) |
Symmetry code: (ix) x, −y+1, z+1/2. |
AgGa(As2O7) | F(000) = 800 |
Mr = 439.43 | Dx = 5.359 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.049 (1) Å | Cell parameters from 2105 reflections |
b = 8.368 (2) Å | θ = 2.0–32.6° |
c = 9.735 (2) Å | µ = 20.58 mm−1 |
β = 108.47 (3)° | T = 293 K |
V = 544.7 (2) Å3 | Pseudo-orthorhombic platelets, colourless |
Z = 4 | 0.10 × 0.08 × 0.02 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 1775 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.022 |
φ and ω scans | θmax = 32.5°, θmin = 3.1° |
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) | h = −10→10 |
Tmin = 0.233, Tmax = 0.684 | k = −12→12 |
3849 measured reflections | l = −14→14 |
1982 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.033 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0619P)2 + 0.6339P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1982 reflections | Δρmax = 2.29 e Å−3 |
100 parameters | Δρmin = −2.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag | 0.81152 (5) | 0.13552 (4) | 0.47918 (4) | 0.02028 (11) | |
Ga | 0.28442 (6) | 0.28038 (5) | 0.49133 (4) | 0.00810 (11) | |
As1 | 0.52020 (5) | 0.41622 (4) | 0.28916 (4) | 0.00783 (10) | |
As2 | 0.94310 (5) | 0.54112 (4) | 0.29927 (4) | 0.00759 (10) | |
O1 | 0.3828 (4) | 0.4083 (3) | 0.1148 (3) | 0.0108 (5) | |
O2 | 0.5231 (4) | 0.5961 (3) | 0.3601 (3) | 0.0118 (5) | |
O3 | 0.4848 (4) | 0.2646 (3) | 0.3914 (3) | 0.0107 (5) | |
O4 | 0.7697 (4) | 0.3871 (3) | 0.2876 (3) | 0.0118 (5) | |
O5 | 0.1621 (4) | 0.4491 (3) | 0.3489 (3) | 0.0117 (5) | |
O6 | 0.9278 (4) | 0.6807 (3) | 0.4187 (3) | 0.0126 (5) | |
O7 | 0.8992 (4) | 0.6146 (3) | 0.1321 (3) | 0.0113 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag | 0.01549 (17) | 0.01302 (15) | 0.0269 (2) | −0.00362 (10) | −0.00097 (13) | 0.00458 (11) |
Ga | 0.0088 (2) | 0.00743 (18) | 0.00749 (19) | 0.00004 (12) | 0.00177 (15) | 0.00004 (12) |
As1 | 0.00867 (19) | 0.00705 (17) | 0.00701 (17) | −0.00073 (11) | 0.00144 (13) | −0.00004 (11) |
As2 | 0.00788 (18) | 0.00726 (17) | 0.00707 (18) | 0.00035 (11) | 0.00158 (13) | 0.00016 (11) |
O1 | 0.0143 (13) | 0.0076 (11) | 0.0076 (11) | 0.0007 (9) | −0.0008 (10) | 0.0002 (8) |
O2 | 0.0133 (13) | 0.0080 (11) | 0.0113 (12) | −0.0024 (9) | 0.0002 (10) | −0.0026 (9) |
O3 | 0.0125 (12) | 0.0096 (11) | 0.0114 (11) | 0.0030 (9) | 0.0056 (10) | 0.0040 (9) |
O4 | 0.0104 (12) | 0.0080 (11) | 0.0164 (13) | −0.0007 (9) | 0.0033 (10) | 0.0003 (9) |
O5 | 0.0075 (11) | 0.0128 (11) | 0.0144 (13) | 0.0043 (9) | 0.0030 (10) | 0.0060 (10) |
O6 | 0.0122 (13) | 0.0141 (12) | 0.0120 (12) | −0.0042 (10) | 0.0043 (10) | −0.0052 (10) |
O7 | 0.0129 (13) | 0.0124 (12) | 0.0074 (11) | 0.0015 (9) | 0.0013 (10) | 0.0020 (9) |
Ag—O1i | 2.353 (3) | Ga—O6v | 1.985 (3) |
Ag—O6ii | 2.361 (3) | Ga—O7i | 2.015 (3) |
Ag—O3 | 2.440 (3) | As1—O2 | 1.653 (3) |
Ag—O7iii | 2.529 (3) | As1—O1 | 1.668 (3) |
Ag—O7iv | 2.600 (3) | As1—O3 | 1.679 (3) |
Ag—O4 | 2.766 (3) | As1—O4 | 1.781 (3) |
