research communications
c][1,8]naphthyridin-4(5H)-one
of 5-benzyl-8-bromo-2-methyl-1,3-oxazolo[4,5-aKU Leuven - University of Leuven, Department of Chemistry, Celestijnenlaan 200F - bus 2404, B-3001 Heverlee, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be
The title compound, C17H12BrN3O2, was unexpectedly isolated during an attempt to synthesize pyridodiazepinediones and identified as an oxazolonaphthyridinone derivative. The almost planar oxazolonaphthyridinone ring (r.m.s. deviation = 0.016 Å) makes a dihedral angle of 61.6 (2)° with the phenyl ring. In the crystal, columns of molecules stacked along the a axis are formed by π–π interactions between the six-membered rings of the oxazolonaphthyridone moieties [centroid-to-centroid distances = 3.494 (2)–3.906 (3) Å], which further interact through C—H⋯π contacts with the phenyl rings.
CCDC reference: 1541539
1. Chemical context
While benzodiazepine drugs have been amongst the most prescribed medication globally since their discovery in the 1950s, the search for structurally related biologically active compounds is of major relevance to the pharmaceutical industry (Washton & Zweben, 2011). Previous work in our group dealing with the construction of pyridodiazepinediones (PZDs; Van den Bogaert et al., 2010) led unexpectedly to the isolation of a tricyclic compound, which was later identified as oxazolonaphthyridinone (ONO) 6 (Fig. 1). Commercially available 2-hydroxynicotinic acid 1 was converted to dihalonicotinic acid 3 via two sequential halogenation reactions (Van den Bogaert et al., 2010; Gero et al., 1989; Haché et al., 2002), after which a benzylamine substituent was introduced yielding the aza-anthranilic acid derivative 4. Next, ester compound 5 was prepared from intermediate 4 and tert-butyl glycinate using a standard coupling procedure. Finally, tert-butyl ester 5 was deprotected in situ and reacted with acetic anhydride in the presence of potassium carbonate, yielding tricyclic compound 6. After exploration and optimization of the revealed cascade reaction towards the closely related oxazoloquinolinone scaffold (Vrijdag et al., 2013), we decided to turn our attention to the remarkable tricyclic product 6 isolated during the initial investigation. The ONO structural motif contained in compound 6 is brought into relation with both antibacterial (Ratcliffe et al., 2015) and histamine 4 receptor antagonist (Ho et al., 2013) activities. Hence, new synthetic routes towards ONOs are currently being developed in our laboratory (Vrijdag et al., 2017). Here we present the molecular and of the title compound 6.
2. Structural commentary
Crystals of 6 belong to the orthorhombic Pna21 with one molecule in the (Fig. 2). The oxazolonaphthyridine ring is almost planar (r.m.s. deviation = 0.016 Å) with the substituents C14 [0.082 (6) Å], O15 [−0.023 (4) Å], Br16 [−0.012 (1) Å] and C17 [0.034 (5) Å] situated in the same plane (deviations from plane given in parenthesis). The dihedral angle between the mean planes through the oxazole and pyridine rings is 2.0 (2)°. The dihedral angle between the oxazolonaphthyridine ring system and the phenyl rings is 61.6 (2)°. Both H atoms of C17 are in close contact with the neighboring atoms N8 and O15 (H17A⋯N8 = 2.36 Å and H17B⋯O15 = 2.36 Å). No classical hydrogen bonds are observed.
3. Supramolecular features
The crystal packing (Fig. 3) is characterized by π–π interactions between the six-membered rings of the oxazolonaphthyridone ring systems, resulting in columns of stacked molecules along the a axis [Fig. 4; Cg1⋯Cg1i = 3.494 (2) Å and Cg2⋯Cg2i = 3.906 (3) Å; Cg1 and Cg2 are the centroids of the rings C7/N8/C9–C12 and C4/C5/N6/C7/C12/C13, respectively; symmetry code: (i) x + , −y + , z]. Molecules in neighboring columns show further C—H⋯π interactions between the C18–C23 phenyl rings (Fig. 3, Table 1). The closest contact of Br16 in the packing is with atom O15ii [2.874 (4) Å; symmetry code: (ii) −x + , y − , z − ].
