research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-oxours-12-ene-27a,28-dioic acid (quafrinoic acid)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, The University of Bamenda, PO Box 39, Bambili, Cameroon, bDepartment of Chemistry, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon, cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and dDepartment of Chemistry, Higher Teacher Training College, University of Yaounde I, PO Box 47 Yaoundé, Cameroon
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 12 April 2017; accepted 22 April 2017; online 28 April 2017)

The title compound, C30H44O5, is a penta­cyclic triterpene isolated from the Cameroonian medicinal plant Nauclea Pobeguinii and known as quafrinoic acid. The mol­ecule is composed of five fused six-membered rings, four of which adopt a chair conformation and one a half-chair conformation. Intra­molecular C—H⋯O hydrogen-bond inter­actions exist, which generate S6 and S8 rings. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, linking R22(8) rings into chains running parallel to the a axis; these chains are further connected into layers parallel to the ab plane by C—H⋯O hydrogen bonds. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (79.4%) and O⋯H (20.4%) inter­actions.

1. Chemical context

Nauclea is a well-known genus of the Rubiaceae family consisting of 35 species of which ten are distributed in tropical Africa, Asia and Australia (Chen & Taylor, 2011[Chen, T. & Taylor, C. M. (2011). Nauclea linnaeus, sp. P1, in Flora of China, edited by Z.-Y. Wu, P. H. Raven & D.-Y. Hong, Vol. 19, p. 249. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press.]). Several specimens of this genus, including Nauclea pobeguinii, are largely used in traditional medicine in Africa. During the last decade, many studies have been carried out on N. pobeguinii to explore its medicinal potential and promising results have made it an attractive target for researchers. The 80% ethano­lic stem bark extract of N. pobeguinii has been successfully used in clinical trials for the treatment of uncomplicated malaria (Mesia et al., 2012[Mesia, K., Tona, L., Mampunza, M. M., Ntamabyaliro, N., Muanda, T., Muyembe, T., Cimanga, K., Totté, J., Mets, T., Pieters, L. & Vlietinck, A. J. (2012). Planta Med. 78, 211-218.]). The plant is also reported to have cytotoxic, anti-cancer (Kuete et al., 2015[Kuete, V., Sandjo, L. P., Mbaveng, A. T., Seukep, J. A., Ngadjui, B. T. & Efferth, T. (2015). BMC Complementary Alternative Med. 309, 1-9.]) and anti-diabetic properties (Agnaniet et al., 2016[Agnaniet, H., Mbot, E. J., Keita, O., Fehrentz, J.-A., Ankli, A., Gallud, A., Garcia, M., Gary-Bobo, M., Lebibi, J., Cresteil, T. & Menut, C. (2016). BMC Complement. Altern. Med. 16, 71-78.]). The phytochemical investigations of N. pobeguinii have led to the isolation of monoterpene indole alkaloids, triterpenes and phenolic compounds (Kuete et al., 2015[Kuete, V., Sandjo, L. P., Mbaveng, A. T., Seukep, J. A., Ngadjui, B. T. & Efferth, T. (2015). BMC Complementary Alternative Med. 309, 1-9.]; Xu et al., 2012[Xu, Y.-J., Foubert, K., Dhooghe, L., Lemière, F., Cimanga, K., Mesia, K., Apers, S. & Pieters, L. (2012). Phytochemistry Lett. 5, 316-319.]; Zeches et al., 1985[Zeches, M., Richard, B., Gueye-M'Bahia, L., Le Men-Olivier, L. & Delaude, C. (1985). J. Nat. Prod. 48, 42-46.]). In a continuation of our phytochemical investigation of Cameroonian medicinal plants, we have examined the stem bark of N. pobeguinii and isolated quafrinoic acid. Although the atomic connectivity of quafrinoic acid has already been determined by spectroscopic methods (Ajaiyeoba & Krebs, 2003[Ajaiyeoba, E. O. & Krebs, H. C. (2003). Nigerian J. Nat. Prod. Med. 7, 39-41.]), we report herein the single crystal X-ray diffraction structure and Hirshfeld surface analysis of quafrinoic acid for the first time.

