research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

New M+, M3+-arsenates – the framework structures of AgM3+(HAsO4)2 (M3+ = Al, Ga) and M+GaAs2O7 (M+ = Na, Ag)

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technology and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, 1060 Wien, Austria, bNaturhistorisches Museum Wien, Burgring 7, 1010 Wien, Austria, and cInstitute for Mineralogy and Crystallography, University of Vienna, Althanstrasse 14, 1090 Wien, Austria
*Correspondence e-mail: karolina.schwendtner@tuwien.ac.at

Edited by S. Parkin, University of Kentucky, USA (Received 28 March 2017; accepted 13 April 2017; online 28 April 2017)

The crystal structures of hydro­thermally synthesized silver(I) aluminium bis­[hydrogen arsenate(V)], AgAl(HAsO4)2, silver(I) gallium bis­[hydrogen arsenate(V)], AgGa(HAsO4)2, silver gallium diarsenate(V), AgGaAs2O7, and sodium gallium diarsenate(V), NaGaAs2O7, were determined from single-crystal X-ray diffraction data collected at room temperature. The first two compounds are representatives of the MCV-3 structure type known for KSc(HAsO4)2, which is characterized by a three-dimensional anionic framework of corner-sharing alternating M3+O6 octa­hedra (M = Al, Ga) and singly protonated AsO4 tetra­hedra. Inter­secting channels parallel to [101] and [110] host the Ag+ cations, which are positionally disordered in the Ga compound, but not in the Al compound. The hydrogen bonds are relatively strong, with O⋯O donor–acceptor distances of 2.6262 (17) and 2.6240 (19) Å for the Al and Ga compounds, respectively. The two diarsenate compounds are representatives of the NaAlAs2O7 structure type, characterized by an anionic framework topology built of M3+O6 octa­hedra (M = Al, Ga) sharing corners with diarsenate groups, and M+ cations (M = Ag) hosted in the voids of the framework. Both structures are characterized by a staggered conformation of the As2O7 groups.

1. Chemical context

Metal arsenates often form tetra­hedral–octa­hedral framework structures with potentially inter­esting properties, such as ion conductivity, ion exchange and catalytic properties (Masquelier et al., 1990[Masquelier, C., d'Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584-1587.], 1994a[Masquelier, C., d'Yvoire, F., Bretey, E., Berthet, P. & Peytourchansac, C. (1994a). Solid State Ionics, 67, 183-189.],b[Masquelier, C., d'Yvoire, F. & Collin, G. (1994b). Solid State Ionics, 4th, pp. 167-172.], 1995[Masquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33-42.], 1996[Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the Power Sources Conference, 37th, pp. 188-191.]; Medvedev et al., 2003[Medvedev, D., Tripathi, A. & Clearfield, A. (2003). 225th ACS National Meeting, New Orleans, LA, United States, March 23-27, 2003, Abstracts of Papers, 544.]; Ouerfelli et al., 2007a[Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224-1229.], 2008[Ouerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41-i44.]; Pintard-Scrépel et al., 1983[Pintard-Scrépel, M., d'Yvoire, F. & Bretey, E. (1983). Stud. Inorg. Chem. 3, 215-218.]; Rousse et al., 2013[Rousse, G., Rodríguez-Carvajal, J., Wurm, C. & Masquelier, C. (2013). Phys. Rev. B, 88, 2144331-9.]). A detailed study of the system M+M3+–As–O–(H) was therefore conducted, and a wide variety of new compounds and structure types were found and have been published (Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]; Schwendtner & Kolitsch, 2004a[Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.],b[Schwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84-i88.], 2005[Schwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90-i93.], 2007a[Schwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205-215.],b[Schwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17-i20.],c[Schwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399-409.],d[Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249-263.]). Thus far, three different structure types for M1+M3+(HAsO4)2 compounds have been reported. Two of them are very common and were first described for isotypic phosphate compounds. The (H3O)Fe(HPO4)2 type (Vencato et al., 1989[Vencato, I., Mattievich, E., Moreira, L. de F. & Mascarenhas, Y. P. (1989). Acta Cryst. C45, 367-371.]) is also adopted by β-CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004b[Schwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84-i88.]), while the (NH4)Fe(HPO4)2 type (Yakubovich, 1993[Yakubovich, O. V. (1993). Kristallografiya, 38, 43-48.]) is adopted by α-CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004[Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.]) and (NH4)Fe(HAsO4)2 (Ouerfelli et al., 2014[Ouerfelli, N., Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i21-i22.]). The KSc(HAsO4)2 type (Schwendtner & Kolitsch, 2004a[Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.]) has so far been the only known example; the two new protonated arsenates presented here are two further representatives of this structure type.