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom et al., 2016) for a [1,3]oxazolo[4,5-c]-1,8-naphthyridin-4(5H)-one ring skeleton gave no hits. The closest ring skeleton is found in 2,5-dimethyl[1,3]oxazolo[4,5-c]quinolin-4(5H)-one (refcode HOJTUW; Latypov et al., 2008), which contains a quinolinone ring system instead of a naphthyridinone ring system. The oxazoloquinoline ring is almost planar (r.m.s. deviation = 0.015 Å) with a dihedral angle between the oxazole and phenyl rings of 1.90 (13)°.
5. Synthesis and crystallization
Synthesis of 5-bromo-2-hydroxynicotinic acid (2), 5-bromo-2-chloronicotinic acid (3), and 2-(benzylamino)-5-bromonicotinic acid (4):
Substituted nicotinic acids 2–4 were synthesized following the protocols of Van den Bogaert et al. (2010). Analytical data matches literature data.
Synthesis of tert-butyl N-{[2-(benzylamino)-5-bromopyridin-3-yl]carbonyl}glycinate (5):
2-(Benzylamino)-5-bromonicotinic acid 4 (50 mg, 0.16 mmol) was dissolved in dimethylformamide under an Ar atmosphere, and di-isopropylethylamine (27 µl, 0.16 mmol) and benzotriazolyl tetramethyluronium fluoroborate (TBTU, 57 mg, 0.18 mmol) were subsequently added to the mixture. The reaction was stirred at room temperature for 15 m, and t-butyl glycinate (24 µl, 0.18 mmol) was added. The reaction was continued at room temperature for 18 h, after which the mixture was concentrated under reduced pressure. The residue was purified using silica gel (heptane/ethyl acetate, 8:2 v/v) to yield compound 5 (64 mg, yield 95%).
IR (Perkin–Elmer 1720 FTIR, KBr, cm−1): ν = 1705 (s, CO ester), 1648 (s, CO amide). 1H NMR [Bruker 400 Avance, 400 MHz, CDCl3, δ (ppm), J (Hz)]: 8.42 (t, 1H, J = 5, CH), 8.21 (d, 1H, J = 2, CH), 7.76 (d, 1H, J = 2, CH), 7.34–7.22 (m, 5H, CH), 6.84 (t, 1H, J = 5, CH), 4.65 (d, 2H, J = 6, CH2), 4.02 (d, 2H, J = 5, CH2), 1.49 (s, 9H, CH3). 13C NMR [Bruker 400 Avance, 101 MHz, CDCl3, δ (ppm)]: 169.4, 167.1, 156.3, 152.6, 139.3, 137.6, 128.6, 127.6, 127.1, 110.6, 104.4, 82.9, 45.0, 42.3, 28.1.
Synthesis of 5-benzyl-8-bromo-2-methyl[1,3]oxazolo[4,5-c]-1,8-naphthyridin-4(5H)-one (6):
A mixture of tert-butyl N-{[2-(benzylamino)-5-bromopyridin-3-yl]carbonyl}glycinate 5 (50 mg, 0.12 mmol) and dichloromethane (2.25 mL) was cooled to 273 K, after which trifluoroacetic acid (0.75 mL) was added. The reaction was continued at room temperature for 16 h, concentrated under reduced pressure, and dried under high vacuum. The obtained crude acid was combined with K2CO3 (38 mg, 0.28 mmol) and acetic anhydride (0.5 mL) under an Ar atmosphere and the mixture was stirred at room temperature for 30 m. Subsequently the reaction was heated to reflux for 24 h, after which the mixture was concentrated under reduced pressure. The residue was purified using silica gel (dichloromethane/methanol, 99:1 v/v) to yield the title compound (12 mg, yield 27%). Light-brown prismatic crystals were grown by diffusion of pentane in a chloroform solution of the title compound.