Ga—O2v | 1.939 (3) | As2—O5vi | 1.655 (3) |
Ga—O3 | 1.957 (3) | As2—O7 | 1.674 (3) |
Ga—O1iii | 1.973 (3) | As2—O6 | 1.675 (3) |
Ga—O5 | 1.975 (3) | As2—O4 | 1.755 (3) |
O1i—Ag—O6ii | 165.93 (10) | O3—Ga—O7i | 94.90 (12) |
O1i—Ag—O3 | 81.53 (10) | O1iii—Ga—O7i | 81.24 (11) |
O6ii—Ag—O3 | 112.42 (10) | O5—Ga—O7i | 91.08 (12) |
O1i—Ag—O7iii | 64.14 (9) | O6v—Ga—O7i | 86.83 (11) |
O6ii—Ag—O7iii | 106.19 (10) | O2—As1—O1 | 112.81 (13) |
O3—Ag—O7iii | 126.87 (9) | O2—As1—O3 | 115.14 (14) |
O2v—Ga—O3 | 87.83 (12) | O1—As1—O3 | 115.19 (13) |
O2v—Ga—O1iii | 86.80 (11) | O2—As1—O4 | 104.27 (13) |
O3—Ga—O1iii | 94.54 (11) | O1—As1—O4 | 104.04 (14) |
O2v—Ga—O5 | 100.89 (12) | O3—As1—O4 | 103.55 (13) |
O3—Ga—O5 | 85.56 (11) | O5vi—As2—O7 | 108.84 (14) |
O1iii—Ga—O5 | 172.30 (11) | O5vi—As2—O6 | 112.38 (15) |
O2v—Ga—O6v | 91.74 (12) | O7—As2—O6 | 112.71 (14) |
O3—Ga—O6v | 173.63 (11) | O5vi—As2—O4 | 104.10 (13) |
O1iii—Ga—O6v | 91.78 (12) | O7—As2—O4 | 107.22 (13) |
O5—Ga—O6v | 88.28 (11) | O6—As2—O4 | 111.12 (14) |
O2v—Ga—O7i | 167.90 (11) | As2—O4—As1 | 124.65 (15) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+2, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x+2, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) x+1, y, z. |
NaGa(AsO7) | F(000) = 656 |
Mr = 354.55 | Dx = 4.418 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.987 (1) Å | Cell parameters from 2065 reflections |
b = 8.266 (2) Å | θ = 3–30° |
c = 9.677 (2) Å | µ = 17.55 mm−1 |
β = 107.50 (3)° | T = 293 K |
V = 533.0 (2) Å3 | Small platelets with diamond-shaped outline, colourless |
Z = 4 | 0.07 × 0.07 × 0.02 mm |
Nonius KappaCCD single-crystal four-circle diffractometer | 1336 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.023 |
φ and ω scans | θmax = 30.0°, θmin = 3.1° |
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) | h = −9→9 |
Tmin = 0.373, Tmax = 0.720 | k = −11→11 |
3015 measured reflections | l = −13→13 |
1557 independent reflections |
Refinement on F2 | 100 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.060P)2 + 1.1P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.090 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 1.54 e Å−3 |
1557 reflections | Δρmin = −1.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Na | 0.8070 (3) | 0.1389 (2) | 0.4691 (2) | 0.0212 (4) | |
Ga | 0.28177 (7) | 0.27455 (6) | 0.49377 (5) | 0.00989 (14) | |
As1 | 0.51759 (7) | 0.41477 (5) | 0.29095 (5) | 0.00962 (13) | |
As2 | 0.94401 (7) | 0.53707 (5) | 0.29682 (5) | 0.00931 (13) | |
O1 | 0.3798 (5) | 0.4129 (4) | 0.1176 (3) | 0.0128 (6) | |
O2 | 0.5235 (5) | 0.5967 (4) | 0.3635 (4) | 0.0132 (6) | |
O3 | 0.4850 (5) | 0.2586 (4) | 0.3921 (4) | 0.0126 (6) | |
O4 | 0.7683 (5) | 0.3827 (4) | 0.2891 (4) | 0.0137 (6) | |
O5 | 0.1637 (5) | 0.4423 (4) | 0.3491 (3) | 0.0134 (6) | |
O6 | 0.9305 (5) | 0.6834 (4) | 0.4127 (4) | 0.0140 (6) | |
O7 | 0.9038 (5) | 0.6014 (4) | 0.1260 (3) | 0.0117 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na | 0.0190 (10) | 0.0122 (9) | 0.0286 (10) | −0.0006 (8) | 0.0013 (8) | 0.0005 (8) |