M+M3+As2O7 compounds crystallize in six known structure types, some of them isotypic to phosphates or silicates. The CaZrSi2O7 type (mineral gittinsite; Roelofsen-Ahl & Peterson, 1989[Roelofsen-Ahl, J. N. & Peterson, R. C. (1989). Can. Mineral. 27, 703-708.]) is also adopted by LiFeAs2O7 (Wang et al., 1994[Wang, S.-L., Wu, C.-H. & Liu, S.-N. (1994). J. Solid State Chem. 113, 37-40.]), LiM3+As2O7 (M3+ = Al, Ga, Sc) and NaScAs2O7 (Schwendtner & Kolitsch, 2007d[Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249-263.]). The NaInAs2O7 type (Belam et al., 1997[Belam, W., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 5-7.]) has no other known members. The TlInAs2O7 type (M+ = Tl, Rb, NH4) (Schwendtner, 2006[Schwendtner, K. (2006). J. Alloys Compd. 421, 57-63.]) is also adopted by KFeAs2O7 (Ouerfelli et al., 2007b[Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942-2949.]). The RbAlAs2O7 type (Boughzala et al., 1993[Boughzala, H., Driss, A. & Jouini, T. (1993). Acta Cryst. C49, 425-427.]) is also known for M1+ = Tl, Cs (Boughzala & Jouini, 1992[Boughzala, H. & Jouini, T. (1992). C. R. Acad. Sci. II, 314, 1419-1422.]), M1+ = K (Boughzala & Jouini, 1995[Boughzala, H. & Jouini, T. (1995). Acta Cryst. C51, 179-181.]), and is further represented by KGaAs2O7 (Lin & Lii, 1996[Lin, K.-J. & Lii, K.-H. (1996). Acta Cryst. C52, 2387-2389.]), KCrAs2O7 (Siegfried et al., 2004[Siegfried, A. M., Flowers, A. T., Wang, L. & Hwu, S.-J. (2004). 56th Southeast Regional Meeting of the American Chemical Society, Research Triangle Park, NC, USA, November 10-13, 2004, Abstracts, 518.]) and the mixed (Al/Fe) compound TlAl0.78Fe0.22As2O7 (Ouerfelli et al., 2007a[Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224-1229.]). The KAlP2O7 type is extremely common for phosphates and also has five examples that are arsenates, M+ScAs2O7 with M+ = NH4 (Kolitsch, 2004[Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.]), Rb (Schwendtner & Kolitsch, 2004a[Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.]), and Tl (Baran et al., 2006[Baran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335-1340.]), as well as CsCrAs2O7 (Bouhassine & Boughzala, 2015[Bouhassine, M. A. & Boughzala, H. (2015). Acta Cryst. E71, 636-639.]), and the mixed (Al/Cr) compound K(Al0.75Cr0.25)As2O7 (Bouhassine & Boughzala, 2017[Bouhassine, M. A. & Boughzala, H. (2017). Acta Cryst. E73, 345-348.]). The NaAlAs2O7 type (Driss & Jouini, 1994[Driss, A. & Jouini, T. (1994). J. Solid State Chem. 112, 277-280.]) is also known for AgFeAs2O7 and NaFeAs2O7 (Ouerfelli et al., 2004[Ouerfelli, N., Zid, M. F., Jouini, T. & Touati, A. M. (2004). J. Soc. Chim. Tunis. 6, 85-97.]), and the M12+M22+ representative CaCuAs2O7 (Chen & Wang, 1996[Chen, T.-C. & Wang, S.-L. (1996). J. Solid State Chem. 121, 350-355.]). The two diarsenates presented here also adopt the NaAlAs2O7 structure type.

2. Structural commentary

AgAl(HAsO4)2 and AgGa(HAsO4)2 are isotypic and crystallize in the monoclinic (C2/c) microporous framework structure of KSc(HAsO4)2 (Schwendtner & Kolitsch, 2004a[Schwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79-i83.]). The asymmetric unit contains one Ag, one Ga/Al, one As, four O and one H sites (Fig. 1[link]). The Al/Ga atoms lie on a special position (twofold rotation axis) and the Ag+ cation is situated on an inversion centre. In the case of AgGa(HAsO4)2, the Ag+ cation occupies a split position (Fig. 1[link]b), where Ag1 sits on the inversion centre, with a freely refined occupancy of 0.75 (2). The second site (Ag2) is only 0.31 (3) Å away from Ag1 and has a freely refined occupancy of 0.123 (10). In total, this leads to a composition of one Ag atom per formula unit. The slightly distorted M3+O6 octa­hedra share corners with six hydrogen arsenate tetra­hedra to form a three-dimensional, anionic framework structure with narrow irregular channels parallel to [101] and [110] (Fig. 2[link]), which host the Ag+ cations. The latter show a rather irregular [6 + 2]-coordination in both compounds. However, it is well known that Ag atoms tolerate a broad spectrum of coordination spheres (Müller-Buschbaum, 2004[Müller-Buschbaum, Hk. (2004). Z. Anorg. Allg. Chem. 630, 2125-2175.]).

[Figure 1]
Figure 1
The principal building units of (a) AgAl(HAsO4)2 and (b) AgGa(HAsO4)2, shown as displacement ellipsoids at the 70% probability level. The H atom is shown as a sphere with arbitrary radius. Part (b) shows the split position for Ag in AgGa(HAsO4)2. [Symmetry codes: (ii) −x, y, −z + [{1\over 2}]; (iii) x + [{1\over 2}], y + [{1\over 2}], z; (iv) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (vii) −x + [{1\over 2}], −y + [{1\over 2}], −z; (viii) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}].]
[Figure 2]
Figure 2
View of the framework structure of (a) AgAl(HAsO4)2 along [101] and (b) isotypic AgGa(HAsO4)2 along [110]. The M3+O6 octa­hedra (M = Al, Ga) are corner-linked to HAsO4 tetra­hedra. Both views show small micropores in which the Ag+ cations are situated; the split Ag position (see text) and hydrogen bonds (dashed lines) are indicated in (b).

The protonated apex of the AsO4 tetra­hedron is involved in a relatively strong hydrogen bond with O4⋯O2(x, −y + 1, z + [{1\over 2}]) = 2.6212 (17) and 2.6240 (19) Å for the Al (Table 2[link]) and Ga compounds (Table 4[link]), respectively, which runs roughly perpendicular to the (101) plane (Fig. 2[link]). The As—OH bond lengths (Tables 1[link] and 3[link]) are considerably elongated in comparison to the three remaining As—O bonds (Ferraris & Ivaldi, 1984[Ferraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1-6.]), but at 1.7161 (10) Å for the Al and 1.7096 (12) Å for the Ga compound are slightly shorter than the average As—OH bond length in HAsO42− anions of 1.72 (3) Å (Schwendtner, 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]). The bonds to non-protonated O ligands are shorter than the average mean As—O bond length for inorganic arsenates (1.686 Å; Schwendtner, 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]), and fit well with the data for As bonds to non-protonated O atoms in H1–3AsO4 groups [average 1.669 Å, Schwendtner, 2008[Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.]; 1.670 Å, AgAl(HAsO4)2; 1.675 Å, AgGa(HAsO4)2]. The average bond lengths for the AlO6 and GaO6 octa­hedra agree well with published averages (Baur, 1981[Baur, W. H. (1981). Structure and bonding in crystals, edited by M. O'Keeffe & A. Navrotsky, pp. 31-52. New York: Academic Press.]; Overweg et al., 1999[Overweg, A. R., de Haan, J. W., Magusin, P. C. M. M., van Santen, R. A., Sankar, G. & Thomas, J. M. (1999). Chem. Mater. 11, 1680-1686.]). Bond-valence sums were calculated using the bond-valence parameters of Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]), and amount to 0.88/0.90 (Ag1), 0.89 (Ag2), 3.05/3.16 (Al/Ga), 5.05/5.02 (As), 2.04/2.06 (O1), 1.85/1.85 (O2), 1.90/2.01 (O3) and 1.22/1.21 (O4 = OH; H atom not considered for calculation) valence units for AgAl(HAsO4)2 and AgGa(HAsO4)2, respectively. These results are reasonably close to the ideal values; the underbonded O2 is an acceptor of the strong hydrogen bond. Compared to isotypic KSc(HAsO4)2, the cell lengths and the hydrogen bonds of the two new compounds are considerably shorter. As a result of the similar ionic radii of Al3+ and Ga3+, these two compounds have similar unit-cell parameters. The Ga compound is slightly compressed along the a axis (smaller β), but elongated along the b axis; the c axis is not affected.