IR (Perkin–Elmer 1720 FTIR, NaCl, cm−1): ν = 1683 (s, CO amide). 1H NMR [Bruker 400 Avance, 400 MHz, CDCl3, δ (ppm), J (Hz)]: 8.65 (d, 1H, J = 2, CH), 8.27 (d, 1H, J = 2, CH), 7.48 (dd, 2H, J = 7, 1, CH), 7.26–7.21 (m, 3H, CH), 5.80 (s, 2H, CH2), 2.71 (s, 3H, CH3). 13C NMR [Bruker 400 Avance, 101 MHz, CDCl3, δ (ppm)]: 164.6, 157.3, 150.2, 149.9, 146.6, 137.5, 131.5, 131.0, 128.9, 128.4, 127.5, 113.9, 108.5, 44.8, 14.5.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in calculated positions with C—H = 0.95 Å for aromatic, C—H = 0.98 Å for CH3 or C—H = 0.99 Å for CH2 H atoms, and included in the in a riding model with Uiso(H) = 1.2 or 1.5Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1541539
https://doi.org/10.1107/S2056989017005023/rz5210sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017005023/rz5210Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017005023/rz5210Isup3.cml
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell
CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: DREAR (Blessing, 1987); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C17H12BrN3O2 | Dx = 1.618 Mg m−3 |
Mr = 370.21 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 25 reflections |
a = 6.7150 (13) Å | θ = 1.9–25.3° |
b = 13.504 (3) Å | µ = 2.72 mm−1 |
c = 16.757 (3) Å | T = 200 K |
V = 1519.5 (5) Å3 | Prism, light brown |
Z = 4 | 0.3 × 0.3 × 0.2 mm |
F(000) = 744 |
Enraf–Nonius CAD-4 diffractometer | 1279 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.049 |
Graphite monochromator | θmax = 25.3°, θmin = 1.9° |
ω/2θ scans | h = 0→8 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→16 |
Tmin = 0.522, Tmax = 0.578 | l = 0→20 |
1429 measured reflections | 3 standard reflections every 97 reflections |
1429 independent reflections | intensity decay: 0.5% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0221P)2 + 0.5935P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.069 | (Δ/σ)max < 0.001 |
S = 1.16 | Δρmax = 0.34 e Å−3 |
1429 reflections | Δρmin = −0.27 e Å−3 |
209 parameters | Absolute structure: No quotients, so Flack parameter determined by classical intensity fit |
1 restraint | Absolute structure parameter: 0.000 (12) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1853 (5) | 0.6350 (2) | 1.0622 (2) | 0.0353 (7) | |
C2 | 0.1680 (7) | 0.6538 (4) | 1.1434 (3) | 0.0408 (11) | |
N3 | 0.1585 (6) | 0.7463 (3) | 1.1614 (2) | 0.0430 (10) | |
C4 | 0.1733 (6) | 0.7940 (4) | 1.0879 (3) | 0.0344 (10) | |
C5 | 0.1745 (8) | 0.8991 (4) | 1.0713 (3) | 0.0347 (11) | |
N6 | 0.1944 (5) | 0.9220 (3) | 0.9912 (2) | 0.0311 (8) | |
C7 | 0.2122 (7) | 0.8525 (3) | 0.9299 (3) | 0.0261 (10) | |
N8 | 0.2338 (5) | 0.8876 (3) | 0.8560 (3) | 0.0324 (8) | |
C9 | 0.2503 (6) | 0.8216 (4) | 0.7968 (3) | 0.0352 (10) | |
H9 | 0.2659 | 0.8454 | 0.7438 | 0.042* | |
C10 | 0.2456 (6) | 0.7205 (3) | 0.8090 (3) | 0.0327 (10) | |
C11 | 0.2253 (6) | 0.6834 (3) | 0.8840 (3) | 0.0299 (9) | |
H11 | 0.2232 | 0.6140 | 0.8929 | 0.036* | |
C12 | 0.2078 (6) | 0.7493 (3) | 0.9470 (2) | 0.0269 (9) | |
C13 | 0.1890 (6) | 0.7265 (3) | 1.0287 (3) | 0.0299 (9) | |
C14 | 0.1651 (9) | 0.5668 (5) | 1.1959 (4) | 0.0590 (16) | |
H14A | 0.1328 | 0.5876 | 1.2504 | 0.089* | |
H14B | 0.2962 | 0.5350 | 1.1953 | 0.089* | |
H14C | 0.0643 | 0.5199 | 1.1770 | 0.089* | |
O15 | 0.1582 (6) | 0.9635 (3) | 1.1226 (2) | 0.0501 (9) | |
Br16 | 0.26869 (6) | 0.63431 (3) | 0.72061 (4) | 0.04509 (16) | |
C17 | 0.2032 (7) | 1.0293 (3) | 0.9709 (3) | 0.0359 (10) | |
H17A | 0.2912 | 1.0383 | 0.9241 | 0.043* | |
H17B | 0.2634 | 1.0656 | 1.0163 | 0.043* | |
C18 | 0.0019 (6) | 1.0740 (3) | 0.9526 (3) | 0.0360 (10) | |
C19 | −0.1165 (8) | 1.1102 (4) | 1.0132 (4) | 0.0456 (13) | |
H19 | −0.0752 | 1.1033 | 1.0671 | 0.055* | |
C20 | −0.2946 (10) | 1.1562 (5) | 0.9957 (5) | 0.0567 (18) | |
H20 | −0.3748 | 1.1810 | 1.0379 | 0.068* | |
C21 | −0.3576 (8) | 1.1669 (4) | 0.9187 (4) | 0.0534 (15) | |
H21 | −0.4804 | 1.1990 | 0.9075 | 0.064* | |
C22 | −0.2419 (8) | 1.1307 (4) | 0.8573 (4) | 0.0514 (16) | |
H22 | −0.2840 | 1.1380 | 0.8035 | 0.062* | |
C23 | −0.0632 (8) | 1.0834 (4) | 0.8746 (3) | 0.0476 (13) | |
H23 | 0.0152 | 1.0572 | 0.8324 | 0.057* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0308 (15) | 0.0340 (17) | 0.0412 (18) | 0.0005 (12) | −0.0015 (14) | 0.0023 (14) |
C2 | 0.029 (2) | 0.053 (3) | 0.040 (3) | 0.003 (2) | −0.001 (2) | 0.006 (2) |
N3 | 0.031 (2) | 0.060 (3) | 0.037 (2) | 0.0057 (18) | −0.0035 (18) | −0.001 (2) |
C4 | 0.022 (2) | 0.043 (3) | 0.038 (3) | 0.006 (2) | −0.0047 (19) | −0.008 (2) |
C5 | 0.028 (3) | 0.039 (3) | 0.037 (3) | 0.001 (2) | −0.008 (2) | −0.012 (2) |
N6 | 0.0261 (17) | 0.0250 (18) | 0.042 (2) | −0.0009 (15) | 0.0004 (16) | −0.0089 (16) |
C7 | 0.018 (2) | 0.028 (2) | 0.033 (2) | −0.0013 (18) | 0.0012 (19) | −0.0084 (19) |