[Scheme 1]

2. Structural commentary

The title compound C30H44O5, is a penta­cyclic triterpene composed of five fused six-membered rings A (C1–C5/C10), B (C5–C10), C (C8–C9/C11–C14), D (C14–C18) and E (C17–C18/C25–C28) (Fig. 1[link]). Rings A, B, D and E each exhibit a chair conformation, whereas ring C has a half-chair conformation. Rings A/B, B/C and C/D are trans fused to each other along the C5—C10, C8—C9, and C13—C14 bonds, respectively. Rings D and E are cis fused along the C17—C18 bond along with the axially oriented carb­oxy­lic acid functionalities at C14 and C17. The bond dimensions are similar to those found in structurally related compounds (Csuk et al., 2015[Csuk, R., Barthel-Niesen, N., Ströhl, D., Kluge, R., Wagner, C. & Al-Harrasi, A. (2015). Tetrahedron, 71, 2025-2034.]; Awang et al., 2009[Awang, K., Abdullah, N. H., Thomas, N. F. & Ng, S. W. (2009). Acta Cryst. E65, o2113.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Dashed lines indicate intra­molecular hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

The mol­ecular conformation is stabilized by intra­molecular hydrogen-bonding inter­actions involving as acceptors the oxygen atoms of the axially oriented carb­oxy­lic group O2/O3/C19 via C7—H7A⋯O3, C9—H9A⋯O3 and C30—H30A⋯O3 hydrogen bonds and forming rings with S(6), S(6) and S(8) graph-set motifs, respectively (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3i 0.91 (1) 1.70 (1) 2.6046 (18) 172 (5)
O2—H19A⋯O5ii 0.80 (4) 1.89 (4) 2.6702 (18) 165 (4)
C7—H7A⋯O2 0.99 2.54 3.232 (2) 127
C9—H9A⋯O3 1.00 2.18 3.009 (2) 139
C28—H28B⋯O1iii 0.99 2.49 3.477 (3) 173
C29—H29A⋯O4iv 0.98 2.57 3.497 (3) 158
C30—H30A⋯O3 0.98 2.58 3.221 (3) 123
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) x+1, y-1, z; (iv) [-x+2, y-{\script{1\over 2}}, -z+1].

3. Supra­molecular features

In the crystal, mol­ecules are linked into chains parallel to the a axis through pairs of O—H⋯O hydrogen bonds, forming R22(8) rings. These chains are further connected into layers parallel to the ab plane by C—H⋯O hydrogen bonds (Table 1[link]; Fig. 2[link]).

[Figure 2]
Figure 2
The crystal packing of the title compound viewed down the a axis. Only H atoms involved in hydrogen bonding are shown.

4. Hirshfeld surface analysis

An Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) of the title compound was carried out (Fig. 3[link]) to investigate the location of atoms with potential to form hydrogen bonds and the qu­anti­tative ratio of these inter­actions. The analysis of the crystal structure suggests that the most important inter­action is H⋯H contributing 79.4% to the overall crystal packing. The other important inter­action is O⋯H, contributing 20.4% towards the crystal packing. The weakest inter­molecular contact for the cohesion of the structure is O⋯O, found to contribute only 0.4%. The graphical representation of the Hirshfeld surface (Fig. 4[link]) suggests the locations of inter­molecular contacts. These contacts are represented by conventional mapping of dnorm on mol­ecular Hirshfeld surfaces as shown in Fig. 3[link]. The H⋯H contribution for the crystal packing is shown as a Hirshfeld surface two-dimensional fingerprint plot with red dots (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]). The de (y axis) and di (x axis) values are the closest external and inter­nal distances (Å) from a given points on the Hirshfeld surface contacts (Fig. 4[link]).

[Figure 3]
Figure 3
dnorm mapped on Hirshfeld surface for visualizing the inter-contacts of the title compound. Dashed lines indicate hydrogen bonds.
[Figure 4]
Figure 4
Two-dimensional fingerprint plot analysis of (a) all inter­actions, (b) H⋯H contacts, (c) O⋯H contacts and (d) O⋯O contacts. The outline of the full fingerprint plots is shown in grey. di is the closet inter­nal distance from a given point on the Hirshfeld surface and de is the closest external contact.

5. Synthesis and crystallization

The stem bark of N. pobeguinii (Pobég. ex Pellegr.) Merr. ex E·M.A., Rubiaceae, were collected in March 2015 from Makénéné, Centre Region of Cameroon, identified by Dr Njouonkou André Ledoux and Mr Tacham Walter Ndam, lecturers in botany at the Department of Biological Sciences, Faculty of Science, The University of Bamenda, and compared with voucher specimens formerly kept at the National Herbarium under the registration number (32597/HNC). 7.2 kg of the air-dried and ground stem bark of N. pobeguinii was extracted with MeOH (3 × 20 L) at room temperature and allowed to concentrate under reduced pressure at low temperature to obtain 1000 g of brown crude extract. The extract was subjected to medium pressure liquid column chromatography over silica gel (Merck, 230–400 mesh) eluting with n-hexane, n-hexa­ne/EtOAc, EtOAc and EtOAc/MeOH, in increasing order of polarity to yield quafrinoic acid (25 mg). The purified compound was recrystallized by slow evaporation of a methanol solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on methyl, methyl­ene and methine carbon atoms were positioned geometrically with C—H = 0.96 Å (CH3), 0.97 Å (CH2) and 0.93 Å (CH) and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The carb­oxy H atoms were located in a difference-Fourier map and refined isotropically, with the O4—H4 bond length constrained to be 0.90 (1) Å.