Table 2
Hydrogen-bond geometry (Å, °) for AgAl(HAsO4)2

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H⋯O2v 0.89 (1) 1.81 (2) 2.6212 (17) 151 (3)
Symmetry code: (v) [x, -y+1, z+{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for AgGa(HAsO4)2

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H⋯O2viii 0.80 (3) 1.89 (3) 2.6240 (19) 153 (3)
Symmetry code: (viii) [x, -y+1, z+{\script{1\over 2}}].

Table 1
Selected bond lengths (Å) for AgAl(HAsO4)2

Ag1—O1 2.4040 (11) Al—O3iv 1.9167 (10)
Ag1—O3i 2.6362 (11) As—O2 1.6683 (9)
Ag1—O4ii 2.8202 (13) As—O1 1.6697 (10)
Ag1—O2 3.1259 (11) As—O3 1.6710 (11)
Al—O1 1.8920 (10) As—O4 1.7161 (10)
Al—O2iii 1.8955 (11)    
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Table 3
Selected bond lengths (Å) for AgGa(HAsO4)2

Ag1—O1 2.3600 (12) Ag2—O2iii 3.116 (18)
Ag1—O3i 2.5864 (12) Ag2—O2 3.185 (17)
Ag1—O4ii 3.0574 (15) Ga—O1 1.9591 (11)
Ag1—O2 3.1352 (12) Ga—O2vi 1.9641 (11)
Ag2—O1 2.357 (17) Ga—O3vii 1.9799 (12)
Ag2—O1iii 2.402 (18) As—O2 1.6719 (11)
Ag2—O3i 2.48 (2) As—O3 1.6753 (12)
Ag2—O3iv 2.73 (3) As—O1 1.6773 (11)
Ag2—O4v 2.83 (2) As—O4 1.7096 (12)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

The two diarsenates AgGaAs2O7 and NaGaAs2O7 crystallize in space group P21/c and are isotypic to NaAlAs2O7 (Driss & Jouini, 1994[Driss, A. & Jouini, T. (1994). J. Solid State Chem. 112, 277-280.]). The asymmetric unit contains one Ag/Na, one Ga, two As and seven O sites, all of which occupy general positions (Fig. 3[link]). The basic building block is an As2O7 group, which is connected to the GaO6 octa­hedra by two corners. The other four free O ligands are connected to different GaO6 octa­hedra to form a three-dimensional framework structure (Fig. 4[link]). The As2—Obridge distances [1.755 (3), 1.756 (3) Å] are nearly identical to the literature value of 1.755 Å for the average As—Obridge bond length in diarsenates (Schwendtner & Kolitsch, 2007d[Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249-263.]), whereas the As1—Obridge distances [1.781 (3), 1.777 (3) Å] are further elongated. The average bond lengths of both AsO4 tetra­hedra are slightly longer than the literature value of 1.688 Å (Schwendtner & Kolitsch, 2007d[Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249-263.]) for the average As—O bond length in As2O7 groups. The As—O—As angle is very close to the average value of As2O7 groups in a staggered conformation (124.2°, Schwendtner & Kolitsch, 2007d[Schwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249-263.]) for both compounds (see Tables 5[link] and 6[link]).

Table 5
Selected geometric parameters (Å, °) for AgGa(As2O7)

Ag—O1i 2.353 (3) Ga—O6v 1.985 (3)
Ag—O6ii 2.361 (3) Ga—O7i 2.015 (3)
Ag—O3 2.440 (3) As1—O2 1.653 (3)
Ag—O7iii 2.529 (3) As1—O1 1.668 (3)
Ag—O7iv 2.600 (3) As1—O3 1.679 (3)
Ag—O4 2.766 (3) As1—O4 1.781 (3)
Ga—O2v 1.939 (3) As2—O5vi 1.655 (3)
Ga—O3 1.957 (3) As2—O7 1.674 (3)
Ga—O1iii 1.973 (3) As2—O6 1.675 (3)
Ga—O5 1.975 (3) As2—O4 1.755 (3)
       
As2—O4—As1 124.65 (15)    
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z.

Table 6
Selected geometric parameters (Å, °) for NaGa(As2O7)

Na—O1i 2.289 (4) Ga—O6v 1.987 (3)
Na—O6ii 2.360 (4) Ga—O7i 2.042 (3)
Na—O3 2.364 (4) As1—O2 1.655 (3)
Na—O7iii 2.468 (4) As1—O1 1.664 (3)
Na—O7iv 2.479 (4) As1—O3 1.676 (3)
Na—O4 2.624 (4) As1—O4 1.777 (3)
Ga—O2v 1.940 (3) As2—O5vi 1.661 (3)
Ga—O1iii 1.952 (3) As2—O6 1.671 (3)
Ga—O3 1.960 (3) As2—O7 1.678 (3)
Ga—O5 1.967 (3) As2—O4 1.756 (3)
       
As2—O4—As1 124.73 (19)    
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1; (vi) x+1, y, z.
[Figure 3]
Figure 3
The principal building units of AgGaAs2O7 shown as displacement ellipsoids at the 70% probability level. [Symmetry codes: (ii) −x, y + [{1\over 2}], −z + [{1\over 2}]; (iii) −x, −y, −z; (iv) x, −y − [{1\over 2}], z − [{1\over 2}].]
[Figure 4]
Figure 4
View of the framework structure of AgGaAs2O7 along (a) [100] and (b) [110].

The GaO6 octa­hedra are slightly distorted and the average Ga—O bond lengths are close to the literature values (∼1.96 Å; Overweg et al., 1999[Overweg, A. R., de Haan, J. W., Magusin, P. C. M. M., van Santen, R. A., Sankar, G. & Thomas, J. M. (1999). Chem. Mater. 11, 1680-1686.]). The Na+ and Ag+ cations show a strongly distorted octa­hedral coordination. The calculated bond-valence sums using the parameters of Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for Ag, Ga and As, and Wood & Palenik (1999[Wood, R. M. & Palenik, G. J. (1999). Inorg. Chem. 38, 3926-3930.]) for Na, amount to 1.06/1.00 (Ag/Na), 3.11/3.11 (Ga), 4.90/4.93 (As1), 4.96/4.93 (As2), 2.08/2.11 (O1), 1.93/1.92 (O2), 2.01/2.01 (O3), 2.08/2.10 (O4), 1.87/1.86 (O5), 2.03/1.99 (O6), and 2.03/1.99 (O7) valence units for AgGaAs2O7 and NaGaAs2O7, respectively.