N8 | 0.0262 (17) | 0.030 (2) | 0.041 (2) | 0.0006 (14) | 0.0026 (16) | −0.0028 (17) |
C9 | 0.028 (2) | 0.042 (3) | 0.035 (2) | 0.0009 (19) | 0.0039 (19) | −0.006 (2) |
C10 | 0.022 (2) | 0.034 (2) | 0.042 (2) | −0.0003 (17) | 0.0011 (18) | −0.0154 (19) |
C11 | 0.022 (2) | 0.027 (2) | 0.041 (2) | 0.0004 (18) | −0.0027 (18) | −0.0099 (19) |
C12 | 0.0164 (19) | 0.027 (2) | 0.037 (2) | −0.0007 (15) | −0.0006 (17) | −0.0069 (18) |
C13 | 0.0204 (19) | 0.027 (2) | 0.043 (3) | 0.0006 (16) | −0.0016 (18) | −0.0008 (18) |
C14 | 0.053 (3) | 0.072 (4) | 0.053 (3) | 0.006 (3) | −0.003 (2) | 0.022 (3) |
O15 | 0.057 (2) | 0.049 (2) | 0.044 (2) | 0.0047 (18) | −0.0070 (18) | −0.0256 (17) |
Br16 | 0.0427 (2) | 0.0502 (3) | 0.0424 (2) | −0.0015 (2) | 0.0038 (4) | −0.0214 (3) |
C17 | 0.036 (2) | 0.023 (2) | 0.049 (3) | −0.0021 (17) | 0.002 (2) | −0.011 (2) |
C18 | 0.035 (2) | 0.020 (2) | 0.052 (3) | −0.0044 (17) | 0.002 (2) | −0.002 (2) |
C19 | 0.045 (3) | 0.038 (3) | 0.054 (3) | 0.007 (2) | 0.011 (3) | 0.002 (2) |
C20 | 0.049 (4) | 0.043 (3) | 0.078 (5) | 0.013 (3) | 0.014 (4) | 0.008 (3) |
C21 | 0.037 (3) | 0.032 (3) | 0.092 (5) | 0.001 (2) | −0.009 (3) | 0.007 (3) |
C22 | 0.056 (4) | 0.040 (3) | 0.058 (4) | −0.010 (3) | −0.011 (3) | 0.006 (2) |
C23 | 0.053 (3) | 0.033 (3) | 0.056 (3) | −0.003 (2) | 0.003 (3) | −0.003 (2) |
O1—C2 | 1.389 (6) | C11—C12 | 1.386 (6) |
O1—C13 | 1.358 (5) | C12—C13 | 1.408 (6) |
C2—N3 | 1.287 (6) | C14—H14A | 0.9800 |
C2—C14 | 1.467 (7) | C14—H14B | 0.9800 |
N3—C4 | 1.393 (6) | C14—H14C | 0.9800 |
C4—C5 | 1.446 (7) | C17—H17A | 0.9900 |
C4—C13 | 1.352 (6) | C17—H17B | 0.9900 |
C5—N6 | 1.384 (7) | C17—C18 | 1.512 (6) |
C5—O15 | 1.229 (6) | C18—C19 | 1.379 (7) |
N6—C7 | 1.396 (6) | C18—C23 | 1.383 (7) |
N6—C17 | 1.489 (6) | C19—H19 | 0.9500 |
C7—N8 | 1.335 (7) | C19—C20 | 1.380 (9) |
C7—C12 | 1.423 (6) | C20—H20 | 0.9500 |
N8—C9 | 1.338 (6) | C20—C21 | 1.365 (10) |
C9—H9 | 0.9500 | C21—H21 | 0.9500 |
C9—C10 | 1.381 (7) | C21—C22 | 1.379 (9) |
C10—C11 | 1.359 (7) | C22—H22 | 0.9500 |
C10—Br16 | 1.890 (4) | C22—C23 | 1.390 (7) |
C11—H11 | 0.9500 | C23—H23 | 0.9500 |
C13—O1—C2 | 103.9 (4) | C4—C13—C12 | 125.0 (4) |
O1—C2—C14 | 116.2 (4) | C2—C14—H14A | 109.5 |
N3—C2—O1 | 114.3 (4) | C2—C14—H14B | 109.5 |
N3—C2—C14 | 129.5 (5) | C2—C14—H14C | 109.5 |
C2—N3—C4 | 103.8 (4) | H14A—C14—H14B | 109.5 |
N3—C4—C5 | 128.6 (4) | H14A—C14—H14C | 109.5 |