Table 2
Experimental details

Crystal data
Chemical formula C30H44O5
Mr 484.65
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 8.3465 (2), 10.9783 (3), 14.6583 (4)
β (°) 101.056 (1)
V3) 1318.22 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.64
Crystal size (mm) 0.45 × 0.23 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.760, 0.927
No. of measured, independent and observed [I > 2σ(I)] reflections 28696, 5116, 5023
Rint 0.042
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.06
No. of reflections 5116
No. of parameters 325
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.70, −0.31
Absolute structure Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]
Absolute structure parameter 0.14 (17)
Computer programs: SMART and SAINT (Bruker, 2009[Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3-Oxours-12-ene-27a,28-dioic acid top
Crystal data top
C30H44O5F(000) = 528
Mr = 484.65Dx = 1.221 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 8.3465 (2) ÅCell parameters from 9925 reflections
b = 10.9783 (3) Åθ = 5.1–72.1°
c = 14.6583 (4) ŵ = 0.64 mm1
β = 101.056 (1)°T = 100 K
V = 1318.22 (6) Å3Block, colourless
Z = 20.45 × 0.23 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5116 independent reflections
Radiation source: fine-focus sealed tube5023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 72.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.760, Tmax = 0.927k = 1213
28696 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.4209P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.70 e Å3
5116 reflectionsΔρmin = 0.31 e Å3
325 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0047 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack, 1983
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.14 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27554 (19)0.9227 (2)0.81577 (14)0.0587 (6)
O20.63334 (15)0.29733 (12)0.81088 (9)0.0213 (3)
O30.56617 (14)0.43709 (13)0.70046 (8)0.0232 (3)
O41.26493 (17)0.36149 (16)0.66220 (11)0.0376 (4)
O51.31424 (15)0.25278 (16)0.79245 (10)0.0328 (3)
C10.6083 (2)0.84362 (18)0.72071 (13)0.0250 (4)
H1A0.67150.87430.67480.030*
H1B0.52910.78290.68890.030*
C20.5145 (2)0.9494 (2)0.75258 (15)0.0315 (4)
H2A0.59191.01460.77860.038*
H2B0.43780.98330.69860.038*
C30.4206 (2)0.90781 (18)0.82544 (14)0.0295 (4)
C40.5182 (2)0.84228 (17)0.91042 (13)0.0235 (4)
C50.62587 (19)0.74263 (16)0.87525 (12)0.0190 (3)
H5A0.54530.68180.84300.023*
C60.7330 (2)0.66974 (17)0.95315 (12)0.0217 (4)
H6A0.83520.71480.97700.026*
H6B0.67450.65721.00510.026*
C70.7722 (2)0.54683 (17)0.91361 (11)0.0206 (3)
H7A0.66920.50100.89380.025*
H7B0.84190.49940.96340.025*
C80.85976 (19)0.55753 (17)0.83033 (11)0.0186 (3)
C90.7771 (2)0.65618 (17)0.75961 (11)0.0192 (3)
H9A0.67220.61850.72770.023*
C100.7266 (2)0.77963 (16)0.80027 (12)0.0204 (4)
C110.8786 (2)0.67108 (18)0.68322 (14)0.0281 (4)
H11A0.81690.72120.63210.034*
H11B0.98130.71440.70900.034*
C120.9178 (2)0.55000 (19)0.64540 (13)0.0262 (4)
H12A0.95840.55080.58910.031*
C130.90136 (19)0.44199 (17)0.68303 (11)0.0195 (3)
C140.84932 (18)0.42886 (17)0.77766 (11)0.0175 (3)
C150.96004 (19)0.33334 (16)0.83675 (11)0.0171 (3)
H15A1.06920.36970.85840.021*
H15B0.91370.31410.89240.021*
C160.98026 (19)0.21453 (16)0.78546 (12)0.0185 (3)
H16A0.87340.17280.76950.022*
H16B1.05630.16010.82690.022*
C171.0464 (2)0.23782 (16)0.69610 (12)0.0194 (4)
C180.9318 (2)0.32589 (17)0.63186 (12)0.0211 (4)
H18A0.99050.35070.58140.025*
C190.6708 (2)0.38454 (17)0.76152 (11)0.0174 (3)
C201.0395 (2)0.59073 (18)0.86730 (14)0.0258 (4)
H20A1.04530.66930.89960.039*
H20B1.09730.59640.81520.039*
H20C1.09040.52770.91070.039*
C210.8701 (2)0.86653 (17)0.83604 (14)0.0254 (4)
H21A0.92720.88560.78530.038*
H21B0.94600.82730.88690.038*
H21C0.82830.94190.85870.038*
C220.6152 (2)0.93770 (19)0.97522 (14)0.0301 (4)
H22A0.53960.99670.99400.045*
H22B0.69080.98010.94250.045*
H22C0.67700.89721.03050.045*
C230.3981 (2)0.78061 (19)0.96218 (14)0.0283 (4)
H23A0.33030.84260.98440.042*
H23B0.45870.73511.01530.042*
H23C0.32840.72460.92010.042*
C241.2189 (2)0.29000 (17)0.71987 (12)0.0206 (3)
C250.7705 (2)0.26347 (19)0.58354 (13)0.0248 (4)
H25A0.70310.24610.63160.030*
C260.8008 (3)0.1421 (2)0.53560 (14)0.0326 (5)
H26A0.85740.16130.48310.039*
C270.9097 (2)0.0580 (2)0.60201 (14)0.0307 (4)
H27A0.93160.01640.56820.037*
H27B0.85190.03310.65200.037*
C281.0706 (2)0.11713 (18)0.64521 (14)0.0266 (4)
H28A1.13380.13400.59590.032*
H28B1.13480.05980.69000.032*
C290.6414 (3)0.0764 (3)0.49574 (18)0.0475 (6)
H29A0.66560.00040.46590.071*
H29B0.57340.12870.44970.071*
H29C0.58300.05780.54600.071*
C300.6761 (3)0.3486 (2)0.51214 (15)0.0378 (5)
H30A0.65680.42570.54200.057*
H30B0.57120.31140.48470.057*
H30C0.73890.36420.46330.057*
H19A0.539 (5)0.281 (4)0.796 (3)0.082 (12)*
H4A1.367 (3)0.391 (5)0.680 (4)0.14 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0238 (8)0.0760 (14)0.0769 (12)0.0147 (8)0.0113 (8)0.0335 (11)
O20.0138 (5)0.0251 (7)0.0263 (6)0.0035 (5)0.0067 (4)0.0021 (5)
O30.0123 (5)0.0291 (7)0.0266 (6)0.0014 (5)0.0003 (4)0.0041 (5)
O40.0185 (6)0.0464 (10)0.0495 (9)0.0092 (6)0.0106 (6)0.0124 (7)
O50.0139 (6)0.0527 (9)0.0318 (7)0.0003 (6)0.0041 (5)0.0018 (6)
C10.0204 (8)0.0245 (9)0.0283 (9)0.0002 (7)0.0004 (7)0.0056 (7)
C20.0255 (9)0.0282 (11)0.0386 (10)0.0046 (8)0.0002 (8)0.0076 (8)
C30.0225 (9)0.0230 (10)0.0414 (10)0.0048 (7)0.0024 (8)0.0016 (8)
C40.0178 (8)0.0217 (9)0.0303 (9)0.0001 (7)0.0030 (7)0.0035 (7)
C50.0146 (7)0.0187 (8)0.0229 (8)0.0023 (6)0.0019 (6)0.0014 (6)
C60.0226 (8)0.0214 (9)0.0206 (8)0.0003 (7)0.0029 (7)0.0018 (7)
C70.0209 (8)0.0211 (9)0.0191 (7)0.0016 (7)0.0026 (6)0.0017 (7)
C80.0143 (7)0.0198 (8)0.0212 (8)0.0002 (6)0.0020 (6)0.0025 (7)
C90.0162 (7)0.0204 (9)0.0210 (8)0.0015 (6)0.0034 (6)0.0041 (7)
C100.0163 (7)0.0171 (9)0.0273 (8)0.0006 (6)0.0026 (6)0.0029 (7)
C110.0308 (9)0.0240 (10)0.0328 (10)0.0003 (8)0.0141 (8)0.0095 (7)
C120.0259 (9)0.0295 (10)0.0265 (9)0.0002 (8)0.0137 (7)0.0041 (8)
C130.0124 (7)0.0265 (9)0.0199 (8)0.0019 (7)0.0042 (6)0.0025 (7)
C140.0103 (7)0.0217 (8)0.0202 (7)0.0022 (6)0.0021 (5)0.0028 (7)
C150.0118 (7)0.0209 (8)0.0186 (7)0.0014 (6)0.0028 (6)0.0021 (6)
C160.0134 (7)0.0200 (9)0.0226 (8)0.0007 (6)0.0043 (6)0.0025 (7)
C170.0136 (7)0.0224 (9)0.0231 (8)0.0024 (6)0.0057 (6)0.0021 (7)
C180.0157 (7)0.0294 (10)0.0192 (8)0.0032 (7)0.0058 (6)0.0013 (7)
C190.0123 (7)0.0225 (9)0.0186 (7)0.0009 (6)0.0059 (6)0.0000 (6)
C200.0160 (8)0.0222 (9)0.0369 (10)0.0025 (6)0.0006 (7)0.0020 (7)
C210.0189 (8)0.0196 (9)0.0371 (10)0.0039 (7)0.0040 (7)0.0023 (7)
C220.0266 (9)0.0245 (10)0.0382 (10)0.0022 (8)0.0036 (8)0.0081 (8)
C230.0249 (9)0.0262 (10)0.0355 (10)0.0009 (8)0.0101 (7)0.0057 (8)
C240.0156 (7)0.0243 (9)0.0237 (8)0.0002 (7)0.0082 (6)0.0025 (7)
C250.0173 (8)0.0331 (10)0.0228 (8)0.0050 (7)0.0010 (6)0.0005 (7)
C260.0323 (10)0.0416 (12)0.0255 (9)0.0099 (9)0.0094 (8)0.0086 (9)
C270.0333 (10)0.0301 (11)0.0316 (10)0.0093 (9)0.0137 (8)0.0097 (8)
C280.0243 (9)0.0261 (10)0.0317 (10)0.0007 (7)0.0109 (7)0.0041 (8)
C290.0463 (13)0.0494 (15)0.0411 (12)0.0124 (12)0.0062 (10)0.0105 (11)
C300.0314 (10)0.0439 (13)0.0355 (11)0.0079 (9)0.0003 (8)0.0029 (9)
Geometric parameters (Å, º) top
O1—C31.203 (3)C14—C151.548 (2)
O2—C191.275 (2)C15—C161.531 (2)
O2—H19A0.79 (4)C15—H15A0.9900
O3—C191.264 (2)C15—H15B0.9900
O4—C241.266 (2)C16—C171.537 (2)
O4—H4A0.906 (10)C16—H16A0.9900
O5—C241.268 (2)C16—H16B0.9900
C1—C21.523 (3)C17—C241.526 (2)
C1—C101.545 (2)C17—C181.546 (2)
C1—H1A0.9900C17—C281.553 (3)
C1—H1B0.9900C18—C251.555 (2)
C2—C31.511 (3)C18—H18A1.0000
C2—H2A0.9900C20—H20A0.9800
C2—H2B0.9900C20—H20B0.9800
C3—C41.531 (3)C20—H20C0.9800
C4—C231.526 (3)C21—H21A0.9800
C4—C221.536 (3)C21—H21B0.9800
C4—C51.565 (2)C21—H21C0.9800
C5—C61.534 (2)C22—H22A0.9800
C5—C101.560 (2)C22—H22B0.9800
C5—H5A1.0000C22—H22C0.9800
C6—C71.529 (2)C23—H23A0.9800
C6—H6A0.9900C23—H23B0.9800
C6—H6B0.9900C23—H23C0.9800
C7—C81.543 (2)C25—C301.508 (3)
C7—H7A0.9900C25—C261.550 (3)
C7—H7B0.9900C25—H25A1.0000
C8—C201.538 (2)C26—C271.512 (3)
C8—C91.565 (2)C26—C291.528 (3)
C8—C141.604 (2)C26—H26A1.0000
C9—C111.537 (2)C27—C281.517 (3)
C9—C101.571 (2)C27—H27A0.9900
C9—H9A1.0000C27—H27B0.9900
C10—C211.543 (2)C28—H28A0.9900
C11—C121.501 (3)C28—H28B0.9900
C11—H11A0.9900C29—H29A0.9800
C11—H11B0.9900C29—H29B0.9800
C12—C131.326 (3)C29—H29C0.9800
C12—H12A0.9500C30—H30A0.9800
C13—C181.525 (3)C30—H30B0.9800
C13—C141.538 (2)C30—H30C0.9800
C14—C191.542 (2)
C19—O2—H19A111 (3)C15—C16—H16A109.3
C24—O4—H4A115 (3)C17—C16—H16A109.3
C2—C1—C10113.99 (16)C15—C16—H16B109.3
C2—C1—H1A108.8C17—C16—H16B109.3
C10—C1—H1A108.8H16A—C16—H16B108.0
C2—C1—H1B108.8C24—C17—C16110.18 (13)
C10—C1—H1B108.8C24—C17—C18110.52 (14)