3. Synthesis and crystallization

The compounds were grown by hydro­thermal synthesis at 493 K (7 d, autogeneous pressure, slow furnace cooling) using Teflon-lined stainless-steel autoclaves with an approximate filling volume of 2 cm3. Reagent-grade Ag2CO3, Ga2O3, α-Al2O3, Na2CO3, and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of M+:M3+:As of 1:1:2. The vessels were filled with distilled water to about 70% of their inner volumes, which led to final pH values of < 1 for all synthesis batches except NaGaAs2O7 (pH 1.5). The reaction products were washed thoroughly with distilled water, filtered and dried at room temperature.

The two hydrogen arsenates formed pseudo-dipyramidal colourless crystals up to 2 mm in length (yield > 95% for the Al compound with minor amounts of AgCl, explained by the reaction of Ag+ with remnants of concentrated hot HCl used for standard cleaning of the Teflon vessels before each new experiment; Fig. 5[link]a). The crystals of AgGa(HAsO4)2 (Fig. 5[link]c) were accompanied by about 20% of AgGaAs2O7 as pseudo-ortho­rhom­bic platelets (Fig. 5[link]d). NaGaAs2O7 crystallized as small, colourless platelets with a diamond-shaped outline (yield 100%) (Fig. 5[link]b).

[Figure 5]
Figure 5
SEM micrographs of hydro­thermally synthesized crystals of (a) AgAl(HAsO4)2, (b) NaGaAs2O7, (c) AgGa(HAsO4)2 and (d) AgGaAs2O7.

Measured X-ray powder diffraction diagrams of the NaGaAs2O7 and AgAl(HAsO4)2 synthesis batches were deposited at the Inter­national Centre for Diffraction Data under PDF number 57-0162 (Prem et al., 2005[Prem, M., Lengauer, C. & Tillmanns, E. (2005). Univ. of Vienna, Austria. ICDD Grant-in-Aid.]) for NaGaAs2O7 and 57-0161 (Prem et al., 2005[Prem, M., Lengauer, C. & Tillmanns, E. (2005). Univ. of Vienna, Austria. ICDD Grant-in-Aid.]) for AgAl(HAsO4)2.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7[link].

Table 7
Experimental details

  AgAl(HAsO4)2 AgGa(HAsO4)2 AgGa(AsO7) NaGa(As2O7)
Crystal data
Mr 414.71 457.45 354.55 439.43
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293 293 293
a, b, c (Å) 7.842 (2), 9.937 (2), 8.686 (2) 7.826 (2), 10.216 (2), 8.694 (2) 6.987 (1), 8.266 (2), 9.677 (2) 7.049 (1), 8.368 (2), 9.735 (2)
β (°) 108.45 (3) 107.77 (3) 107.50 (3) 108.47 (3)
V3) 642.1 (3) 661.9 (3) 533.0 (2) 544.7 (2)
Z 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 13.51 16.96 17.55 20.58
Crystal size (mm) 0.15 × 0.08 × 0.07 0.18 × 0.10 × 0.10 0.07 × 0.07 × 0.02 0.10 × 0.08 × 0.02
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle Nonius KappaCCD single-crystal four-circle Nonius KappaCCD single-crystal four-circle Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.236, 0.451 0.150, 0.282 0.373, 0.720 0.233, 0.684
No. of measured, independent and observed [I > 2σ(I)] reflections 2751, 1408, 1354 2852, 1460, 1402 3015, 1557, 1336 3849, 1982, 1775
Rint 0.011 0.012 0.023 0.022
(sin θ/λ)max−1) 0.806 0.806 0.704 0.757
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.037, 1.10 0.015, 0.037, 1.15 0.033, 0.090, 1.04 0.033, 0.089, 1.05
No. of reflections 1408 1460 1557 1982
No. of parameters 62 73 100 100
No. of restraints 1 0 0 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.55, −0.60 0.66, −0.50 1.54, −1.49 2.29, −2.38
Computer programs: COLLECT (Nonius, 2003[Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL DENZO and SCALEPACK (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For easier comparison, the atomic positions of the isotypic compounds KSc(HAsO4)2 (Schwendtner & Kolitsch, 2004[Kolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207-208.]) and NaAlAs2O7 (Driss & Jouini, 1994[Driss, A. & Jouini, T. (1994). J. Solid State Chem. 112, 277-280.]) were used for the final refinement. The O—H distance was restrained to 0.9 (2) Å for AgAl(HAsO4)2 and refined freely for AgGa(HAsO4)2.

Remaining electron densities are below 1 e Å−3 for the two hydrogen arsenates. The remaining maximum and minimum electron densities in the final difference-Fourier maps are located close to the As1 atom (0.87/0.78 Å) for NaGaAs2O7, and close to the Ag atom (0.73/0.66 Å) for AgGaAs2O7.

Supporting information


Computing details top

For all compounds, data collection: COLLECT (Nonius, 2003); cell refinement: HKL SCALEPACK (Otwinowski et al., 2003); data reduction: HKL DENZO and SCALEPACK (Otwinowski et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

(AgAlHAsO42) Silver(I) aluminium bis[hydrogen arsenate(V)] top
Crystal data top
AgAl(HAsO4)2F(000) = 768
Mr = 414.71Dx = 4.290 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.842 (2) ÅCell parameters from 1477 reflections
b = 9.937 (2) Åθ = 2.0–35.0°
c = 8.686 (2) ŵ = 13.51 mm1
β = 108.45 (3)°T = 293 K
V = 642.1 (3) Å3Pseudo-dipyramidal glassy, colourless
Z = 40.15 × 0.08 × 0.07 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1354 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.011
φ and ω scansθmax = 34.9°, θmin = 3.4°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
h = 1212
Tmin = 0.236, Tmax = 0.451k = 1616
2751 measured reflectionsl = 1313
1408 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.037 w = 1/[σ2(Fo2) + (0.018P)2 + 0.890P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1408 reflectionsΔρmax = 0.55 e Å3
62 parametersΔρmin = 0.60 e Å3
1 restraintExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0114 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.2500000.2500000.0000000.03518 (7)
Al0.0000000.13916 (5)0.2500000.00554 (9)
As0.27443 (2)0.40001 (2)0.35945 (2)0.00508 (5)
O10.17964 (13)0.26607 (10)0.24940 (12)0.00972 (16)
O20.32668 (13)0.50141 (10)0.22800 (11)0.00973 (16)
O30.44856 (12)0.35479 (10)0.51919 (11)0.00870 (15)
O40.12010 (13)0.48544 (12)0.42496 (12)0.01492 (19)
H0.153 (4)0.487 (3)0.5324 (12)0.047 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.06317 (16)0.02460 (10)0.03540 (12)0.01037 (9)0.04068 (11)0.00702 (8)
Al0.0059 (2)0.0053 (2)0.0052 (2)0.0000.00145 (16)0.000
As0.00555 (6)0.00526 (7)0.00416 (6)0.00071 (3)0.00115 (4)0.00007 (3)
O10.0112 (4)0.0086 (4)0.0102 (4)0.0057 (3)0.0045 (3)0.0046 (3)
O20.0113 (4)0.0100 (4)0.0069 (3)0.0043 (3)0.0014 (3)0.0027 (3)
O30.0087 (3)0.0117 (4)0.0045 (3)0.0024 (3)0.0004 (3)0.0009 (3)
O40.0113 (4)0.0234 (5)0.0104 (4)0.0070 (4)0.0038 (3)0.0026 (4)
Geometric parameters (Å, º) top
Ag1—O1i2.4040 (11)Al—O2vii1.8955 (11)
Ag1—O12.4040 (11)Al—O2v1.8955 (11)
Ag1—O3ii2.6362 (11)Al—O3viii1.9167 (10)
Ag1—O3iii2.6362 (11)Al—O3iii1.9167 (10)
Ag1—O4iv2.8202 (13)As—O21.6683 (9)
Ag1—O4v2.8202 (13)As—O11.6697 (10)
Ag1—O23.1259 (11)As—O31.6710 (11)
Ag1—O2i3.1259 (11)As—O41.7161 (10)
Al—O11.8920 (10)O4—H0.886 (10)
Al—O1vi1.8920 (10)
O1—Al—O1vi96.40 (7)O1vi—Al—O3iii94.10 (5)
O1—Al—O2vii172.66 (4)O2vii—Al—O3iii90.59 (5)
O1vi—Al—O2vii88.33 (5)O2v—Al—O3iii92.00 (5)
O1—Al—O2v88.33 (5)O3viii—Al—O3iii176.41 (7)
O1vi—Al—O2v172.66 (4)O2—As—O1104.53 (5)
O2vii—Al—O2v87.54 (7)O2—As—O3114.68 (5)
O1—Al—O3viii94.10 (5)O1—As—O3111.09 (5)
O1vi—Al—O3viii83.49 (5)O2—As—O4106.25 (6)
O2vii—Al—O3viii92.00 (5)O1—As—O4110.56 (5)
O2v—Al—O3viii90.59 (5)O3—As—O4109.54 (5)
O1—Al—O3iii83.49 (5)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x, y+1, z1/2; (v) x+1/2, y1/2, z+1/2; (vi) x, y, z+1/2; (vii) x1/2, y1/2, z; (viii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H···O2ix0.89 (1)1.81 (2)2.6212 (17)151 (3)
Symmetry code: (ix) x, y+1, z+1/2.
(AgGaHAsO42) Silver(I) gallium bis[hydrogen arsenate(V)] top
Crystal data top
AgGa(HAsO4)2F(000) = 840
Mr = 457.45Dx = 4.590 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 7.826 (2) ÅCell parameters from 1519 reflections
b = 10.216 (2) Åθ = 2.0–35.0°
c = 8.694 (2) ŵ = 16.96 mm1
β = 107.77 (3)°T = 293 K
V = 661.9 (3) Å3Large pseudo-dipyramidal glassy, colourless
Z = 40.18 × 0.10 × 0.10 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1402 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
φ and ω scansθmax = 35.0°, θmin = 3.4°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
h = 1212
Tmin = 0.150, Tmax = 0.282k = 1616
2852 measured reflectionsl = 1413
1460 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015All H-atom parameters refined
wR(F2) = 0.037 w = 1/[σ2(Fo2) + (0.015P)2 + 0.940P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.037
1460 reflectionsΔρmax = 0.66 e Å3
73 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0133 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.2500000.2500000.0000000.0335 (9)0.75 (2)
Ag20.284 (3)0.2351 (14)0.019 (2)0.0316 (18)0.123 (10)
Ga0.0000000.13670 (2)0.2500000.00500 (5)
As0.27567 (2)0.39556 (2)0.35733 (2)0.00482 (5)
O10.18942 (15)0.26190 (10)0.24943 (13)0.00983 (18)
O20.32045 (15)0.49738 (11)0.22405 (13)0.01055 (19)
O30.45491 (14)0.35629 (11)0.51333 (13)0.00948 (18)
O40.11608 (16)0.46896 (14)0.42534 (15)0.0169 (2)
H0.148 (4)0.487 (3)0.519 (4)0.033 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.051 (2)0.0368 (14)0.0271 (9)0.0173 (12)0.0327 (12)0.0125 (9)
Ag20.049 (4)0.0249 (16)0.035 (3)0.015 (2)0.034 (3)0.0064 (14)
Ga0.00555 (9)0.00478 (9)0.00482 (9)0.0000.00182 (6)0.000
As0.00564 (7)0.00525 (7)0.00364 (7)0.00073 (4)0.00153 (5)0.00003 (4)
O10.0114 (4)0.0093 (4)0.0101 (5)0.0057 (3)0.0053 (4)0.0045 (3)
O20.0122 (4)0.0110 (4)0.0068 (4)0.0060 (3)0.0003 (3)0.0036 (4)
O30.0085 (4)0.0135 (4)0.0053 (4)0.0032 (3)0.0004 (3)0.0011 (4)
O40.0116 (5)0.0299 (6)0.0094 (5)0.0081 (4)0.0035 (4)0.0047 (4)
Geometric parameters (Å, º) top
Ag1—O1i2.3600 (12)Ag2—O23.185 (17)
Ag1—O12.3600 (12)Ga—O11.9591 (11)
Ag1—O3ii2.5864 (12)Ga—O1vi1.9591 (11)
Ag1—O3iii2.5864 (12)Ga—O2vii1.9641 (11)
Ag1—O4iv3.0574 (15)Ga—O2v1.9641 (11)
Ag1—O4v3.0574 (15)Ga—O3viii1.9799 (12)
Ag1—O23.1352 (12)Ga—O3iii1.9799 (12)
Ag2—O12.357 (17)As—O21.6719 (11)
Ag2—O1i2.402 (18)As—O31.6753 (12)
Ag2—O3ii2.48 (2)As—O11.6773 (11)
Ag2—O3iii2.73 (3)As—O41.7096 (12)
Ag2—O4v2.83 (2)O4—H0.80 (3)
Ag2—O2i3.116 (18)
O1—Ga—O1vi98.48 (7)O3viii—Ga—O3iii175.86 (6)
O1—Ga—O2vii171.19 (5)O2—As—O3114.16 (6)
O1vi—Ga—O2vii87.59 (5)O2—As—O1104.63 (6)
O1—Ga—O2v87.59 (5)O3—As—O1110.64 (6)
O1vi—Ga—O2v171.19 (5)O2—As—O4107.25 (7)
O2vii—Ga—O2v87.12 (7)O3—As—O4110.16 (6)
O1—Ga—O3viii94.82 (5)O1—As—O4109.80 (6)
O1vi—Ga—O3viii82.46 (5)O2—As—O3114.16 (6)
O2vii—Ga—O3viii92.29 (5)O2—As—O1104.63 (6)
O2v—Ga—O3viii90.71 (5)O3—As—O1110.64 (6)
O1—Ga—O3iii82.46 (5)O2—As—O4107.25 (7)
O1vi—Ga—O3iii94.82 (5)O3—As—O4110.16 (6)
O2vii—Ga—O3iii90.71 (5)O1—As—O4109.80 (6)
O2v—Ga—O3iii92.29 (5)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x, y+1, z1/2; (v) x+1/2, y1/2, z+1/2; (vi) x, y, z+1/2; (vii) x1/2, y1/2, z; (viii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H···O2ix0.80 (3)1.89 (3)2.6240 (19)153 (3)
Symmetry code: (ix) x, y+1, z+1/2.
(AgGaAs2O7) Silver(I) gallium diarsenate(V) top
Crystal data top
AgGa(As2O7)F(000) = 800
Mr = 439.43Dx = 5.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.049 (1) ÅCell parameters from 2105 reflections
b = 8.368 (2) Åθ = 2.0–32.6°
c = 9.735 (2) ŵ = 20.58 mm1
β = 108.47 (3)°T = 293 K
V = 544.7 (2) Å3Pseudo-orthorhombic platelets, colourless
Z = 40.10 × 0.08 × 0.02 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1775 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
φ and ω scansθmax = 32.5°, θmin = 3.1°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
h = 1010
Tmin = 0.233, Tmax = 0.684k = 1212
3849 measured reflectionsl = 1414
1982 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.033Secondary atom site location: difference Fourier map
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.6339P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1982 reflectionsΔρmax = 2.29 e Å3
100 parametersΔρmin = 2.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.81152 (5)0.13552 (4)0.47918 (4)0.02028 (11)
Ga0.28442 (6)0.28038 (5)0.49133 (4)0.00810 (11)
As10.52020 (5)0.41622 (4)0.28916 (4)0.00783 (10)
As20.94310 (5)0.54112 (4)0.29927 (4)0.00759 (10)
O10.3828 (4)0.4083 (3)0.1148 (3)0.0108 (5)
O20.5231 (4)0.5961 (3)0.3601 (3)0.0118 (5)
O30.4848 (4)0.2646 (3)0.3914 (3)0.0107 (5)
O40.7697 (4)0.3871 (3)0.2876 (3)0.0118 (5)
O50.1621 (4)0.4491 (3)0.3489 (3)0.0117 (5)
O60.9278 (4)0.6807 (3)0.4187 (3)0.0126 (5)
O70.8992 (4)0.6146 (3)0.1321 (3)0.0113 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.01549 (17)0.01302 (15)0.0269 (2)0.00362 (10)0.00097 (13)0.00458 (11)
Ga0.0088 (2)0.00743 (18)0.00749 (19)0.00004 (12)0.00177 (15)0.00004 (12)
As10.00867 (19)0.00705 (17)0.00701 (17)0.00073 (11)0.00144 (13)0.00004 (11)
As20.00788 (18)0.00726 (17)0.00707 (18)0.00035 (11)0.00158 (13)0.00016 (11)
O10.0143 (13)0.0076 (11)0.0076 (11)0.0007 (9)0.0008 (10)0.0002 (8)
O20.0133 (13)0.0080 (11)0.0113 (12)0.0024 (9)0.0002 (10)0.0026 (9)
O30.0125 (12)0.0096 (11)0.0114 (11)0.0030 (9)0.0056 (10)0.0040 (9)
O40.0104 (12)0.0080 (11)0.0164 (13)0.0007 (9)0.0033 (10)0.0003 (9)
O50.0075 (11)0.0128 (11)0.0144 (13)0.0043 (9)0.0030 (10)0.0060 (10)
O60.0122 (13)0.0141 (12)0.0120 (12)0.0042 (10)0.0043 (10)0.0052 (10)
O70.0129 (13)0.0124 (12)0.0074 (11)0.0015 (9)0.0013 (10)0.0020 (9)
Geometric parameters (Å, º) top
Ag—O1i2.353 (3)Ga—O6v1.985 (3)
Ag—O6ii2.361 (3)Ga—O7i2.015 (3)
Ag—O32.440 (3)As1—O21.653 (3)
Ag—O7iii2.529 (3)As1—O11.668 (3)
Ag—O7iv2.600 (3)As1—O31.679 (3)
Ag—O42.766 (3)As1—O41.781 (3)
Ga—O2v1.939 (3)As2—O5vi1.655 (3)
Ga—O31.957 (3)As2—O71.674 (3)