C13—C4—N3 | 110.1 (4) | H14B—C14—H14C | 109.5 |
C13—C4—C5 | 121.3 (4) | N6—C17—H17A | 108.9 |
N6—C5—C4 | 114.0 (4) | N6—C17—H17B | 108.9 |
O15—C5—C4 | 124.1 (5) | N6—C17—C18 | 113.6 (3) |
O15—C5—N6 | 121.9 (5) | H17A—C17—H17B | 107.7 |
C5—N6—C7 | 124.8 (4) | C18—C17—H17A | 108.9 |
C5—N6—C17 | 116.3 (4) | C18—C17—H17B | 108.9 |
C7—N6—C17 | 118.9 (4) | C19—C18—C17 | 120.4 (5) |
N6—C7—C12 | 120.6 (4) | C19—C18—C23 | 118.8 (5) |
N8—C7—N6 | 116.9 (4) | C23—C18—C17 | 120.8 (5) |
N8—C7—C12 | 122.5 (4) | C18—C19—H19 | 119.9 |
C7—N8—C9 | 117.4 (4) | C18—C19—C20 | 120.2 (6) |
N8—C9—H9 | 118.4 | C20—C19—H19 | 119.9 |
N8—C9—C10 | 123.1 (5) | C19—C20—H20 | 119.4 |
C10—C9—H9 | 118.4 | C21—C20—C19 | 121.1 (6) |
C9—C10—Br16 | 119.4 (4) | C21—C20—H20 | 119.4 |
C11—C10—C9 | 120.3 (4) | C20—C21—H21 | 120.2 |
C11—C10—Br16 | 120.4 (3) | C20—C21—C22 | 119.5 (6) |
C10—C11—H11 | 120.8 | C22—C21—H21 | 120.2 |
C10—C11—C12 | 118.5 (4) | C21—C22—H22 | 120.2 |
C12—C11—H11 | 120.8 | C21—C22—C23 | 119.5 (6) |
C11—C12—C7 | 118.2 (4) | C23—C22—H22 | 120.2 |
C11—C12—C13 | 127.5 (4) | C18—C23—C22 | 120.8 (6) |
C13—C12—C7 | 114.3 (4) | C18—C23—H23 | 119.6 |
O1—C13—C12 | 127.1 (4) | C22—C23—H23 | 119.6 |
C4—C13—O1 | 107.9 (4) | ||
O1—C2—N3—C4 | −0.9 (6) | N8—C9—C10—C11 | −0.6 (7) |
C2—O1—C13—C4 | −0.3 (4) | N8—C9—C10—Br16 | 179.6 (3) |
C2—O1—C13—C12 | 179.0 (4) | C9—C10—C11—C12 | 0.6 (6) |
C2—N3—C4—C5 | −179.0 (5) | C10—C11—C12—C7 | −0.1 (6) |
C2—N3—C4—C13 | 0.7 (5) | C10—C11—C12—C13 | −178.8 (4) |
N3—C4—C5—N6 | 179.1 (4) | C11—C12—C13—O1 | 0.4 (7) |
N3—C4—C5—O15 | −1.4 (8) | C11—C12—C13—C4 | 179.7 (4) |
N3—C4—C13—O1 | −0.2 (5) | C12—C7—N8—C9 | 0.5 (6) |
N3—C4—C13—C12 | −179.6 (4) | C13—O1—C2—N3 | 0.8 (5) |
C4—C5—N6—C7 | 0.0 (7) | C13—O1—C2—C14 | −178.6 (4) |
C4—C5—N6—C17 | −178.1 (4) | C13—C4—C5—N6 | −0.5 (6) |
C5—C4—C13—O1 | 179.5 (4) | C13—C4—C5—O15 | 179.0 (5) |
C5—C4—C13—C12 | 0.1 (7) | C14—C2—N3—C4 | 178.4 (5) |
C5—N6—C7—N8 | −178.8 (4) | O15—C5—N6—C7 | −179.5 (5) |
C5—N6—C7—C12 | 0.9 (7) | O15—C5—N6—C17 | 2.4 (7) |
C5—N6—C17—C18 | −91.6 (5) | Br16—C10—C11—C12 | −179.7 (3) |
N6—C7—N8—C9 | −179.8 (4) | C17—N6—C7—N8 | −0.8 (6) |
N6—C7—C12—C11 | 179.8 (4) | C17—N6—C7—C12 | 179.0 (4) |
N6—C7—C12—C13 | −1.3 (6) | C17—C18—C19—C20 | 176.1 (5) |
N6—C17—C18—C19 | 86.4 (5) | C17—C18—C23—C22 | −175.5 (4) |
N6—C17—C18—C23 | −96.4 (5) | C18—C19—C20—C21 | 0.1 (9) |
C7—N6—C17—C18 | 90.2 (5) | C19—C18—C23—C22 | 1.7 (7) |