Ga | 0.0130 (3) | 0.0074 (2) | 0.0096 (2) | 0.00006 (16) | 0.00367 (19) | 0.00009 (16) |
As1 | 0.0125 (2) | 0.0070 (2) | 0.0090 (2) | −0.00080 (15) | 0.00274 (17) | 0.00001 (15) |
As2 | 0.0120 (2) | 0.0073 (2) | 0.0086 (2) | 0.00045 (15) | 0.00308 (17) | 0.00032 (15) |
O1 | 0.0175 (17) | 0.0087 (14) | 0.0102 (14) | −0.0003 (12) | 0.0011 (12) | 0.0012 (12) |
O2 | 0.0167 (16) | 0.0064 (14) | 0.0164 (15) | −0.0015 (11) | 0.0049 (13) | −0.0028 (12) |
O3 | 0.0166 (16) | 0.0087 (14) | 0.0146 (15) | 0.0022 (12) | 0.0080 (13) | 0.0035 (12) |
O4 | 0.0098 (15) | 0.0121 (14) | 0.0198 (16) | 0.0002 (12) | 0.0055 (12) | 0.0001 (12) |
O5 | 0.0130 (16) | 0.0124 (14) | 0.0142 (15) | 0.0039 (12) | 0.0029 (13) | 0.0043 (12) |
O6 | 0.0188 (17) | 0.0120 (15) | 0.0139 (14) | −0.0035 (12) | 0.0088 (13) | −0.0043 (12) |
O7 | 0.0157 (16) | 0.0116 (14) | 0.0082 (13) | 0.0022 (12) | 0.0042 (12) | 0.0033 (12) |
Na—O1i | 2.289 (4) | Ga—O6v | 1.987 (3) |
Na—O6ii | 2.360 (4) | Ga—O7i | 2.042 (3) |
Na—O3 | 2.364 (4) | As1—O2 | 1.655 (3) |
Na—O7iii | 2.468 (4) | As1—O1 | 1.664 (3) |
Na—O7iv | 2.479 (4) | As1—O3 | 1.676 (3) |
Na—O4 | 2.624 (4) | As1—O4 | 1.777 (3) |
Ga—O2v | 1.940 (3) | As2—O5vi | 1.661 (3) |
Ga—O1iii | 1.952 (3) | As2—O6 | 1.671 (3) |
Ga—O3 | 1.960 (3) | As2—O7 | 1.678 (3) |
Ga—O5 | 1.967 (3) | As2—O4 | 1.756 (3) |
O1i—Na—O6ii | 163.76 (16) | O1iii—Ga—O6v | 91.80 (14) |
O1i—Na—O3 | 80.93 (13) | O3—Ga—O6v | 173.31 (13) |
O6ii—Na—O3 | 114.82 (15) | O5—Ga—O6v | 89.46 (14) |
O1i—Na—O7iii | 65.73 (13) | O2v—Ga—O7i | 168.13 (13) |
O6ii—Na—O7iii | 99.98 (14) | O1iii—Ga—O7i | 80.66 (14) |
O3—Na—O7iii | 126.13 (14) | O3—Ga—O7i | 95.74 (13) |
O1i—Na—O7iv | 101.56 (14) | O5—Ga—O7i | 91.80 (13) |
O6ii—Na—O7iv | 69.89 (12) | O6v—Ga—O7i | 87.01 (13) |
O3—Na—O7iv | 137.74 (14) | O2—As1—O1 | 111.67 (16) |
O7iii—Na—O7iv | 91.40 (12) | O2—As1—O3 | 116.27 (16) |
O1i—Na—O4 | 116.75 (14) | O1—As1—O3 | 116.25 (16) |
O6ii—Na—O4 | 75.75 (13) | O2—As1—O4 | 103.93 (16) |
O3—Na—O4 | 64.59 (11) | O1—As1—O4 | 105.16 (17) |
O7iii—Na—O4 | 168.81 (15) | O3—As1—O4 | 101.46 (16) |
O7iv—Na—O4 | 77.43 (12) | O5vi—As2—O6 | 111.76 (17) |
O2v—Ga—O1iii | 87.52 (13) | O5vi—As2—O7 | 108.37 (16) |
O2v—Ga—O3 | 86.31 (14) | O6—As2—O7 | 113.90 (16) |
O1iii—Ga—O3 | 94.67 (14) | O5vi—As2—O4 | 103.91 (16) |
O2v—Ga—O5 | 100.04 (14) | O6—As2—O4 | 112.00 (16) |
O1iii—Ga—O5 | 172.28 (14) | O7—As2—O4 | 106.27 (16) |
O3—Ga—O5 | 84.37 (14) | As2—O4—As1 | 124.73 (19) |
O2v—Ga—O6v | 92.25 (14) |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+2, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x+2, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) x+1, y, z. |
Acknowledgements
The experimental work was done by the authors at the University of Vienna, Institute for Mineralogy and Crystallography.
Funding information
Funding for this research was provided by: Austrian Academy of Sciences, Doc Fforte Fellowship to Karolina Schwendtner.
References
Baran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335–1340. CrossRef CAS Google Scholar
Baur, W. H. (1981). Structure and bonding in crystals, edited by M. O'Keeffe & A. Navrotsky, pp. 31–52. New York: Academic Press. Google Scholar
Belam, W., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 5–7. CrossRef CAS IUCr Journals Google Scholar
Boughzala, H., Driss, A. & Jouini, T. (1993). Acta Cryst. C49, 425–427. CrossRef CAS Web of Science IUCr Journals Google Scholar
Boughzala, H. & Jouini, T. (1992). C. R. Acad. Sci. II, 314, 1419–1422. CAS Google Scholar
Boughzala, H. & Jouini, T. (1995). Acta Cryst. C51, 179–181. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bouhassine, M. A. & Boughzala, H. (2015). Acta Cryst. E71, 636–639. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouhassine, M. A. & Boughzala, H. (2017). Acta Cryst. E73, 345–348. CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Chen, T.-C. & Wang, S.-L. (1996). J. Solid State Chem. 121, 350–355. CrossRef CAS Google Scholar
Driss, A. & Jouini, T. (1994). J. Solid State Chem. 112, 277–280. CrossRef CAS Web of Science Google Scholar
Ferraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1–6. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207–208. CAS Google Scholar
Lin, K.-J. & Lii, K.-H. (1996). Acta Cryst. C52, 2387–2389. CrossRef CAS Web of Science IUCr Journals Google Scholar
Masquelier, C., d'Yvoire, F., Bretey, E., Berthet, P. & Peytourchansac, C. (1994a). Solid State Ionics, 67, 183–189. CrossRef CAS Google Scholar
Masquelier, C., d'Yvoire, F. & Collin, G. (1994b). Solid State Ionics, 4th, pp. 167–172. Google Scholar
Masquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33–42. CrossRef CAS Web of Science Google Scholar
Masquelier, C., d'Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584–1587. CrossRef CAS Web of Science IUCr Journals Google Scholar
Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the Power Sources Conference, 37th, pp. 188–191. Google Scholar
Medvedev, D., Tripathi, A. & Clearfield, A. (2003). 225th ACS National Meeting, New Orleans, LA, United States, March 23–27, 2003, Abstracts of Papers, 544. Google Scholar
Müller-Buschbaum, Hk. (2004). Z. Anorg. Allg. Chem. 630, 2125–2175. Web of Science CrossRef Google Scholar
Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224–1229. Web of Science CrossRef CAS Google Scholar
Ouerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41–i44. Web of Science CrossRef IUCr Journals Google Scholar
Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942–2949. CrossRef CAS Google Scholar
Ouerfelli, N., Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i21–i22. CrossRef IUCr Journals Google Scholar
Ouerfelli, N., Zid, M. F., Jouini, T. & Touati, A. M. (2004). J. Soc. Chim. Tunis. 6, 85–97. CAS Google Scholar
Overweg, A. R., de Haan, J. W., Magusin, P. C. M. M., van Santen, R. A., Sankar, G. & Thomas, J. M. (1999). Chem. Mater. 11, 1680–1686. Web of Science CrossRef CAS Google Scholar
Pintard-Scrépel, M., d'Yvoire, F. & Bretey, E. (1983). Stud. Inorg. Chem. 3, 215–218. Google Scholar
Prem, M., Lengauer, C. & Tillmanns, E. (2005). Univ. of Vienna, Austria. ICDD Grant-in-Aid. Google Scholar
Roelofsen-Ahl, J. N. & Peterson, R. C. (1989). Can. Mineral. 27, 703–708. CAS Google Scholar
Rousse, G., Rodríguez-Carvajal, J., Wurm, C. & Masquelier, C. (2013). Phys. Rev. B, 88, 2144331–9. CrossRef Google Scholar
Schwendtner, K. (2006). J. Alloys Compd. 421, 57–63. CrossRef CAS Google Scholar
Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria. Google Scholar
Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79–i83. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84–i88. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93. Web of Science CrossRef CAS IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215. CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20. CrossRef IUCr Journals Google Scholar
Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409. CrossRef CAS Google Scholar
Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249–263. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siegfried, A. M., Flowers, A. T., Wang, L. & Hwu, S.-J. (2004). 56th Southeast Regional Meeting of the American Chemical Society, Research Triangle Park, NC, USA, November 10–13, 2004, Abstracts, 518. Google Scholar
Vencato, I., Mattievich, E., Moreira, L. de F. & Mascarenhas, Y. P. (1989). Acta Cryst. C45, 367–371. CrossRef CAS Web of Science IUCr Journals Google Scholar
Wang, S.-L., Wu, C.-H. & Liu, S.-N. (1994). J. Solid State Chem. 113, 37–40. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wood, R. M. & Palenik, G. J. (1999). Inorg. Chem. 38, 3926–3930. Web of Science CrossRef CAS Google Scholar
Yakubovich, O. V. (1993). Kristallografiya, 38, 43–48. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.