Ga—O1iii1.973 (3)As2—O61.675 (3)
Ga—O51.975 (3)As2—O41.755 (3)
O1i—Ag—O6ii165.93 (10)O3—Ga—O7i94.90 (12)
O1i—Ag—O381.53 (10)O1iii—Ga—O7i81.24 (11)
O6ii—Ag—O3112.42 (10)O5—Ga—O7i91.08 (12)
O1i—Ag—O7iii64.14 (9)O6v—Ga—O7i86.83 (11)
O6ii—Ag—O7iii106.19 (10)O2—As1—O1112.81 (13)
O3—Ag—O7iii126.87 (9)O2—As1—O3115.14 (14)
O2v—Ga—O387.83 (12)O1—As1—O3115.19 (13)
O2v—Ga—O1iii86.80 (11)O2—As1—O4104.27 (13)
O3—Ga—O1iii94.54 (11)O1—As1—O4104.04 (14)
O2v—Ga—O5100.89 (12)O3—As1—O4103.55 (13)
O3—Ga—O585.56 (11)O5vi—As2—O7108.84 (14)
O1iii—Ga—O5172.30 (11)O5vi—As2—O6112.38 (15)
O2v—Ga—O6v91.74 (12)O7—As2—O6112.71 (14)
O3—Ga—O6v173.63 (11)O5vi—As2—O4104.10 (13)
O1iii—Ga—O6v91.78 (12)O7—As2—O4107.22 (13)
O5—Ga—O6v88.28 (11)O6—As2—O4111.12 (14)
O2v—Ga—O7i167.90 (11)As2—O4—As1124.65 (15)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1, y, z.
(NaGaAs2O7) Sodium gallium diarsenate(V) top
Crystal data top
NaGa(AsO7)F(000) = 656
Mr = 354.55Dx = 4.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.987 (1) ÅCell parameters from 2065 reflections
b = 8.266 (2) Åθ = 3–30°
c = 9.677 (2) ŵ = 17.55 mm1
β = 107.50 (3)°T = 293 K
V = 533.0 (2) Å3Small platelets with diamond-shaped outline, colourless
Z = 40.07 × 0.07 × 0.02 mm
Data collection top
Nonius KappaCCD single-crystal four-circle
diffractometer
1336 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
φ and ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(HKL SCALEPACK; Otwinowski et al., 2003)
h = 99
Tmin = 0.373, Tmax = 0.720k = 1111
3015 measured reflectionsl = 1313
1557 independent reflections
Refinement top
Refinement on F2100 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.060P)2 + 1.1P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.04Δρmax = 1.54 e Å3
1557 reflectionsΔρmin = 1.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na0.8070 (3)0.1389 (2)0.4691 (2)0.0212 (4)
Ga0.28177 (7)0.27455 (6)0.49377 (5)0.00989 (14)
As10.51759 (7)0.41477 (5)0.29095 (5)0.00962 (13)
As20.94401 (7)0.53707 (5)0.29682 (5)0.00931 (13)
O10.3798 (5)0.4129 (4)0.1176 (3)0.0128 (6)
O20.5235 (5)0.5967 (4)0.3635 (4)0.0132 (6)
O30.4850 (5)0.2586 (4)0.3921 (4)0.0126 (6)
O40.7683 (5)0.3827 (4)0.2891 (4)0.0137 (6)
O50.1637 (5)0.4423 (4)0.3491 (3)0.0134 (6)
O60.9305 (5)0.6834 (4)0.4127 (4)0.0140 (6)
O70.9038 (5)0.6014 (4)0.1260 (3)0.0117 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na0.0190 (10)0.0122 (9)0.0286 (10)0.0006 (8)0.0013 (8)0.0005 (8)
Ga0.0130 (3)0.0074 (2)0.0096 (2)0.00006 (16)0.00367 (19)0.00009 (16)
As10.0125 (2)0.0070 (2)0.0090 (2)0.00080 (15)0.00274 (17)0.00001 (15)
As20.0120 (2)0.0073 (2)0.0086 (2)0.00045 (15)0.00308 (17)0.00032 (15)
O10.0175 (17)0.0087 (14)0.0102 (14)0.0003 (12)0.0011 (12)0.0012 (12)
O20.0167 (16)0.0064 (14)0.0164 (15)0.0015 (11)0.0049 (13)0.0028 (12)
O30.0166 (16)0.0087 (14)0.0146 (15)0.0022 (12)0.0080 (13)0.0035 (12)
O40.0098 (15)0.0121 (14)0.0198 (16)0.0002 (12)0.0055 (12)0.0001 (12)
O50.0130 (16)0.0124 (14)0.0142 (15)0.0039 (12)0.0029 (13)0.0043 (12)
O60.0188 (17)0.0120 (15)0.0139 (14)0.0035 (12)0.0088 (13)0.0043 (12)
O70.0157 (16)0.0116 (14)0.0082 (13)0.0022 (12)0.0042 (12)0.0033 (12)
Geometric parameters (Å, º) top
Na—O1i2.289 (4)Ga—O6v1.987 (3)
Na—O6ii2.360 (4)Ga—O7i2.042 (3)
Na—O32.364 (4)As1—O21.655 (3)
Na—O7iii2.468 (4)As1—O11.664 (3)
Na—O7iv2.479 (4)As1—O31.676 (3)
Na—O42.624 (4)As1—O41.777 (3)
Ga—O2v1.940 (3)As2—O5vi1.661 (3)
Ga—O1iii1.952 (3)As2—O61.671 (3)
Ga—O31.960 (3)As2—O71.678 (3)
Ga—O51.967 (3)As2—O41.756 (3)
O1i—Na—O6ii163.76 (16)O1iii—Ga—O6v91.80 (14)
O1i—Na—O380.93 (13)O3—Ga—O6v173.31 (13)
O6ii—Na—O3114.82 (15)O5—Ga—O6v89.46 (14)
O1i—Na—O7iii65.73 (13)O2v—Ga—O7i168.13 (13)
O6ii—Na—O7iii99.98 (14)O1iii—Ga—O7i80.66 (14)
O3—Na—O7iii126.13 (14)O3—Ga—O7i95.74 (13)
O1i—Na—O7iv101.56 (14)O5—Ga—O7i91.80 (13)
O6ii—Na—O7iv69.89 (12)O6v—Ga—O7i87.01 (13)
O3—Na—O7iv137.74 (14)O2—As1—O1111.67 (16)
O7iii—Na—O7iv91.40 (12)O2—As1—O3116.27 (16)
O1i—Na—O4116.75 (14)O1—As1—O3116.25 (16)
O6ii—Na—O475.75 (13)O2—As1—O4103.93 (16)
O3—Na—O464.59 (11)O1—As1—O4105.16 (17)
O7iii—Na—O4168.81 (15)O3—As1—O4101.46 (16)
O7iv—Na—O477.43 (12)O5vi—As2—O6111.76 (17)
O2v—Ga—O1iii87.52 (13)O5vi—As2—O7108.37 (16)
O2v—Ga—O386.31 (14)O6—As2—O7113.90 (16)
O1iii—Ga—O394.67 (14)O5vi—As2—O4103.91 (16)
O2v—Ga—O5100.04 (14)O6—As2—O4112.00 (16)
O1iii—Ga—O5172.28 (14)O7—As2—O4106.27 (16)
O3—Ga—O584.37 (14)As2—O4—As1124.73 (19)
O2v—Ga—O6v92.25 (14)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x+1, y, z.
 