C7—N8—C9—C10 | 0.1 (6) | C19—C20—C21—C22 | 0.3 (10) |
C7—C12—C13—O1 | −178.4 (4) | C20—C21—C22—C23 | 0.4 (8) |
C7—C12—C13—C4 | 0.9 (6) | C21—C22—C23—C18 | −1.4 (8) |
N8—C7—C12—C11 | −0.5 (6) | C23—C18—C19—C20 | −1.1 (7) |
N8—C7—C12—C13 | 178.5 (4) |
Cg3 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C21—H21···Cg3i | 0.95 | 2.82 | 3.604 (6) | 141 |
C11—H11···Cg3ii | 0.95 | 3.31 | 4.239 (6) | 167 |
Symmetry codes: (i) x−1/2, −y+5/2, z; (ii) x+1/2, −y+3/2, z. |
Acknowledgements
JV and AVDB thank the Research Foundation - Flanders (FWO) for scholarships received. We are grateful to K. Duerinckx (KU Leuven) for assistance with the NMR measurements.
Funding information
Funding for this research was provided by: Fonds Wetenschappelijk Onderzoekhttps://doi.org/10.13039/501100003130.
References
Blessing, R. H. (1987). Crystallogr. Rev. 1, 3–58. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Enraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gero, T. W., Jaques, L. W., Mays, R. P., Reid, D. H., Shamblee, D. A. & Lo, Y. S. (1989). Synth. Commun. 19, 553–559. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Haché, B., Duceppe, J. S. & Beaulieu, P. L. (2002). Synthesis, pp. 528–532. Google Scholar
Ho, P. S., Yoon, D. O., Han, S. Y., Lee, W. I., Kim, J. S., Park, W. S., Ahn, S. O. & Kim, H. J. (2013). WO Patent 048214. Google Scholar
Latypov, S., Balandina, A., Boccalini, M., Matteucci, A., Usachev, K. & Chimichi, S. (2008). Eur. J. Org. Chem. pp. 4640–4646. Web of Science CSD CrossRef Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Ratcliffe, A., Huxley, A., Lyth, D., Noonan, G., Kirk, R., Uosis-Martin, M. & Stokes, N. (2015). WO Patent 155549. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Van den Bogaert, A. M., Nelissen, J., Ovaere, M., Van Meervelt, L., Compernolle, F. & De Borggraeve, W. M. (2010). Eur. J. Org. Chem. pp. 5397–5401. CSD CrossRef Google Scholar
Vrijdag, J. L., De Ruysscher, D. & De Borggraeve, W. M. (2017). Eur. J. Org. Chem. pp. 1465–1474. Web of Science CrossRef Google Scholar
Vrijdag, J. L., Van den Bogaert, A. M. & De Borggraeve, W. M. (2013). Org. Lett. 15, 1052–1055. Web of Science CrossRef CAS PubMed Google Scholar
Washton, A. M. & Zweben, J. E. (2011). Treating Alcohol and Drug Problems in Psychotherapy Practice, p. 47. New York: Guilford Press. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.