H1A—C1—H1B107.6C16—C17—C18109.97 (13)
C3—C2—C1110.69 (17)C24—C17—C28103.06 (13)
C3—C2—H2A109.5C16—C17—C28111.63 (15)
C1—C2—H2A109.5C18—C17—C28111.31 (14)
C3—C2—H2B109.5C13—C18—C17111.42 (13)
C1—C2—H2B109.5C13—C18—C25112.39 (14)
H2A—C2—H2B108.1C17—C18—C25112.48 (15)
O1—C3—C2121.49 (18)C13—C18—H18A106.7
O1—C3—C4121.75 (19)C17—C18—H18A106.7
C2—C3—C4116.73 (16)C25—C18—H18A106.7
C23—C4—C3108.39 (15)O3—C19—O2122.26 (15)
C23—C4—C22108.26 (15)O3—C19—C14118.73 (15)
C3—C4—C22108.53 (16)O2—C19—C14119.00 (15)
C23—C4—C5109.09 (15)C8—C20—H20A109.5
C3—C4—C5108.06 (15)C8—C20—H20B109.5
C22—C4—C5114.37 (14)H20A—C20—H20B109.5
C6—C5—C10110.16 (13)C8—C20—H20C109.5
C6—C5—C4114.15 (14)H20A—C20—H20C109.5
C10—C5—C4118.11 (14)H20B—C20—H20C109.5
C6—C5—H5A104.2C10—C21—H21A109.5
C10—C5—H5A104.2C10—C21—H21B109.5
C4—C5—H5A104.2H21A—C21—H21B109.5
C7—C6—C5108.36 (13)C10—C21—H21C109.5
C7—C6—H6A110.0H21A—C21—H21C109.5
C5—C6—H6A110.0H21B—C21—H21C109.5
C7—C6—H6B110.0C4—C22—H22A109.5
C5—C6—H6B110.0C4—C22—H22B109.5
H6A—C6—H6B108.4H22A—C22—H22B109.5
C6—C7—C8113.65 (15)C4—C22—H22C109.5
C6—C7—H7A108.8H22A—C22—H22C109.5
C8—C7—H7A108.8H22B—C22—H22C109.5
C6—C7—H7B108.8C4—C23—H23A109.5
C8—C7—H7B108.8C4—C23—H23B109.5
H7A—C7—H7B107.7H23A—C23—H23B109.5
C20—C8—C7108.50 (14)C4—C23—H23C109.5
C20—C8—C9110.22 (14)H23A—C23—H23C109.5
C7—C8—C9111.18 (13)H23B—C23—H23C109.5
C20—C8—C14109.73 (14)O4—C24—O5122.53 (16)
C7—C8—C14108.88 (14)O4—C24—C17118.30 (15)
C9—C8—C14108.31 (12)O5—C24—C17118.91 (15)
C11—C9—C8108.79 (14)C30—C25—C26109.11 (16)
C11—C9—C10114.23 (15)C30—C25—C18109.54 (17)
C8—C9—C10117.53 (13)C26—C25—C18112.50 (15)
C11—C9—H9A105.0C30—C25—H25A108.5
C8—C9—H9A105.0C26—C25—H25A108.5
C10—C9—H9A105.0C18—C25—H25A108.5
C21—C10—C1108.51 (14)C27—C26—C29109.2 (2)
C21—C10—C5114.20 (14)C27—C26—C25111.32 (15)
C1—C10—C5107.32 (13)C29—C26—C25111.93 (19)
C21—C10—C9114.51 (14)C27—C26—H26A108.1
C1—C10—C9106.57 (14)C29—C26—H26A108.1
C5—C10—C9105.25 (13)C25—C26—H26A108.1
C12—C11—C9111.40 (15)C26—C27—C28112.44 (17)
C12—C11—H11A109.3C26—C27—H27A109.1
C9—C11—H11A109.3C28—C27—H27A109.1
C12—C11—H11B109.3C26—C27—H27B109.1
C9—C11—H11B109.3C28—C27—H27B109.1
H11A—C11—H11B108.0H27A—C27—H27B107.8
C13—C12—C11126.23 (15)C27—C28—C17112.29 (15)
C13—C12—H12A116.9C27—C28—H28A109.1
C11—C12—H12A116.9C17—C28—H28A109.1
C12—C13—C18120.17 (15)C27—C28—H28B109.1
C12—C13—C14121.93 (17)C17—C28—H28B109.1
C18—C13—C14117.89 (15)H28A—C28—H28B107.9
C13—C14—C19108.85 (13)C26—C29—H29A109.5
C13—C14—C15109.06 (13)C26—C29—H29B109.5
C19—C14—C15109.13 (14)H29A—C29—H29B109.5
C13—C14—C8110.66 (14)C26—C29—H29C109.5
C19—C14—C8108.26 (13)H29A—C29—H29C109.5
C15—C14—C8110.83 (12)H29B—C29—H29C109.5
C16—C15—C14114.36 (13)C25—C30—H30A109.5
C16—C15—H15A108.7C25—C30—H30B109.5
C14—C15—H15A108.7H30A—C30—H30B109.5
C16—C15—H15B108.7C25—C30—H30C109.5
C14—C15—H15B108.7H30A—C30—H30C109.5
H15A—C15—H15B107.6H30B—C30—H30C109.5
C15—C16—C17111.60 (14)