Acknowledgements

The experimental work was done by the authors at the University of Vienna, Institute for Mineralogy and Crystallography.

Funding information

Funding for this research was provided by: Austrian Academy of Sciences, Doc Fforte Fellowship to Karolina Schwendtner.

References

First citationBaran, E. J., Schwendtner, K. & Kolitsch, U. (2006). J. Raman Spectrosc. 37, 1335–1340.  CrossRef CAS Google Scholar
First citationBaur, W. H. (1981). Structure and bonding in crystals, edited by M. O'Keeffe & A. Navrotsky, pp. 31–52. New York: Academic Press.  Google Scholar
First citationBelam, W., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 5–7.  CrossRef CAS IUCr Journals Google Scholar
First citationBoughzala, H., Driss, A. & Jouini, T. (1993). Acta Cryst. C49, 425–427.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoughzala, H. & Jouini, T. (1992). C. R. Acad. Sci. II, 314, 1419–1422.  CAS Google Scholar
First citationBoughzala, H. & Jouini, T. (1995). Acta Cryst. C51, 179–181.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBouhassine, M. A. & Boughzala, H. (2015). Acta Cryst. E71, 636–639.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouhassine, M. A. & Boughzala, H. (2017). Acta Cryst. E73, 345–348.  CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChen, T.-C. & Wang, S.-L. (1996). J. Solid State Chem. 121, 350–355.  CrossRef CAS Google Scholar
First citationDriss, A. & Jouini, T. (1994). J. Solid State Chem. 112, 277–280.  CrossRef CAS Web of Science Google Scholar
First citationFerraris, G. & Ivaldi, G. (1984). Acta Cryst. B40, 1–6.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKolitsch, U. (2004). Z. Kristallogr. New Cryst. Struct. 219, 207–208.  CAS Google Scholar
First citationLin, K.-J. & Lii, K.-H. (1996). Acta Cryst. C52, 2387–2389.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMasquelier, C., d'Yvoire, F., Bretey, E., Berthet, P. & Peytourchansac, C. (1994a). Solid State Ionics, 67, 183–189.  CrossRef CAS Google Scholar
First citationMasquelier, C., d'Yvoire, F. & Collin, G. (1994b). Solid State Ionics, 4th, pp. 167–172.  Google Scholar
First citationMasquelier, C., d'Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33–42.  CrossRef CAS Web of Science Google Scholar
First citationMasquelier, C., d'Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584–1587.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMasquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the Power Sources Conference, 37th, pp. 188–191.  Google Scholar
First citationMedvedev, D., Tripathi, A. & Clearfield, A. (2003). 225th ACS National Meeting, New Orleans, LA, United States, March 23–27, 2003, Abstracts of Papers, 544.  Google Scholar
First citationMüller-Buschbaum, Hk. (2004). Z. Anorg. Allg. Chem. 630, 2125–2175.  Web of Science CrossRef Google Scholar
First citationNonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOuerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224–1229.  Web of Science CrossRef CAS Google Scholar
First citationOuerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41–i44.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOuerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942–2949.  CrossRef CAS Google Scholar
First citationOuerfelli, N., Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i21–i22.  CrossRef IUCr Journals Google Scholar
First citationOuerfelli, N., Zid, M. F., Jouini, T. & Touati, A. M. (2004). J. Soc. Chim. Tunis. 6, 85–97.  CAS Google Scholar
First citationOverweg, A. R., de Haan, J. W., Magusin, P. C. M. M., van Santen, R. A., Sankar, G. & Thomas, J. M. (1999). Chem. Mater. 11, 1680–1686.  Web of Science CrossRef CAS Google Scholar
First citationPintard-Scrépel, M., d'Yvoire, F. & Bretey, E. (1983). Stud. Inorg. Chem. 3, 215–218.  Google Scholar
First citationPrem, M., Lengauer, C. & Tillmanns, E. (2005). Univ. of Vienna, Austria. ICDD Grant-in-Aid.  Google Scholar
First citationRoelofsen-Ahl, J. N. & Peterson, R. C. (1989). Can. Mineral. 27, 703–708.  CAS Google Scholar
First citationRousse, G., Rodríguez-Carvajal, J., Wurm, C. & Masquelier, C. (2013). Phys. Rev. B, 88, 2144331–9.  CrossRef Google Scholar
First citationSchwendtner, K. (2006). J. Alloys Compd. 421, 57–63.  CrossRef CAS Google Scholar
First citationSchwendtner, K. (2008). PhD thesis, Universität Wien, Austria.  Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004a). Acta Cryst. C60, i79–i83.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2004b). Acta Cryst. C60, i84–i88.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2005). Acta Cryst. C61, i90–i93.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007a). Acta Cryst. B63, 205–215.  CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007b). Acta Cryst. C63, i17–i20.  CrossRef IUCr Journals Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007c). Eur. J. Mineral. 19, 399–409.  CrossRef CAS Google Scholar
First citationSchwendtner, K. & Kolitsch, U. (2007d). Mineral. Mag. 71, 249–263.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiegfried, A. M., Flowers, A. T., Wang, L. & Hwu, S.-J. (2004). 56th Southeast Regional Meeting of the American Chemical Society, Research Triangle Park, NC, USA, November 10–13, 2004, Abstracts, 518.  Google Scholar
First citationVencato, I., Mattievich, E., Moreira, L. de F. & Mascarenhas, Y. P. (1989). Acta Cryst. C45, 367–371.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWang, S.-L., Wu, C.-H. & Liu, S.-N. (1994). J. Solid State Chem. 113, 37–40.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, R. M. & Palenik, G. J. (1999). Inorg. Chem. 38, 3926–3930.  Web of Science CrossRef CAS Google Scholar
First citationYakubovich, O. V. (1993). Kristallografiya, 38, 43–48.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds