research communications
and Hirshfeld surface analysis of 3-oxours-12-ene-27a,28-dioic acid (quafrinoic acid)
aDepartment of Chemistry, Faculty of Science, The University of Bamenda, PO Box 39, Bambili, Cameroon, bDepartment of Chemistry, Faculty of Science, University of Yaoundé I, PO Box 812, Yaoundé, Cameroon, cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and dDepartment of Chemistry, Higher Teacher Training College, University of Yaounde I, PO Box 47 Yaoundé, Cameroon
*Correspondence e-mail: dr.sammer.yousuf@gmail.com
The title compound, C30H44O5, is a pentacyclic triterpene isolated from the Cameroonian medicinal plant Nauclea Pobeguinii and known as quafrinoic acid. The molecule is composed of five fused six-membered rings, four of which adopt a chair conformation and one a half-chair conformation. Intramolecular C—H⋯O hydrogen-bond interactions exist, which generate S6 and S8 rings. In the crystal, molecules are linked by pairs of O—H⋯O hydrogen bonds, linking R22(8) rings into chains running parallel to the a axis; these chains are further connected into layers parallel to the ab plane by C—H⋯O hydrogen bonds. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (79.4%) and O⋯H (20.4%) interactions.
Keywords: crystal structure; pentacyclic triterpene; quafrinoic acid; Nauclea pobeguiniia; Hirshfeld surface analysis.
CCDC reference: 1545425
1. Chemical context
Nauclea is a well-known genus of the Rubiaceae family consisting of 35 species of which ten are distributed in tropical Africa, Asia and Australia (Chen & Taylor, 2011). Several specimens of this genus, including Nauclea pobeguinii, are largely used in traditional medicine in Africa. During the last decade, many studies have been carried out on N. pobeguinii to explore its medicinal potential and promising results have made it an attractive target for researchers. The 80% ethanolic stem bark extract of N. pobeguinii has been successfully used in clinical trials for the treatment of uncomplicated malaria (Mesia et al., 2012). The plant is also reported to have cytotoxic, anti-cancer (Kuete et al., 2015) and anti-diabetic properties (Agnaniet et al., 2016). The phytochemical investigations of N. pobeguinii have led to the isolation of monoterpene indole triterpenes and phenolic compounds (Kuete et al., 2015; Xu et al., 2012; Zeches et al., 1985). In a continuation of our phytochemical investigation of Cameroonian medicinal plants, we have examined the stem bark of N. pobeguinii and isolated quafrinoic acid. Although the atomic connectivity of quafrinoic acid has already been determined by spectroscopic methods (Ajaiyeoba & Krebs, 2003), we report herein the single crystal X-ray diffraction structure and Hirshfeld surface analysis of quafrinoic acid for the first time.
2. Structural commentary
The title compound C30H44O5, is a pentacyclic triterpene composed of five fused six-membered rings A (C1–C5/C10), B (C5–C10), C (C8–C9/C11–C14), D (C14–C18) and E (C17–C18/C25–C28) (Fig. 1). Rings A, B, D and E each exhibit a chair conformation, whereas ring C has a half-chair conformation. Rings A/B, B/C and C/D are trans fused to each other along the C5—C10, C8—C9, and C13—C14 bonds, respectively. Rings D and E are cis fused along the C17—C18 bond along with the axially oriented carboxylic acid functionalities at C14 and C17. The bond dimensions are similar to those found in structurally related compounds (Csuk et al., 2015; Awang et al., 2009).
The molecular conformation is stabilized by intramolecular hydrogen-bonding interactions involving as acceptors the oxygen atoms of the axially oriented carboxylic group O2/O3/C19 via C7—H7A⋯O3, C9—H9A⋯O3 and C30—H30A⋯O3 hydrogen bonds and forming rings with S(6), S(6) and S(8) graph-set motifs, respectively (Table 1).
3. Supramolecular features
In the crystal, molecules are linked into chains parallel to the a axis through pairs of O—H⋯O hydrogen bonds, forming R22(8) rings. These chains are further connected into layers parallel to the ab plane by C—H⋯O hydrogen bonds (Table 1; Fig. 2).
4. Hirshfeld surface analysis
An Hirshfeld surface analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) of the title compound was carried out (Fig. 3) to investigate the location of atoms with potential to form hydrogen bonds and the quantitative ratio of these interactions. The analysis of the suggests that the most important interaction is H⋯H contributing 79.4% to the overall crystal packing. The other important interaction is O⋯H, contributing 20.4% towards the crystal packing. The weakest intermolecular contact for the cohesion of the structure is O⋯O, found to contribute only 0.4%. The graphical representation of the Hirshfeld surface (Fig. 4) suggests the locations of intermolecular contacts. These contacts are represented by conventional mapping of dnorm on molecular Hirshfeld surfaces as shown in Fig. 3. The H⋯H contribution for the crystal packing is shown as a Hirshfeld surface two-dimensional fingerprint plot with red dots (Wolff et al., 2012). The de (y axis) and di (x axis) values are the closest external and internal distances (Å) from a given points on the Hirshfeld surface contacts (Fig. 4).
5. Synthesis and crystallization
The stem bark of N. pobeguinii (Pobég. ex Pellegr.) Merr. ex E·M.A., Rubiaceae, were collected in March 2015 from Makénéné, Centre Region of Cameroon, identified by Dr Njouonkou André Ledoux and Mr Tacham Walter Ndam, lecturers in botany at the Department of Biological Sciences, Faculty of Science, The University of Bamenda, and compared with voucher specimens formerly kept at the National Herbarium under the registration number (32597/HNC). 7.2 kg of the air-dried and ground stem bark of N. pobeguinii was extracted with MeOH (3 × 20 L) at room temperature and allowed to concentrate under reduced pressure at low temperature to obtain 1000 g of brown crude extract. The extract was subjected to medium pressure liquid over silica gel (Merck, 230–400 mesh) eluting with n-hexane, n-hexane/EtOAc, EtOAc and EtOAc/MeOH, in increasing order of polarity to yield quafrinoic acid (25 mg). The purified compound was recrystallized by slow evaporation of a methanol solution at room temperature.
6. Refinement
Crystal data, data collection and structure . H atoms on methyl, methylene and methine carbon atoms were positioned geometrically with C—H = 0.96 Å (CH3), 0.97 Å (CH2) and 0.93 Å (CH) and constrained to ride on their parent atoms with Uiso(H)= 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The carboxy H atoms were located in a difference-Fourier map and refined isotropically, with the O4—H4 bond length constrained to be 0.90 (1) Å.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1545425
https://doi.org/10.1107/S2056989017006077/rz5213sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017006077/rz5213Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017006077/rz5213Isup3.cml
Data collection: SMART (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C30H44O5 | F(000) = 528 |
Mr = 484.65 | Dx = 1.221 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 8.3465 (2) Å | Cell parameters from 9925 reflections |
b = 10.9783 (3) Å | θ = 5.1–72.1° |
c = 14.6583 (4) Å | µ = 0.64 mm−1 |
β = 101.056 (1)° | T = 100 K |
V = 1318.22 (6) Å3 | Block, colourless |
Z = 2 | 0.45 × 0.23 × 0.12 mm |
Bruker SMART APEX CCD area-detector diffractometer | 5116 independent reflections |
Radiation source: fine-focus sealed tube | 5023 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
ω scans | θmax = 72.2°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→10 |
Tmin = 0.760, Tmax = 0.927 | k = −12→13 |
28696 measured reflections | l = −18→18 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0718P)2 + 0.4209P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.115 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.70 e Å−3 |
5116 reflections | Δρmin = −0.31 e Å−3 |
325 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.0047 (12) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack, 1983 |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.14 (17) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.27554 (19) | 0.9227 (2) | 0.81577 (14) | 0.0587 (6) | |
O2 | 0.63334 (15) | 0.29733 (12) | 0.81088 (9) | 0.0213 (3) | |
O3 | 0.56617 (14) | 0.43709 (13) | 0.70046 (8) | 0.0232 (3) | |
O4 | 1.26493 (17) | 0.36149 (16) | 0.66220 (11) | 0.0376 (4) | |
O5 | 1.31424 (15) | 0.25278 (16) | 0.79245 (10) | 0.0328 (3) | |
C1 | 0.6083 (2) | 0.84362 (18) | 0.72071 (13) | 0.0250 (4) | |
H1A | 0.6715 | 0.8743 | 0.6748 | 0.030* | |
H1B | 0.5291 | 0.7829 | 0.6889 | 0.030* | |
C2 | 0.5145 (2) | 0.9494 (2) | 0.75258 (15) | 0.0315 (4) | |
H2A | 0.5919 | 1.0146 | 0.7786 | 0.038* | |
H2B | 0.4378 | 0.9833 | 0.6986 | 0.038* | |
C3 | 0.4206 (2) | 0.90781 (18) | 0.82544 (14) | 0.0295 (4) | |
C4 | 0.5182 (2) | 0.84228 (17) | 0.91042 (13) | 0.0235 (4) | |
C5 | 0.62587 (19) | 0.74263 (16) | 0.87525 (12) | 0.0190 (3) | |
H5A | 0.5453 | 0.6818 | 0.8430 | 0.023* | |
C6 | 0.7330 (2) | 0.66974 (17) | 0.95315 (12) | 0.0217 (4) | |
H6A | 0.8352 | 0.7148 | 0.9770 | 0.026* | |
H6B | 0.6745 | 0.6572 | 1.0051 | 0.026* | |
C7 | 0.7722 (2) | 0.54683 (17) | 0.91361 (11) | 0.0206 (3) | |
H7A | 0.6692 | 0.5010 | 0.8938 | 0.025* | |
H7B | 0.8419 | 0.4994 | 0.9634 | 0.025* | |
C8 | 0.85976 (19) | 0.55753 (17) | 0.83033 (11) | 0.0186 (3) | |
C9 | 0.7771 (2) | 0.65618 (17) | 0.75961 (11) | 0.0192 (3) | |
H9A | 0.6722 | 0.6185 | 0.7277 | 0.023* | |
C10 | 0.7266 (2) | 0.77963 (16) | 0.80027 (12) | 0.0204 (4) | |
C11 | 0.8786 (2) | 0.67108 (18) | 0.68322 (14) | 0.0281 (4) | |
H11A | 0.8169 | 0.7212 | 0.6321 | 0.034* | |
H11B | 0.9813 | 0.7144 | 0.7090 | 0.034* | |
C12 | 0.9178 (2) | 0.55000 (19) | 0.64540 (13) | 0.0262 (4) | |
H12A | 0.9584 | 0.5508 | 0.5891 | 0.031* | |
C13 | 0.90136 (19) | 0.44199 (17) | 0.68303 (11) | 0.0195 (3) | |
C14 | 0.84932 (18) | 0.42886 (17) | 0.77766 (11) | 0.0175 (3) | |
C15 | 0.96004 (19) | 0.33334 (16) | 0.83675 (11) | 0.0171 (3) | |
H15A | 1.0692 | 0.3697 | 0.8584 | 0.021* | |
H15B | 0.9137 | 0.3141 | 0.8924 | 0.021* | |
C16 | 0.98026 (19) | 0.21453 (16) | 0.78546 (12) | 0.0185 (3) | |
H16A | 0.8734 | 0.1728 | 0.7695 | 0.022* | |
H16B | 1.0563 | 0.1601 | 0.8269 | 0.022* | |
C17 | 1.0464 (2) | 0.23782 (16) | 0.69610 (12) | 0.0194 (4) | |
C18 | 0.9318 (2) | 0.32589 (17) | 0.63186 (12) | 0.0211 (4) | |
H18A | 0.9905 | 0.3507 | 0.5814 | 0.025* | |
C19 | 0.6708 (2) | 0.38454 (17) | 0.76152 (11) | 0.0174 (3) | |
C20 | 1.0395 (2) | 0.59073 (18) | 0.86730 (14) | 0.0258 (4) | |
H20A | 1.0453 | 0.6693 | 0.8996 | 0.039* | |
H20B | 1.0973 | 0.5964 | 0.8152 | 0.039* | |
H20C | 1.0904 | 0.5277 | 0.9107 | 0.039* | |
C21 | 0.8701 (2) | 0.86653 (17) | 0.83604 (14) | 0.0254 (4) | |
H21A | 0.9272 | 0.8856 | 0.7853 | 0.038* | |
H21B | 0.9460 | 0.8273 | 0.8869 | 0.038* | |
H21C | 0.8283 | 0.9419 | 0.8587 | 0.038* | |
C22 | 0.6152 (2) | 0.93770 (19) | 0.97522 (14) | 0.0301 (4) | |
H22A | 0.5396 | 0.9967 | 0.9940 | 0.045* | |
H22B | 0.6908 | 0.9801 | 0.9425 | 0.045* | |
H22C | 0.6770 | 0.8972 | 1.0305 | 0.045* | |
C23 | 0.3981 (2) | 0.78061 (19) | 0.96218 (14) | 0.0283 (4) | |
H23A | 0.3303 | 0.8426 | 0.9844 | 0.042* | |
H23B | 0.4587 | 0.7351 | 1.0153 | 0.042* | |
H23C | 0.3284 | 0.7246 | 0.9201 | 0.042* | |
C24 | 1.2189 (2) | 0.29000 (17) | 0.71987 (12) | 0.0206 (3) | |
C25 | 0.7705 (2) | 0.26347 (19) | 0.58354 (13) | 0.0248 (4) | |
H25A | 0.7031 | 0.2461 | 0.6316 | 0.030* | |
C26 | 0.8008 (3) | 0.1421 (2) | 0.53560 (14) | 0.0326 (5) | |
H26A | 0.8574 | 0.1613 | 0.4831 | 0.039* | |
C27 | 0.9097 (2) | 0.0580 (2) | 0.60201 (14) | 0.0307 (4) | |
H27A | 0.9316 | −0.0164 | 0.5682 | 0.037* | |
H27B | 0.8519 | 0.0331 | 0.6520 | 0.037* | |
C28 | 1.0706 (2) | 0.11713 (18) | 0.64521 (14) | 0.0266 (4) | |
H28A | 1.1338 | 0.1340 | 0.5959 | 0.032* | |
H28B | 1.1348 | 0.0598 | 0.6900 | 0.032* | |
C29 | 0.6414 (3) | 0.0764 (3) | 0.49574 (18) | 0.0475 (6) | |
H29A | 0.6656 | 0.0004 | 0.4659 | 0.071* | |
H29B | 0.5734 | 0.1287 | 0.4497 | 0.071* | |
H29C | 0.5830 | 0.0578 | 0.5460 | 0.071* | |
C30 | 0.6761 (3) | 0.3486 (2) | 0.51214 (15) | 0.0378 (5) | |
H30A | 0.6568 | 0.4257 | 0.5420 | 0.057* | |
H30B | 0.5712 | 0.3114 | 0.4847 | 0.057* | |
H30C | 0.7389 | 0.3642 | 0.4633 | 0.057* | |
H19A | 0.539 (5) | 0.281 (4) | 0.796 (3) | 0.082 (12)* | |
H4A | 1.367 (3) | 0.391 (5) | 0.680 (4) | 0.14 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0238 (8) | 0.0760 (14) | 0.0769 (12) | 0.0147 (8) | 0.0113 (8) | 0.0335 (11) |
O2 | 0.0138 (5) | 0.0251 (7) | 0.0263 (6) | −0.0035 (5) | 0.0067 (4) | 0.0021 (5) |
O3 | 0.0123 (5) | 0.0291 (7) | 0.0266 (6) | −0.0014 (5) | −0.0003 (4) | 0.0041 (5) |
O4 | 0.0185 (6) | 0.0464 (10) | 0.0495 (9) | −0.0092 (6) | 0.0106 (6) | 0.0124 (7) |
O5 | 0.0139 (6) | 0.0527 (9) | 0.0318 (7) | −0.0003 (6) | 0.0041 (5) | 0.0018 (6) |
C1 | 0.0204 (8) | 0.0245 (9) | 0.0283 (9) | −0.0002 (7) | 0.0004 (7) | 0.0056 (7) |
C2 | 0.0255 (9) | 0.0282 (11) | 0.0386 (10) | 0.0046 (8) | 0.0002 (8) | 0.0076 (8) |
C3 | 0.0225 (9) | 0.0230 (10) | 0.0414 (10) | 0.0048 (7) | 0.0024 (8) | 0.0016 (8) |
C4 | 0.0178 (8) | 0.0217 (9) | 0.0303 (9) | 0.0001 (7) | 0.0030 (7) | −0.0035 (7) |
C5 | 0.0146 (7) | 0.0187 (8) | 0.0229 (8) | −0.0023 (6) | 0.0019 (6) | −0.0014 (6) |
C6 | 0.0226 (8) | 0.0214 (9) | 0.0206 (8) | −0.0003 (7) | 0.0029 (7) | −0.0018 (7) |
C7 | 0.0209 (8) | 0.0211 (9) | 0.0191 (7) | −0.0016 (7) | 0.0026 (6) | 0.0017 (7) |
C8 | 0.0143 (7) | 0.0198 (8) | 0.0212 (8) | −0.0002 (6) | 0.0020 (6) | 0.0025 (7) |
C9 | 0.0162 (7) | 0.0204 (9) | 0.0210 (8) | −0.0015 (6) | 0.0034 (6) | 0.0041 (7) |
C10 | 0.0163 (7) | 0.0171 (9) | 0.0273 (8) | −0.0006 (6) | 0.0026 (6) | 0.0029 (7) |
C11 | 0.0308 (9) | 0.0240 (10) | 0.0328 (10) | 0.0003 (8) | 0.0141 (8) | 0.0095 (7) |
C12 | 0.0259 (9) | 0.0295 (10) | 0.0265 (9) | 0.0002 (8) | 0.0137 (7) | 0.0041 (8) |
C13 | 0.0124 (7) | 0.0265 (9) | 0.0199 (8) | −0.0019 (7) | 0.0042 (6) | 0.0025 (7) |
C14 | 0.0103 (7) | 0.0217 (8) | 0.0202 (7) | −0.0022 (6) | 0.0021 (5) | 0.0028 (7) |
C15 | 0.0118 (7) | 0.0209 (8) | 0.0186 (7) | −0.0014 (6) | 0.0028 (6) | 0.0021 (6) |
C16 | 0.0134 (7) | 0.0200 (9) | 0.0226 (8) | −0.0007 (6) | 0.0043 (6) | 0.0025 (7) |
C17 | 0.0136 (7) | 0.0224 (9) | 0.0231 (8) | −0.0024 (6) | 0.0057 (6) | −0.0021 (7) |
C18 | 0.0157 (7) | 0.0294 (10) | 0.0192 (8) | −0.0032 (7) | 0.0058 (6) | 0.0013 (7) |
C19 | 0.0123 (7) | 0.0225 (9) | 0.0186 (7) | −0.0009 (6) | 0.0059 (6) | 0.0000 (6) |
C20 | 0.0160 (8) | 0.0222 (9) | 0.0369 (10) | −0.0025 (6) | −0.0006 (7) | −0.0020 (7) |
C21 | 0.0189 (8) | 0.0196 (9) | 0.0371 (10) | −0.0039 (7) | 0.0040 (7) | 0.0023 (7) |
C22 | 0.0266 (9) | 0.0245 (10) | 0.0382 (10) | −0.0022 (8) | 0.0036 (8) | −0.0081 (8) |
C23 | 0.0249 (9) | 0.0262 (10) | 0.0355 (10) | −0.0009 (8) | 0.0101 (7) | −0.0057 (8) |
C24 | 0.0156 (7) | 0.0243 (9) | 0.0237 (8) | −0.0002 (7) | 0.0082 (6) | −0.0025 (7) |
C25 | 0.0173 (8) | 0.0331 (10) | 0.0228 (8) | −0.0050 (7) | 0.0010 (6) | −0.0005 (7) |
C26 | 0.0323 (10) | 0.0416 (12) | 0.0255 (9) | −0.0099 (9) | 0.0094 (8) | −0.0086 (9) |
C27 | 0.0333 (10) | 0.0301 (11) | 0.0316 (10) | −0.0093 (9) | 0.0137 (8) | −0.0097 (8) |
C28 | 0.0243 (9) | 0.0261 (10) | 0.0317 (10) | −0.0007 (7) | 0.0109 (7) | −0.0041 (8) |
C29 | 0.0463 (13) | 0.0494 (15) | 0.0411 (12) | −0.0124 (12) | −0.0062 (10) | −0.0105 (11) |
C30 | 0.0314 (10) | 0.0439 (13) | 0.0355 (11) | 0.0079 (9) | 0.0003 (8) | −0.0029 (9) |
O1—C3 | 1.203 (3) | C14—C15 | 1.548 (2) |
O2—C19 | 1.275 (2) | C15—C16 | 1.531 (2) |
O2—H19A | 0.79 (4) | C15—H15A | 0.9900 |
O3—C19 | 1.264 (2) | C15—H15B | 0.9900 |
O4—C24 | 1.266 (2) | C16—C17 | 1.537 (2) |
O4—H4A | 0.906 (10) | C16—H16A | 0.9900 |
O5—C24 | 1.268 (2) | C16—H16B | 0.9900 |
C1—C2 | 1.523 (3) | C17—C24 | 1.526 (2) |
C1—C10 | 1.545 (2) | C17—C18 | 1.546 (2) |
C1—H1A | 0.9900 | C17—C28 | 1.553 (3) |
C1—H1B | 0.9900 | C18—C25 | 1.555 (2) |
C2—C3 | 1.511 (3) | C18—H18A | 1.0000 |
C2—H2A | 0.9900 | C20—H20A | 0.9800 |
C2—H2B | 0.9900 | C20—H20B | 0.9800 |
C3—C4 | 1.531 (3) | C20—H20C | 0.9800 |
C4—C23 | 1.526 (3) | C21—H21A | 0.9800 |
C4—C22 | 1.536 (3) | C21—H21B | 0.9800 |
C4—C5 | 1.565 (2) | C21—H21C | 0.9800 |
C5—C6 | 1.534 (2) | C22—H22A | 0.9800 |
C5—C10 | 1.560 (2) | C22—H22B | 0.9800 |
C5—H5A | 1.0000 | C22—H22C | 0.9800 |
C6—C7 | 1.529 (2) | C23—H23A | 0.9800 |
C6—H6A | 0.9900 | C23—H23B | 0.9800 |
C6—H6B | 0.9900 | C23—H23C | 0.9800 |
C7—C8 | 1.543 (2) | C25—C30 | 1.508 (3) |
C7—H7A | 0.9900 | C25—C26 | 1.550 (3) |
C7—H7B | 0.9900 | C25—H25A | 1.0000 |
C8—C20 | 1.538 (2) | C26—C27 | 1.512 (3) |
C8—C9 | 1.565 (2) | C26—C29 | 1.528 (3) |
C8—C14 | 1.604 (2) | C26—H26A | 1.0000 |
C9—C11 | 1.537 (2) | C27—C28 | 1.517 (3) |
C9—C10 | 1.571 (2) | C27—H27A | 0.9900 |
C9—H9A | 1.0000 | C27—H27B | 0.9900 |
C10—C21 | 1.543 (2) | C28—H28A | 0.9900 |
C11—C12 | 1.501 (3) | C28—H28B | 0.9900 |
C11—H11A | 0.9900 | C29—H29A | 0.9800 |
C11—H11B | 0.9900 | C29—H29B | 0.9800 |
C12—C13 | 1.326 (3) | C29—H29C | 0.9800 |
C12—H12A | 0.9500 | C30—H30A | 0.9800 |
C13—C18 | 1.525 (3) | C30—H30B | 0.9800 |
C13—C14 | 1.538 (2) | C30—H30C | 0.9800 |
C14—C19 | 1.542 (2) | ||
C19—O2—H19A | 111 (3) | C15—C16—H16A | 109.3 |
C24—O4—H4A | 115 (3) | C17—C16—H16A | 109.3 |
C2—C1—C10 | 113.99 (16) | C15—C16—H16B | 109.3 |
C2—C1—H1A | 108.8 | C17—C16—H16B | 109.3 |
C10—C1—H1A | 108.8 | H16A—C16—H16B | 108.0 |
C2—C1—H1B | 108.8 | C24—C17—C16 | 110.18 (13) |
C10—C1—H1B | 108.8 | C24—C17—C18 | 110.52 (14) |
H1A—C1—H1B | 107.6 | C16—C17—C18 | 109.97 (13) |
C3—C2—C1 | 110.69 (17) | C24—C17—C28 | 103.06 (13) |
C3—C2—H2A | 109.5 | C16—C17—C28 | 111.63 (15) |
C1—C2—H2A | 109.5 | C18—C17—C28 | 111.31 (14) |
C3—C2—H2B | 109.5 | C13—C18—C17 | 111.42 (13) |
C1—C2—H2B | 109.5 | C13—C18—C25 | 112.39 (14) |
H2A—C2—H2B | 108.1 | C17—C18—C25 | 112.48 (15) |
O1—C3—C2 | 121.49 (18) | C13—C18—H18A | 106.7 |
O1—C3—C4 | 121.75 (19) | C17—C18—H18A | 106.7 |
C2—C3—C4 | 116.73 (16) | C25—C18—H18A | 106.7 |
C23—C4—C3 | 108.39 (15) | O3—C19—O2 | 122.26 (15) |
C23—C4—C22 | 108.26 (15) | O3—C19—C14 | 118.73 (15) |
C3—C4—C22 | 108.53 (16) | O2—C19—C14 | 119.00 (15) |
C23—C4—C5 | 109.09 (15) | C8—C20—H20A | 109.5 |
C3—C4—C5 | 108.06 (15) | C8—C20—H20B | 109.5 |
C22—C4—C5 | 114.37 (14) | H20A—C20—H20B | 109.5 |
C6—C5—C10 | 110.16 (13) | C8—C20—H20C | 109.5 |
C6—C5—C4 | 114.15 (14) | H20A—C20—H20C | 109.5 |
C10—C5—C4 | 118.11 (14) | H20B—C20—H20C | 109.5 |
C6—C5—H5A | 104.2 | C10—C21—H21A | 109.5 |
C10—C5—H5A | 104.2 | C10—C21—H21B | 109.5 |
C4—C5—H5A | 104.2 | H21A—C21—H21B | 109.5 |
C7—C6—C5 | 108.36 (13) | C10—C21—H21C | 109.5 |
C7—C6—H6A | 110.0 | H21A—C21—H21C | 109.5 |
C5—C6—H6A | 110.0 | H21B—C21—H21C | 109.5 |
C7—C6—H6B | 110.0 | C4—C22—H22A | 109.5 |
C5—C6—H6B | 110.0 | C4—C22—H22B | 109.5 |
H6A—C6—H6B | 108.4 | H22A—C22—H22B | 109.5 |
C6—C7—C8 | 113.65 (15) | C4—C22—H22C | 109.5 |
C6—C7—H7A | 108.8 | H22A—C22—H22C | 109.5 |
C8—C7—H7A | 108.8 | H22B—C22—H22C | 109.5 |
C6—C7—H7B | 108.8 | C4—C23—H23A | 109.5 |
C8—C7—H7B | 108.8 | C4—C23—H23B | 109.5 |
H7A—C7—H7B | 107.7 | H23A—C23—H23B | 109.5 |
C20—C8—C7 | 108.50 (14) | C4—C23—H23C | 109.5 |
C20—C8—C9 | 110.22 (14) | H23A—C23—H23C | 109.5 |
C7—C8—C9 | 111.18 (13) | H23B—C23—H23C | 109.5 |
C20—C8—C14 | 109.73 (14) | O4—C24—O5 | 122.53 (16) |
C7—C8—C14 | 108.88 (14) | O4—C24—C17 | 118.30 (15) |
C9—C8—C14 | 108.31 (12) | O5—C24—C17 | 118.91 (15) |
C11—C9—C8 | 108.79 (14) | C30—C25—C26 | 109.11 (16) |
C11—C9—C10 | 114.23 (15) | C30—C25—C18 | 109.54 (17) |
C8—C9—C10 | 117.53 (13) | C26—C25—C18 | 112.50 (15) |
C11—C9—H9A | 105.0 | C30—C25—H25A | 108.5 |
C8—C9—H9A | 105.0 | C26—C25—H25A | 108.5 |
C10—C9—H9A | 105.0 | C18—C25—H25A | 108.5 |
C21—C10—C1 | 108.51 (14) | C27—C26—C29 | 109.2 (2) |
C21—C10—C5 | 114.20 (14) | C27—C26—C25 | 111.32 (15) |
C1—C10—C5 | 107.32 (13) | C29—C26—C25 | 111.93 (19) |
C21—C10—C9 | 114.51 (14) | C27—C26—H26A | 108.1 |
C1—C10—C9 | 106.57 (14) | C29—C26—H26A | 108.1 |
C5—C10—C9 | 105.25 (13) | C25—C26—H26A | 108.1 |
C12—C11—C9 | 111.40 (15) | C26—C27—C28 | 112.44 (17) |
C12—C11—H11A | 109.3 | C26—C27—H27A | 109.1 |
C9—C11—H11A | 109.3 | C28—C27—H27A | 109.1 |
C12—C11—H11B | 109.3 | C26—C27—H27B | 109.1 |
C9—C11—H11B | 109.3 | C28—C27—H27B | 109.1 |
H11A—C11—H11B | 108.0 | H27A—C27—H27B | 107.8 |
C13—C12—C11 | 126.23 (15) | C27—C28—C17 | 112.29 (15) |
C13—C12—H12A | 116.9 | C27—C28—H28A | 109.1 |
C11—C12—H12A | 116.9 | C17—C28—H28A | 109.1 |
C12—C13—C18 | 120.17 (15) | C27—C28—H28B | 109.1 |
C12—C13—C14 | 121.93 (17) | C17—C28—H28B | 109.1 |
C18—C13—C14 | 117.89 (15) | H28A—C28—H28B | 107.9 |
C13—C14—C19 | 108.85 (13) | C26—C29—H29A | 109.5 |
C13—C14—C15 | 109.06 (13) | C26—C29—H29B | 109.5 |
C19—C14—C15 | 109.13 (14) | H29A—C29—H29B | 109.5 |
C13—C14—C8 | 110.66 (14) | C26—C29—H29C | 109.5 |
C19—C14—C8 | 108.26 (13) | H29A—C29—H29C | 109.5 |
C15—C14—C8 | 110.83 (12) | H29B—C29—H29C | 109.5 |
C16—C15—C14 | 114.36 (13) | C25—C30—H30A | 109.5 |
C16—C15—H15A | 108.7 | C25—C30—H30B | 109.5 |
C14—C15—H15A | 108.7 | H30A—C30—H30B | 109.5 |
C16—C15—H15B | 108.7 | C25—C30—H30C | 109.5 |
C14—C15—H15B | 108.7 | H30A—C30—H30C | 109.5 |
H15A—C15—H15B | 107.6 | H30B—C30—H30C | 109.5 |
C15—C16—C17 | 111.60 (14) | ||
C10—C1—C2—C3 | −56.5 (2) | C20—C8—C14—C13 | −73.60 (17) |
C1—C2—C3—O1 | −124.2 (2) | C7—C8—C14—C13 | 167.79 (13) |
C1—C2—C3—C4 | 53.9 (2) | C9—C8—C14—C13 | 46.77 (16) |
O1—C3—C4—C23 | 12.1 (3) | C20—C8—C14—C19 | 167.19 (14) |
C2—C3—C4—C23 | −165.95 (17) | C7—C8—C14—C19 | 48.58 (16) |
O1—C3—C4—C22 | −105.2 (2) | C9—C8—C14—C19 | −72.45 (15) |
C2—C3—C4—C22 | 76.7 (2) | C20—C8—C14—C15 | 47.54 (17) |
O1—C3—C4—C5 | 130.2 (2) | C7—C8—C14—C15 | −71.08 (15) |
C2—C3—C4—C5 | −47.9 (2) | C9—C8—C14—C15 | 167.90 (12) |
C23—C4—C5—C6 | −63.04 (19) | C13—C14—C15—C16 | −48.13 (18) |
C3—C4—C5—C6 | 179.32 (15) | C19—C14—C15—C16 | 70.66 (16) |
C22—C4—C5—C6 | 58.3 (2) | C8—C14—C15—C16 | −170.20 (12) |
C23—C4—C5—C10 | 165.07 (15) | C14—C15—C16—C17 | 56.47 (17) |
C3—C4—C5—C10 | 47.43 (19) | C15—C16—C17—C24 | 64.84 (18) |
C22—C4—C5—C10 | −73.5 (2) | C15—C16—C17—C18 | −57.23 (17) |
C10—C5—C6—C7 | −68.31 (17) | C15—C16—C17—C28 | 178.72 (14) |
C4—C5—C6—C7 | 156.07 (14) | C12—C13—C18—C17 | 130.96 (17) |
C5—C6—C7—C8 | 58.19 (18) | C14—C13—C18—C17 | −49.90 (18) |
C6—C7—C8—C20 | 76.36 (18) | C12—C13—C18—C25 | −101.75 (19) |
C6—C7—C8—C9 | −45.00 (19) | C14—C13—C18—C25 | 77.39 (18) |
C6—C7—C8—C14 | −164.25 (13) | C24—C17—C18—C13 | −68.80 (17) |
C20—C8—C9—C11 | 54.48 (19) | C16—C17—C18—C13 | 53.07 (18) |
C7—C8—C9—C11 | 174.83 (15) | C28—C17—C18—C13 | 177.31 (13) |
C14—C8—C9—C11 | −65.58 (17) | C24—C17—C18—C25 | 163.96 (13) |
C20—C8—C9—C10 | −77.29 (18) | C16—C17—C18—C25 | −74.17 (17) |
C7—C8—C9—C10 | 43.06 (19) | C28—C17—C18—C25 | 50.07 (18) |
C14—C8—C9—C10 | 162.65 (13) | C13—C14—C19—O3 | −47.5 (2) |
C2—C1—C10—C21 | −70.20 (19) | C15—C14—C19—O3 | −166.42 (15) |
C2—C1—C10—C5 | 53.7 (2) | C8—C14—C19—O3 | 72.86 (18) |
C2—C1—C10—C9 | 166.01 (15) | C13—C14—C19—O2 | 133.37 (16) |
C6—C5—C10—C21 | −63.99 (19) | C15—C14—C19—O2 | 14.4 (2) |
C4—C5—C10—C21 | 69.65 (19) | C8—C14—C19—O2 | −106.28 (17) |
C6—C5—C10—C1 | 175.69 (14) | C16—C17—C24—O4 | −149.64 (17) |
C4—C5—C10—C1 | −50.67 (19) | C18—C17—C24—O4 | −27.9 (2) |
C6—C5—C10—C9 | 62.44 (16) | C28—C17—C24—O4 | 91.1 (2) |
C4—C5—C10—C9 | −163.91 (14) | C16—C17—C24—O5 | 36.0 (2) |
C11—C9—C10—C21 | −53.9 (2) | C18—C17—C24—O5 | 157.70 (16) |
C8—C9—C10—C21 | 75.37 (18) | C28—C17—C24—O5 | −83.28 (19) |
C11—C9—C10—C1 | 66.10 (18) | C13—C18—C25—C30 | 61.30 (19) |
C8—C9—C10—C1 | −164.65 (14) | C17—C18—C25—C30 | −171.98 (15) |
C11—C9—C10—C5 | 179.87 (14) | C13—C18—C25—C26 | −177.17 (14) |
C8—C9—C10—C5 | −50.88 (17) | C17—C18—C25—C26 | −50.45 (19) |
C8—C9—C11—C12 | 48.4 (2) | C30—C25—C26—C27 | 174.28 (17) |
C10—C9—C11—C12 | −178.13 (15) | C18—C25—C26—C27 | 52.5 (2) |
C9—C11—C12—C13 | −13.7 (3) | C30—C25—C26—C29 | −63.2 (2) |
C11—C12—C13—C18 | 174.45 (18) | C18—C25—C26—C29 | 175.04 (18) |
C11—C12—C13—C14 | −4.7 (3) | C29—C26—C27—C28 | −179.62 (17) |
C12—C13—C14—C19 | 106.02 (19) | C25—C26—C27—C28 | −55.5 (2) |
C18—C13—C14—C19 | −73.11 (18) | C26—C27—C28—C17 | 56.3 (2) |
C12—C13—C14—C15 | −135.01 (17) | C24—C17—C28—C27 | −171.43 (15) |
C18—C13—C14—C15 | 45.86 (18) | C16—C17—C28—C27 | 70.3 (2) |
C12—C13—C14—C8 | −12.8 (2) | C18—C17—C28—C27 | −53.0 (2) |
C18—C13—C14—C8 | 168.04 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4A···O3i | 0.91 (1) | 1.70 (1) | 2.6046 (18) | 172 (5) |
O2—H19A···O5ii | 0.80 (4) | 1.89 (4) | 2.6702 (18) | 165 (4) |
C7—H7A···O2 | 0.99 | 2.54 | 3.232 (2) | 127 |
C9—H9A···O3 | 1.00 | 2.18 | 3.009 (2) | 139 |
C28—H28B···O1iii | 0.99 | 2.49 | 3.477 (3) | 173 |
C29—H29A···O4iv | 0.98 | 2.57 | 3.497 (3) | 158 |
C30—H30A···O3 | 0.98 | 2.58 | 3.221 (3) | 123 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x+1, y−1, z; (iv) −x+2, y−1/2, −z+1. |
Footnotes
‡Additional corresponding author, email: bk_jeanjules@yahoo.fr.
Acknowledgements
BJKK is very grateful to The World Academy of Sciences (TWAS) and the International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan for their financial and technical support through the ICCBS–TWAS Postdoctoral Fellowship number 3240280476 granted to BKJJ.
References
Agnaniet, H., Mbot, E. J., Keita, O., Fehrentz, J.-A., Ankli, A., Gallud, A., Garcia, M., Gary-Bobo, M., Lebibi, J., Cresteil, T. & Menut, C. (2016). BMC Complement. Altern. Med. 16, 71–78. CrossRef PubMed Google Scholar
Ajaiyeoba, E. O. & Krebs, H. C. (2003). Nigerian J. Nat. Prod. Med. 7, 39–41. CAS Google Scholar
Awang, K., Abdullah, N. H., Thomas, N. F. & Ng, S. W. (2009). Acta Cryst. E65, o2113. CrossRef IUCr Journals Google Scholar
Bruker (2009). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, T. & Taylor, C. M. (2011). Nauclea linnaeus, sp. P1, in Flora of China, edited by Z.-Y. Wu, P. H. Raven & D.-Y. Hong, Vol. 19, p. 249. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. Google Scholar
Csuk, R., Barthel-Niesen, N., Ströhl, D., Kluge, R., Wagner, C. & Al-Harrasi, A. (2015). Tetrahedron, 71, 2025–2034. CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Kuete, V., Sandjo, L. P., Mbaveng, A. T., Seukep, J. A., Ngadjui, B. T. & Efferth, T. (2015). BMC Complementary Alternative Med. 309, 1–9. Google Scholar
Mesia, K., Tona, L., Mampunza, M. M., Ntamabyaliro, N., Muanda, T., Muyembe, T., Cimanga, K., Totté, J., Mets, T., Pieters, L. & Vlietinck, A. J. (2012). Planta Med. 78, 211–218. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia. Google Scholar
Xu, Y.-J., Foubert, K., Dhooghe, L., Lemière, F., Cimanga, K., Mesia, K., Apers, S. & Pieters, L. (2012). Phytochemistry Lett. 5, 316–319. CrossRef CAS Google Scholar
Zeches, M., Richard, B., Gueye-M'Bahia, L., Le Men-Olivier, L. & Delaude, C. (1985). J. Nat. Prod. 48, 42–46. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.