C10—C1—C2—C356.5 (2)C20—C8—C14—C1373.60 (17)
C1—C2—C3—O1124.2 (2)C7—C8—C14—C13167.79 (13)
C1—C2—C3—C453.9 (2)C9—C8—C14—C1346.77 (16)
O1—C3—C4—C2312.1 (3)C20—C8—C14—C19167.19 (14)
C2—C3—C4—C23165.95 (17)C7—C8—C14—C1948.58 (16)
O1—C3—C4—C22105.2 (2)C9—C8—C14—C1972.45 (15)
C2—C3—C4—C2276.7 (2)C20—C8—C14—C1547.54 (17)
O1—C3—C4—C5130.2 (2)C7—C8—C14—C1571.08 (15)
C2—C3—C4—C547.9 (2)C9—C8—C14—C15167.90 (12)
C23—C4—C5—C663.04 (19)C13—C14—C15—C1648.13 (18)
C3—C4—C5—C6179.32 (15)C19—C14—C15—C1670.66 (16)
C22—C4—C5—C658.3 (2)C8—C14—C15—C16170.20 (12)
C23—C4—C5—C10165.07 (15)C14—C15—C16—C1756.47 (17)
C3—C4—C5—C1047.43 (19)C15—C16—C17—C2464.84 (18)
C22—C4—C5—C1073.5 (2)C15—C16—C17—C1857.23 (17)
C10—C5—C6—C768.31 (17)C15—C16—C17—C28178.72 (14)
C4—C5—C6—C7156.07 (14)C12—C13—C18—C17130.96 (17)
C5—C6—C7—C858.19 (18)C14—C13—C18—C1749.90 (18)
C6—C7—C8—C2076.36 (18)C12—C13—C18—C25101.75 (19)
C6—C7—C8—C945.00 (19)C14—C13—C18—C2577.39 (18)
C6—C7—C8—C14164.25 (13)C24—C17—C18—C1368.80 (17)
C20—C8—C9—C1154.48 (19)C16—C17—C18—C1353.07 (18)
C7—C8—C9—C11174.83 (15)C28—C17—C18—C13177.31 (13)
C14—C8—C9—C1165.58 (17)C24—C17—C18—C25163.96 (13)
C20—C8—C9—C1077.29 (18)C16—C17—C18—C2574.17 (17)
C7—C8—C9—C1043.06 (19)C28—C17—C18—C2550.07 (18)
C14—C8—C9—C10162.65 (13)C13—C14—C19—O347.5 (2)
C2—C1—C10—C2170.20 (19)C15—C14—C19—O3166.42 (15)
C2—C1—C10—C553.7 (2)C8—C14—C19—O372.86 (18)
C2—C1—C10—C9166.01 (15)C13—C14—C19—O2133.37 (16)
C6—C5—C10—C2163.99 (19)C15—C14—C19—O214.4 (2)
C4—C5—C10—C2169.65 (19)C8—C14—C19—O2106.28 (17)
C6—C5—C10—C1175.69 (14)C16—C17—C24—O4149.64 (17)
C4—C5—C10—C150.67 (19)C18—C17—C24—O427.9 (2)
C6—C5—C10—C962.44 (16)C28—C17—C24—O491.1 (2)
C4—C5—C10—C9163.91 (14)C16—C17—C24—O536.0 (2)
C11—C9—C10—C2153.9 (2)C18—C17—C24—O5157.70 (16)
C8—C9—C10—C2175.37 (18)C28—C17—C24—O583.28 (19)
C11—C9—C10—C166.10 (18)C13—C18—C25—C3061.30 (19)
C8—C9—C10—C1164.65 (14)C17—C18—C25—C30171.98 (15)
C11—C9—C10—C5179.87 (14)C13—C18—C25—C26177.17 (14)
C8—C9—C10—C550.88 (17)C17—C18—C25—C2650.45 (19)
C8—C9—C11—C1248.4 (2)C30—C25—C26—C27174.28 (17)
C10—C9—C11—C12178.13 (15)C18—C25—C26—C2752.5 (2)
C9—C11—C12—C1313.7 (3)C30—C25—C26—C2963.2 (2)
C11—C12—C13—C18174.45 (18)C18—C25—C26—C29175.04 (18)
C11—C12—C13—C144.7 (3)C29—C26—C27—C28179.62 (17)
C12—C13—C14—C19106.02 (19)C25—C26—C27—C2855.5 (2)
C18—C13—C14—C1973.11 (18)C26—C27—C28—C1756.3 (2)
C12—C13—C14—C15135.01 (17)C24—C17—C28—C27171.43 (15)
C18—C13—C14—C1545.86 (18)C16—C17—C28—C2770.3 (2)
C12—C13—C14—C812.8 (2)C18—C17—C28—C2753.0 (2)
C18—C13—C14—C8168.04 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.91 (1)1.70 (1)2.6046 (18)172 (5)
O2—H19A···O5ii0.80 (4)1.89 (4)2.6702 (18)165 (4)
C7—H7A···O20.992.543.232 (2)127
C9—H9A···O31.002.183.009 (2)139
C28—H28B···O1iii0.992.493.477 (3)173
C29—H29A···O4iv0.982.573.497 (3)158
C30—H30A···O30.982.583.221 (3)123
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y1, z; (iv) x+2, y1/2, z+1.
 

Footnotes

Additional corresponding author, email: bk_jeanjules@yahoo.fr.

Acknowledgements

BJKK is very grateful to The World Academy of Sciences (TWAS) and the Inter­national Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan for their financial and technical support through the ICCBS–TWAS Postdoctoral Fellowship number 3240280476 granted to BKJJ.

References

First citationAgnaniet, H., Mbot, E. J., Keita, O., Fehrentz, J.-A., Ankli, A., Gallud, A., Garcia, M., Gary-Bobo, M., Lebibi, J., Cresteil, T. & Menut, C. (2016). BMC Complement. Altern. Med. 16, 71–78.  CrossRef PubMed Google Scholar
First citationAjaiyeoba, E. O. & Krebs, H. C. (2003). Nigerian J. Nat. Prod. Med. 7, 39–41.  CAS Google Scholar
First citationAwang, K., Abdullah, N. H., Thomas, N. F. & Ng, S. W. (2009). Acta Cryst. E65, o2113.  CrossRef IUCr Journals Google Scholar
First citationBruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, T. & Taylor, C. M. (2011). Nauclea linnaeus, sp. P1, in Flora of China, edited by Z.-Y. Wu, P. H. Raven & D.-Y. Hong, Vol. 19, p. 249. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press.  Google Scholar
First citationCsuk, R., Barthel-Niesen, N., Ströhl, D., Kluge, R., Wagner, C. & Al-Harrasi, A. (2015). Tetrahedron, 71, 2025–2034.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKuete, V., Sandjo, L. P., Mbaveng, A. T., Seukep, J. A., Ngadjui, B. T. & Efferth, T. (2015). BMC Complementary Alternative Med. 309, 1–9.  Google Scholar
First citationMesia, K., Tona, L., Mampunza, M. M., Ntamabyaliro, N., Muanda, T., Muyembe, T., Cimanga, K., Totté, J., Mets, T., Pieters, L. & Vlietinck, A. J. (2012). Planta Med. 78, 211–218.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar
First citationXu, Y.-J., Foubert, K., Dhooghe, L., Lemière, F., Cimanga, K., Mesia, K., Apers, S. & Pieters, L. (2012). Phytochemistry Lett. 5, 316–319.  CrossRef CAS Google Scholar
First citationZeches, M., Richard, B., Gueye-M'Bahia, L., Le Men-Olivier, L. & Delaude, C. (1985). J. Nat. Prod. 48, 42–46.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds