research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new spiro-polytetra­hydro­furan compound with translational pseudosymmetry: rac-(2S,2′S,5′R)-2-methyl-5′-[(1R,2R,5S,5′R)-1,4,4,5′-tetra­methyl­di­hydro-3′H-3,8-dioxa­spiro[bi­cyclo­[3.2.1]octane-2,2′-furan]-5′-yl]hexa­hydro[2,2′-bi­furan]-5(2H)-one

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Università degli Studi di Napoli `Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy
*Correspondence e-mail: vinpicci@unina.it, roberto.centore@unina.it

Edited by C. Rizzoli, Università degli Studi di Parma, Italy (Received 13 April 2017; accepted 21 April 2017; online 28 April 2017)

The title compound, C22H34O6, is a product of oxidation of squalene with the catalytic system RuO4(cat.)/NaIO4. The asymmetric unit contains two crystallographically independent mol­ecules of very similar geometry approximately related by the non-crystallographic translation vector c/2. As a consequence, the average diffracted intensity in the hkl layers with odd l is systematically lower than in the layers with even l. In one mol­ecule, the lactone ring and part of the adjacent tetra­hydro­furan ring are disordered over two orientations with refined occupancy ratio of 0.831 (10):0.169 (10). The crystal structure is mainly governed by van der Waals forces.

1. Chemical context

Our group has long been involved in the synthesis of new biologically active heterocyclic compounds (D'Errico et al., 2011[D'Errico, S., Oliviero, G., Borbone, N., Amato, J., Piccialli, V., Varra, M., Mayol, L. & Piccialli, G. (2011). Molecules, 16, 8110-8118.], 2012a[D'Errico, S., Oliviero, G., Amato, J., Borbone, N., Cerullo, V., Hemminki, A., Piccialli, V., Zaccaria, S., Mayol, L. & Piccialli, G. (2012a). Chem. Commun. 48, 9310-9312.],b[D'Errico, S., Oliviero, G., Borbone, N., Amato, J., D'Alonzo, D., Piccialli, V., Mayol, L. & Piccialli, G. (2012b). Molecules, 17, 13036-13044.]; Oliviero et al., 2008[Oliviero, G., Amato, J., Borbone, N., D'Errico, S., Piccialli, G., Bucci, E., Piccialli, V. & Mayol, L. (2008). Tetrahedron, 64, 6475-6481.], 2010a[Oliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Piccialli, G. & Mayol, L. (2010a). Eur. J. Org. Chem. pp. 1517-1524.],b[Oliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Varra, M., Piccialli, G. & Mayol, L. (2010b). Tetrahedron, 66, 1931-1936.]; Centore et al., 2013[Centore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. pp. 3721-3728.]; Iovine et al., 2014[Iovine, B., Oliviero, B., Garofalo, M., Orefice, M., Nocella, F., Borbone, N., Piccialli, V., Centore, R., Mazzone, M., Piccialli, G. & Bevilaqua, M. A. (2014). PLoS One, 9, e96755. https://doi.org/10.1371/journal.pone.0096755]). In particular, we have developed a number of new catalytic oxidative processes mediated by transition metal oxo-species (Piccialli et al., 2009[Piccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036-3039.], 2013[Piccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781-1789.]) leading to the stereoselective formation of mono- and poly-tetra­hydro­furan (THF) compounds (Piccialli, 2014[Piccialli, V. (2014). Molecules, 19, 6534-6582.]), as well as spiro­ketal compounds. THF-containing substances are widely distributed in nature and display a broad range of biological activities such as cation transport, citotoxic, pesticidal, anti-tumor and immunosuppressive activity. The oxidation of squalene with catalytic amounts of RuO4 (Bifulco et al., 2003[Bifulco, G., Caserta, T., Gomez-Paloma, L. & Piccialli, V. (2003). Tetrahedron Lett. 44, 3429-3429.]; Piccialli et al., 2007[Piccialli, V., Borbone, N. & Oliviero, G. (2007). Tetrahedron Lett. 48, 5131-5135.]) is particularly impressive since it undergoes a stereoselective cascade process leading to the penta-THF compound 1 (Fig. 1[link]) in a straightforward way and high yields (50% for five consecutive cyclization steps; 87% per cyclization step). In this way, multi-gram amounts of this substance can be easily obtained starting from a cheap parent material. Compound 1, in turn, has been used as the starting material for the synthesis of a number of new poly-THF and spiro­ketal substances such as, inter alia, compounds 2 and 3 (Fig. 1[link]) that have shown anti-cancer activity against ovarian (HEY) and breast cancer-derived (BT474) cell lines (Piccialli et al., 2009[Piccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036-3039.]).

[Figure 1]
Figure 1
Scheme of the synthesis, showing the formation of polytetra­hydro­furan compounds by oxidative cyclization of squalene with RuO4 and the formation of spiro-polytetra­hydro­furan compounds by subsequent oxidative spiro­ketalization with pyridinium chloro­chromate (PCC).

Based on the known reactivity of RuO4 (Piccialli et al., 2008[Piccialli, V., Borbone, N. & Oliviero, G. (2008). Tetrahedron, 64, 11185-11192.], 2010[Piccialli, V., Zaccaria, S., Borbone, N., Oliviero, G., D'Errico, S., Hemminki, A., Cerullo, V., Romano, V., Tuzi, A. & Centore, R. (2010). Tetrahedron, 66, 9370-9378.]), we anti­cipated that truncated spiro­compounds structurally related to 2 and 3 of Fig. 1[link] could likely be produced just during the oxidation of squalene with RuO4. We report here that a search for this type of products for biological assays and SAR studies resulted in the isolation of the title compound, a substance possessing the same tricyclic spiro­ketal terminal moiety found in 2 and 3 and strictly related to them. Although extensive NMR studies allowed to determine the structure of this compound, the configuration of some chiral centres could not be unambiguously determined. This prompted us to undertake the X-ray diffraction study of this compound.

[Scheme 1]

2. Structural commentary

The asymmetric unit contains two mol­ecules of very similar conformation, shown in Fig. 2[link]. The two mol­ecules are approximately related by a translation vector that can be determined by calculating the difference between the homologue coordinates of corresponding atoms in the two mol­ecules A and B. In this way, fairly constant values of the differences are obtained that, averaged over all the couples of (non H) corresponding atoms in the two mol­ecules, give the final values: <Δx>= −0.02 (3), <Δy>= 0.01 (16) and <Δz>= 0.50 (2). This means that the two mol­ecules, on average, are related by the translation vector t = c/2. This pseudosymmetry has consequences on the diffraction pattern. Of course, if the symmetry were truly crystallographic, then all reflections hkl with l odd would have null intensity, because each structure factor Fhkl would bear a factor (1 + eiπl). The structure could be described in a cell of half the volume and Z′ = 1. This is not the case, because the translational symmetry is not crystallographic. However, a trace of it can be found in the fact that the average diffracted intensity in the hkl layers with odd l is systematically lower than in the layers with even l. This is shown in the histogram of Fig. 3[link], in which we have averaged the measured Fo2 over each layer. The modulation of the average diffracted intensity between layers with even and odd l is dramatically evident.

[Figure 2]
Figure 2
View of the mol­ecular structures of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Only the major component of the disordered lactone ring of mol­ecule A is shown for clarity.
[Figure 3]
Figure 3
Average squared observed structure factor per reciprocal lattice layer, as a function of the l index.

The conformation of the two independent mol­ecules is almost the same, with exception for the lactone ring, whose orientation is slightly different (Fig. 4[link]). In both mol­ecules the five-membered rings O1/C1–C4 and O3/C9–C12 exhibit a twist conformation, while the O2/C5–C8 rings display an envelope conformation with atom C8 at the flap. From the analysis of the mol­ecular structure, it turns out that the relative configuration of the two chiral carbons C8 and C9 in the title compound is inverted as compared with the isomeric compound already reported in literature (compound 10 of Scheme 3 in Piccialli et al., 2009[Piccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036-3039.]). Moreover, the title compound shares the relative configuration of all of its seven chiral centres with the corresponding moiety in a meso-bis-spiro-compound previously obtained by oxidation of squalene under the same conditions (compound 8 of Scheme 2 in Piccialli et al., 2010[Piccialli, V., Zaccaria, S., Borbone, N., Oliviero, G., D'Errico, S., Hemminki, A., Cerullo, V., Romano, V., Tuzi, A. & Centore, R. (2010). Tetrahedron, 66, 9370-9378.]).

[Figure 4]
Figure 4
Overlay of the two independent mol­ecules A and B. For mol­ecule A, only the major component of the disordered lactone ring is shown.

3. Supra­molecular features

The crystal packing is shown in Fig. 5[link]. Although some intra- and inter­mol­ecular C–H⋯O hydrogen contacts are observed (Table 1[link]), no classical hydrogen bonds are found and mol­ecules in the crystal are held basically through van der Waals contacts between H atoms.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19A—H19A⋯O3A 0.98 2.39 3.041 (3) 124
C19B—H19D⋯O3B 0.98 2.46 3.038 (3) 117
C7A—H7A1⋯O6Bi 0.99 2.55 3.464 (4) 154
Symmetry code: (i) -x+1, -y+2, -z+1.
[Figure 5]
Figure 5
The crystal packing viewed down the c axis. For mol­ecule A, only the major component of the disordered lactone ring is shown.

In order to assess possible packing differences involving the two independent mol­ecules we have examined their Hirshfeld surfaces (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]). In Fig. 6[link] are shown Hirshfeld fingerprint plots of the two independent mol­ecules, while Table 2[link] gives relevant mol­ecular parameters.

Table 2
Parameters of the Hirshfeld surface of the two crystallographically independent mol­ecules

Hirshfeld surface analysis was performed using the program CrystalExplorer (Wolff et al. 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]).

Mol­ecule volume (Å3) area (Å2) globularity asphericity
A 506.20 398.92 0.770 0.127
B 500.14 401.64 0.759 0.151
[Figure 6]
Figure 6
Hirshfeld fingerprint plots of the two crystallographically independent mol­ecules of the title compound.

In the plots, for each point of the Hirshfeld surface enveloping the mol­ecule in the crystal, the distance di to the nearest atom inside the surface and the distance de to the nearest atom outside the surface are reported. The color of each point in the plot is related to the abundance of that inter­action, from blue (low) to green (high) to red (very high).

A common feature of each plot of Fig. 6[link] is represented by the central green area around di + de = 3.0 Å, that corresponds to the loose van der Waals contacts present in the packing, and mainly involving H atoms. Another common feature is the sting along the diagonal, down to di = de = 0.9 Å, which reflects points on the Hirshfeld surface that involve nearly head-to-head close H⋯H contacts. This feature is clearly more pronounced in the plot of mol­ecule A.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.38, last update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave no match for the title compound. A search for spiro-THF compounds gave six hits (GUHXOX, GUHXUD, MUZTEH, MUZTIL, MUZTOR and MUZTUX) all coming from our research group (Piccialli et al., 2009[Piccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036-3039.], 2010[Piccialli, V., Zaccaria, S., Borbone, N., Oliviero, G., D'Errico, S., Hemminki, A., Cerullo, V., Romano, V., Tuzi, A. & Centore, R. (2010). Tetrahedron, 66, 9370-9378.]). A search for poly-THF compounds in which one terminal THF group, at least, is in the oxidized lactone form gave three hits: DOJSIE (Still & Romero, 1986[Still, W. C. & Romero, A. G. (1986). J. Am. Chem. Soc. 108, 2105-2106.]), FAZJEV (Russell et al., 1987[Russell, S. T., Robinson, J. A. & Williams, D. J. (1987). J. Chem. Soc. Chem. Commun. pp. 351-352.]) and GUHXOX (Piccialli et al., 2009[Piccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036-3039.]). Finally, the maximum number of consecutive THF units in a poly-THF compound deposited in the CSD is five: ACUWIG (Yang et al., 2012[Yang, P., Li, P.-F., Qu, J. & Tang, L.-F. (2012). Org. Lett. 14, 3932-3935.]) and LOJLUR (Xiong & Corey, 2000[Xiong, Z. & Corey, E. J. (2000). J. Am. Chem. Soc. 122, 4831-4832.]).

5. Synthesis and crystallization

The title compound was obtained by oxidation of squalene with RuO4(cat.)/NaIO4, as previously described (Piccialli et al., 2010[Piccialli, V., Zaccaria, S., Borbone, N., Oliviero, G., D'Errico, S., Hemminki, A., Cerullo, V., Romano, V., Tuzi, A. & Centore, R. (2010). Tetrahedron, 66, 9370-9378.]). The crude product was purified by repeated silica-gel column chromatography, eluting with increasing amounts of Et2O in hexane. The fractions enriched in the title compound were collected and evaporated under reduced pressure. Further separation by reversed-phase HPLC (Hibar RP-18 columns, 250 × 10 and 250 × 4 mm, eluent MeOH/H2O, 6:4 v/v) gave the pure title compound as an oil. It was dissolved in the minimal amount of MeOH and the solution was left to evaporate slowly overnight at room temperature to give crystals suitable for X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were generated stereochemically and were refined using the riding model, with C—H = 0.98–1.00 Å, and with Uiso = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups. The lactone ring and, in part, the adjacent tetra­hydro­furan ring of the independent mol­ecule A are disordered over two orientations. The two split positions were refined by applying SADI restraints on bond lengths and SIMU/EADP restraints on thermal parameters. Constraints were also applied to the C4AA-–O1AA [1.40 (2) Å], C1AA—C2AA [1.48 (2) Å], C2AA-–C3AA [1.52 (2) Å] and C3AA—C4AA [1.54 (2) Å] bond lengths. The final refined occupancy factors of the two components of disorder are 0.831 (10) and 0.169 (10).

Table 3
Experimental details

Crystal data
Chemical formula C22H34O6
Mr 394.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 11.750 (4), 13.805 (1), 14.737 (2)
α, β, γ (°) 68.622 (11), 67.780 (19), 88.557 (15)
V3) 2043.0 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.50 × 0.12
 
Data collection
Diffractometer Bruker–Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.945, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 30708, 9260, 5634
Rint 0.053
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.123, 1.05
No. of reflections 9260
No. of parameters 596
No. of restraints 62
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.21
Computer programs: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]), DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

rac-(2S,2'S,5'R)-2-Methyl-5'-[(1R,2R,5S,5'R)-1,4,4,5'-tetramethyldihydro-3'H-3,8-dioxaspiro[bicyclo[3.2.1]octane-2,2'-furan]-5'-yl]hexahydro[2,2'-bifuran]-5(2H)-one top
Crystal data top
C22H34O6Z = 4
Mr = 394.49F(000) = 856
Triclinic, P1Dx = 1.283 Mg m3
a = 11.750 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.805 (1) ÅCell parameters from 170 reflections
c = 14.737 (2) Åθ = 3.8–23.6°
α = 68.622 (11)°µ = 0.09 mm1
β = 67.780 (19)°T = 173 K
γ = 88.557 (15)°Prism, colourless
V = 2043.0 (9) Å30.50 × 0.50 × 0.12 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
9260 independent reflections
Radiation source: normal-focus sealed tube5634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.9°
CCD rotation images, thick slices scansh = 1514
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1717
Tmin = 0.945, Tmax = 0.973l = 1917
30708 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.0216P]
where P = (Fo2 + 2Fc2)/3
9260 reflections(Δ/σ)max < 0.001
596 parametersΔρmax = 0.35 e Å3
62 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflection 1 1 0 was not considered in the refinement, because its intensity was affected by the beamstop.

The lactone ring and, in part, the adjacent tetrahydrofuran ring of the independent molecule A are disordered over two sites. The two split positions were refined by using some restraints on bond lengths and thermal parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.7941 (4)1.1654 (4)0.1721 (4)0.0375 (9)0.831 (10)
O6A0.7350 (4)1.1861 (3)0.3254 (3)0.0629 (11)0.831 (10)
C1A0.8077 (5)1.1558 (3)0.2620 (3)0.0366 (11)0.831 (10)
C2A0.9212 (4)1.1059 (3)0.2652 (3)0.0326 (9)0.831 (10)
H2A10.8985121.0336490.3197970.039*0.831 (10)
H2A20.9732061.1471720.2812440.039*0.831 (10)
C3A0.9891 (4)1.1049 (4)0.1557 (3)0.0319 (9)0.831 (10)
H3A11.0215561.0371410.1599690.038*0.831 (10)
H3A21.0590751.1623740.1123280.038*0.831 (10)
C4A0.8909 (5)1.1204 (4)0.1084 (4)0.0259 (11)0.831 (10)
C5A0.8346 (6)1.0140 (5)0.1266 (7)0.0297 (10)0.831 (10)
H5A0.9010920.9853680.0810190.036*0.831 (10)
C22A0.9373 (7)1.1937 (5)0.0082 (4)0.0398 (14)0.831 (10)
H22D1.0021791.1638390.0511180.060*0.831 (10)
H22E0.8683191.2021010.0312080.060*0.831 (10)
H22F0.9712931.2622670.0171970.060*0.831 (10)
C6A0.7190 (5)1.0057 (4)0.1019 (4)0.0549 (15)0.831 (10)
H6A10.6905421.0751720.0789640.066*0.831 (10)
H6A20.7382230.9783320.0449500.066*0.831 (10)
C7A0.6212 (2)0.93056 (19)0.20438 (18)0.0418 (6)0.831 (10)
H7A10.5712730.8847680.1909820.050*0.831 (10)
H7A20.5653240.9687050.2448850.050*0.831 (10)
O1AA0.756 (2)1.1546 (19)0.167 (2)0.041 (4)0.169 (10)
O6AA0.669 (3)1.1829 (15)0.3139 (15)0.086 (7)0.169 (10)
C1AA0.756 (3)1.1610 (19)0.257 (2)0.047 (5)0.169 (10)
C2AA0.874 (2)1.1313 (18)0.2664 (14)0.035 (4)0.169 (10)
H2A30.8595141.0629480.3258060.042*0.169 (10)
H2A40.9133431.1850330.2787710.042*0.169 (10)
C3AA0.953 (2)1.124 (2)0.1630 (19)0.051 (6)0.169 (10)
H3A31.0028621.0650730.1733710.061*0.169 (10)
H3A41.0099761.1901190.1138730.061*0.169 (10)
C4AA0.858 (2)1.106 (2)0.122 (2)0.029 (4)0.169 (10)
C5AA0.819 (3)1.005 (3)0.118 (4)0.029 (4)0.169 (10)
H5AA0.8737050.9824780.0602520.034*0.169 (10)
C22C0.908 (4)1.194 (3)0.013 (2)0.052 (7)0.169 (10)
H22G0.9820371.1764750.0341700.078*0.169 (10)
H22H0.8444431.2047210.0170630.078*0.169 (10)
H22I0.9286031.2590430.0193730.078*0.169 (10)
C6AA0.690 (2)1.0325 (14)0.1218 (19)0.044 (5)0.169 (10)
H6A30.6664261.0916120.1449460.052*0.169 (10)
H6A40.6823951.0469550.0536680.052*0.169 (10)
C7AA0.6212 (2)0.93056 (19)0.20438 (18)0.0418 (6)0.169 (10)
H7A30.5956040.8893710.1710060.050*0.169 (10)
H7A40.5452010.9428850.2561400.050*0.169 (10)
C8A0.69801 (17)0.86778 (15)0.26248 (15)0.0272 (4)
H8A0.7294990.8123760.2340320.033*
C9A0.63505 (17)0.81626 (15)0.38235 (16)0.0267 (4)
C10A0.52124 (18)0.73779 (16)0.41873 (17)0.0318 (5)
H10C0.4435820.7693650.4388590.038*
H10D0.5264990.7125790.3625770.038*
C11A0.52838 (18)0.64930 (16)0.51468 (16)0.0317 (5)
H11A0.4941220.6658910.5790860.038*
H11B0.4839600.5820900.5286050.038*
C12A0.66756 (17)0.64591 (15)0.47904 (15)0.0255 (4)
C13A0.71980 (18)0.60110 (15)0.56538 (15)0.0286 (4)
C14A0.6708 (2)0.48395 (16)0.63024 (16)0.0357 (5)
H14C0.6625670.4637810.7043770.043*
H14D0.5892220.4670510.6306100.043*
C15A0.7696 (2)0.42793 (16)0.57253 (17)0.0378 (5)
H15C0.8136720.3882970.6171020.045*
H15D0.7320000.3791060.5532330.045*
C16A0.85690 (19)0.51736 (16)0.47390 (17)0.0315 (5)
H16A0.9429480.4981250.4512970.038*
C17A0.81794 (17)0.55502 (16)0.38037 (16)0.0277 (4)
C18A0.8093 (2)0.46739 (17)0.34289 (18)0.0366 (5)
H18A0.7903950.4951660.2795310.055*
H18B0.7434980.4115210.3992430.055*
H18C0.8886240.4390430.3257430.055*
C19A0.90815 (18)0.64781 (17)0.28822 (16)0.0348 (5)
H19A0.9062900.7072450.3098880.052*
H19B0.8840420.6677800.2276730.052*
H19C0.9921570.6281050.2678230.052*
C20A0.7055 (2)0.66729 (17)0.63017 (17)0.0385 (5)
H20A0.7471400.7386350.5830150.058*
H20B0.7429310.6365650.6818080.058*
H20C0.6172400.6696060.6677300.058*
C21A0.6049 (2)0.89513 (17)0.43579 (17)0.0365 (5)
H21D0.6820610.9335730.4228430.055*
H21E0.5585840.8578790.5123630.055*
H21F0.5545310.9446250.4065150.055*
O2A0.80145 (12)0.94254 (11)0.23244 (10)0.0301 (3)
O3A0.72123 (11)0.75191 (10)0.41868 (10)0.0261 (3)
O4A0.69431 (11)0.58450 (10)0.41502 (10)0.0265 (3)
O5A0.85203 (12)0.60137 (11)0.51048 (11)0.0306 (3)
C1B0.7270 (2)1.17216 (16)0.74402 (17)0.0349 (5)
C2B0.8416 (2)1.15504 (18)0.76542 (17)0.0374 (5)
H2B10.8294781.0872390.8250020.045*
H2B20.8647271.2121160.7832960.045*
C3B0.94100 (19)1.15475 (17)0.66314 (16)0.0346 (5)
H3B10.9938531.0991030.6780470.042*
H3B20.9940391.2233940.6209610.042*
C4B0.86699 (18)1.13305 (16)0.60480 (15)0.0280 (4)
C5B0.85239 (19)1.01823 (15)0.61969 (15)0.0282 (4)
H5B0.9352721.0006150.5812030.034*
C6B0.7592 (2)0.98840 (17)0.58105 (16)0.0351 (5)
H6B10.7292471.0514750.5425140.042*
H6B20.7968550.9502160.5338550.042*
C7B0.65457 (19)0.91825 (16)0.68284 (16)0.0310 (5)
H7B10.5919180.9597250.7126330.037*
H7B20.6135310.8648930.6710450.037*
C8B0.72199 (17)0.86788 (15)0.75470 (15)0.0256 (4)
H8B0.7678630.8131310.7321030.031*
C9B0.64364 (17)0.81890 (15)0.87288 (15)0.0248 (4)
C10B0.53397 (17)0.74261 (15)0.89629 (16)0.0284 (4)
H10A0.4579170.7770430.9031130.034*
H10B0.5525990.7145480.8399490.034*
C11B0.52016 (17)0.65634 (16)1.00148 (16)0.0282 (4)
H11C0.4776150.5895921.0123030.034*
H11D0.4742490.6767781.0620900.034*
C12B0.65513 (17)0.64795 (14)0.98652 (15)0.0244 (4)
C13B0.67927 (17)0.60497 (16)1.08886 (15)0.0287 (4)
C14B0.61423 (19)0.49183 (16)1.15659 (17)0.0346 (5)
H14A0.5923410.4753751.2328920.042*
H14B0.5378570.4809731.1461100.042*
C15B0.7095 (2)0.42414 (17)1.11669 (18)0.0393 (5)
H15A0.7339570.3778011.1737650.047*
H15B0.6768180.3805411.0892580.047*
C16B0.81841 (19)0.50423 (17)1.02812 (17)0.0338 (5)
H16B0.8982510.4756071.0249400.041*
C17B0.81419 (17)0.54378 (17)0.91854 (17)0.0313 (5)
C18B0.8173 (2)0.45619 (19)0.8788 (2)0.0437 (6)
H18D0.8151240.4849350.8081420.065*
H18E0.7451600.4029900.9277950.065*
H18F0.8934430.4241050.8748210.065*
C19B0.92101 (19)0.62996 (19)0.83865 (18)0.0417 (5)
H19D0.9181820.6870350.8637450.063*
H19E0.9138270.6569550.7698990.063*
H19F0.9998390.6014320.8308390.063*
C20B0.6535 (2)0.67817 (18)1.14691 (17)0.0385 (5)
H20D0.7072160.7450881.1008930.058*
H20E0.6700640.6467931.2112570.058*
H20F0.5665000.6903121.1663890.058*
C21B0.60291 (19)0.89926 (16)0.92287 (16)0.0320 (5)
H21A0.6751500.9334950.9226130.048*
H21B0.5425340.8641140.9961280.048*
H21C0.5647530.9520340.8821380.048*
C22B0.9201 (2)1.20377 (17)0.48758 (16)0.0391 (5)
H22A0.9315511.2768990.4797080.059*
H22B0.8627171.1963010.4558590.059*
H22C1.0001951.1836910.4516220.059*
O1B0.74377 (13)1.16057 (11)0.65307 (11)0.0326 (3)
O2B0.81091 (12)0.95312 (10)0.73040 (10)0.0287 (3)
O3B0.71721 (11)0.75179 (10)0.92470 (10)0.0261 (3)
O4B0.69548 (11)0.58174 (10)0.92806 (10)0.0277 (3)
O5B0.80931 (12)0.59184 (11)1.05972 (11)0.0331 (3)
O6B0.63093 (15)1.19412 (13)0.79565 (13)0.0491 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.046 (2)0.0343 (18)0.0352 (13)0.0167 (16)0.0199 (15)0.0130 (11)
O6A0.090 (3)0.0528 (17)0.0419 (14)0.0319 (18)0.0168 (16)0.0245 (12)
C1A0.048 (3)0.0219 (16)0.0321 (16)0.007 (2)0.013 (2)0.0048 (12)
C2A0.036 (2)0.0289 (19)0.0316 (15)0.0011 (15)0.0157 (15)0.0078 (13)
C3A0.025 (2)0.0326 (19)0.0345 (16)0.0003 (14)0.0110 (15)0.0097 (13)
C4A0.027 (2)0.0172 (17)0.024 (2)0.0065 (16)0.0042 (18)0.0038 (15)
C5A0.044 (2)0.023 (2)0.0247 (19)0.0046 (17)0.0201 (13)0.0057 (12)
C22A0.056 (4)0.0252 (18)0.021 (2)0.0007 (17)0.008 (2)0.0015 (18)
C6A0.073 (3)0.043 (3)0.054 (2)0.009 (2)0.045 (2)0.0011 (18)
C7A0.0403 (13)0.0460 (15)0.0430 (13)0.0095 (11)0.0244 (11)0.0133 (11)
O1AA0.061 (9)0.022 (5)0.040 (6)0.007 (7)0.021 (7)0.011 (4)
O6AA0.124 (14)0.048 (8)0.044 (8)0.005 (10)0.005 (10)0.013 (6)
C1AA0.061 (10)0.019 (6)0.042 (8)0.006 (9)0.005 (9)0.004 (6)
C2AA0.048 (10)0.030 (8)0.028 (6)0.002 (7)0.013 (8)0.012 (6)
C3AA0.034 (9)0.043 (9)0.052 (8)0.007 (7)0.009 (7)0.001 (7)
C4AA0.014 (8)0.045 (8)0.014 (6)0.014 (6)0.008 (6)0.006 (6)
C5AA0.049 (5)0.017 (4)0.023 (5)0.011 (4)0.019 (5)0.005 (4)
C22C0.055 (15)0.058 (11)0.033 (11)0.011 (10)0.007 (10)0.030 (9)
C6AA0.065 (8)0.027 (8)0.058 (8)0.000 (7)0.057 (6)0.004 (6)
C7AA0.0403 (13)0.0460 (15)0.0430 (13)0.0095 (11)0.0244 (11)0.0133 (11)
C8A0.0289 (10)0.0235 (11)0.0325 (11)0.0022 (8)0.0153 (9)0.0110 (9)
C9A0.0256 (10)0.0234 (11)0.0325 (11)0.0032 (8)0.0128 (8)0.0110 (9)
C10A0.0228 (10)0.0311 (12)0.0406 (12)0.0009 (8)0.0115 (9)0.0137 (10)
C11A0.0266 (10)0.0283 (12)0.0356 (11)0.0016 (8)0.0060 (9)0.0134 (10)
C12A0.0255 (10)0.0207 (10)0.0269 (10)0.0023 (8)0.0074 (8)0.0082 (8)
C13A0.0319 (11)0.0233 (11)0.0250 (10)0.0026 (8)0.0071 (8)0.0071 (9)
C14A0.0453 (13)0.0264 (12)0.0269 (11)0.0020 (9)0.0114 (9)0.0034 (9)
C15A0.0491 (13)0.0230 (12)0.0400 (13)0.0029 (10)0.0215 (11)0.0068 (10)
C16A0.0303 (11)0.0301 (12)0.0393 (12)0.0064 (9)0.0166 (9)0.0162 (10)
C17A0.0213 (9)0.0309 (12)0.0324 (11)0.0047 (8)0.0102 (8)0.0145 (9)
C18A0.0343 (11)0.0381 (13)0.0434 (13)0.0072 (10)0.0147 (10)0.0230 (11)
C19A0.0279 (11)0.0404 (13)0.0306 (11)0.0011 (9)0.0057 (9)0.0135 (10)
C20A0.0514 (14)0.0330 (13)0.0303 (11)0.0001 (10)0.0157 (10)0.0116 (10)
C21A0.0445 (13)0.0301 (12)0.0346 (12)0.0052 (10)0.0125 (10)0.0154 (10)
O2A0.0342 (8)0.0242 (8)0.0280 (7)0.0050 (6)0.0156 (6)0.0019 (6)
O3A0.0251 (7)0.0188 (7)0.0301 (7)0.0024 (5)0.0119 (6)0.0033 (6)
O4A0.0236 (7)0.0278 (8)0.0302 (7)0.0013 (6)0.0100 (6)0.0139 (6)
O5A0.0316 (7)0.0303 (8)0.0330 (8)0.0007 (6)0.0162 (6)0.0117 (7)
C1B0.0379 (12)0.0254 (12)0.0343 (12)0.0073 (9)0.0071 (10)0.0105 (10)
C2B0.0437 (13)0.0363 (13)0.0300 (11)0.0083 (10)0.0117 (10)0.0124 (10)
C3B0.0346 (11)0.0324 (12)0.0331 (11)0.0071 (9)0.0128 (9)0.0084 (10)
C4B0.0301 (10)0.0255 (11)0.0253 (10)0.0005 (8)0.0092 (8)0.0082 (9)
C5B0.0346 (11)0.0257 (11)0.0217 (10)0.0021 (8)0.0108 (8)0.0066 (9)
C6B0.0510 (13)0.0282 (12)0.0310 (11)0.0020 (10)0.0216 (10)0.0109 (10)
C7B0.0385 (12)0.0283 (12)0.0344 (11)0.0045 (9)0.0195 (9)0.0154 (9)
C8B0.0286 (10)0.0200 (10)0.0295 (10)0.0016 (8)0.0118 (8)0.0108 (8)
C9B0.0251 (10)0.0209 (10)0.0287 (10)0.0024 (8)0.0121 (8)0.0082 (8)
C10B0.0253 (10)0.0252 (11)0.0368 (11)0.0029 (8)0.0152 (9)0.0111 (9)
C11B0.0237 (10)0.0240 (11)0.0347 (11)0.0002 (8)0.0096 (8)0.0107 (9)
C12B0.0231 (9)0.0180 (10)0.0308 (10)0.0012 (8)0.0094 (8)0.0089 (8)
C13B0.0261 (10)0.0266 (11)0.0277 (10)0.0021 (8)0.0074 (8)0.0072 (9)
C14B0.0358 (12)0.0279 (12)0.0327 (11)0.0041 (9)0.0131 (9)0.0035 (9)
C15B0.0442 (13)0.0288 (12)0.0427 (13)0.0036 (10)0.0209 (11)0.0075 (10)
C16B0.0292 (11)0.0322 (12)0.0458 (13)0.0085 (9)0.0193 (10)0.0167 (10)
C17B0.0227 (10)0.0329 (12)0.0402 (12)0.0067 (8)0.0111 (9)0.0175 (10)
C18B0.0416 (13)0.0436 (15)0.0555 (15)0.0153 (11)0.0199 (11)0.0295 (13)
C19B0.0296 (11)0.0460 (15)0.0436 (13)0.0045 (10)0.0061 (10)0.0195 (11)
C20B0.0479 (13)0.0375 (13)0.0331 (12)0.0008 (10)0.0182 (10)0.0143 (10)
C21B0.0378 (12)0.0261 (11)0.0313 (11)0.0028 (9)0.0119 (9)0.0117 (9)
C22B0.0514 (14)0.0291 (12)0.0288 (11)0.0001 (10)0.0135 (10)0.0044 (10)
O1B0.0364 (8)0.0287 (8)0.0346 (8)0.0047 (6)0.0143 (6)0.0138 (7)
O2B0.0339 (7)0.0242 (8)0.0252 (7)0.0052 (6)0.0138 (6)0.0036 (6)
O3B0.0260 (7)0.0197 (7)0.0300 (7)0.0022 (5)0.0138 (6)0.0035 (6)
O4B0.0261 (7)0.0277 (8)0.0331 (8)0.0047 (6)0.0127 (6)0.0151 (6)
O5B0.0293 (7)0.0328 (8)0.0418 (8)0.0013 (6)0.0182 (6)0.0148 (7)
O6B0.0419 (9)0.0495 (11)0.0485 (10)0.0008 (8)0.0032 (8)0.0260 (9)
Geometric parameters (Å, º) top
O1A—C1A1.353 (6)C18A—H18A0.9800
O1A—C4A1.464 (5)C18A—H18B0.9800
O6A—C1A1.200 (6)C18A—H18C0.9800
C1A—C2A1.493 (5)C19A—H19A0.9800
C2A—C3A1.511 (5)C19A—H19B0.9800
C2A—H2A10.9900C19A—H19C0.9800
C2A—H2A20.9900C20A—H20A0.9800
C3A—C4A1.533 (6)C20A—H20B0.9800
C3A—H3A10.9900C20A—H20C0.9800
C3A—H3A20.9900C21A—H21D0.9800
C4A—C5A1.514 (5)C21A—H21E0.9800
C4A—C22A1.525 (5)C21A—H21F0.9800
C5A—O2A1.412 (9)C1B—O6B1.202 (3)
C5A—C6A1.550 (6)C1B—O1B1.348 (2)
C5A—H5A1.0000C1B—C2B1.491 (3)
C22A—H22D0.9800C2B—C3B1.519 (3)
C22A—H22E0.9800C2B—H2B10.9900
C22A—H22F0.9800C2B—H2B20.9900
C6A—C7A1.511 (5)C3B—C4B1.533 (3)
C6A—H6A10.9900C3B—H3B10.9900
C6A—H6A20.9900C3B—H3B20.9900
C7A—C8A1.517 (3)C4B—O1B1.462 (2)
C7A—H7A10.9900C4B—C22B1.521 (3)
C7A—H7A20.9900C4B—C5B1.524 (3)
O1AA—C1AA1.36 (4)C5B—O2B1.435 (2)
O1AA—C4AA1.418 (19)C5B—C6B1.535 (3)
O6AA—C1AA1.17 (3)C5B—H5B1.0000
C1AA—C2AA1.476 (16)C6B—C7B1.518 (3)
C2AA—C3AA1.494 (18)C6B—H6B10.9900
C2AA—H2A30.9900C6B—H6B20.9900
C2AA—H2A40.9900C7B—C8B1.517 (3)
C3AA—C4AA1.533 (18)C7B—H7B10.9900
C3AA—H3A30.9900C7B—H7B20.9900
C3AA—H3A40.9900C8B—O2B1.441 (2)
C4AA—C5AA1.499 (17)C8B—C9B1.516 (3)
C4AA—C22C1.520 (17)C8B—H8B1.0000
C5AA—O2A1.53 (5)C9B—O3B1.460 (2)
C5AA—C6AA1.531 (18)C9B—C21B1.518 (3)
C5AA—H5AA1.0000C9B—C10B1.535 (3)
C22C—H22G0.9800C10B—C11B1.524 (3)
C22C—H22H0.9800C10B—H10A0.9900
C22C—H22I0.9800C10B—H10B0.9900
C6AA—C7AA1.476 (16)C11B—C12B1.524 (3)
C6AA—H6A30.9900C11B—H11C0.9900
C6AA—H6A40.9900C11B—H11D0.9900
C7AA—C8A1.517 (3)C12B—O3B1.419 (2)
C7AA—H7A30.9900C12B—O4B1.430 (2)
C7AA—H7A40.9900C12B—C13B1.539 (3)
C8A—O2A1.436 (2)C13B—O5B1.449 (2)
C8A—C9A1.515 (3)C13B—C20B1.505 (3)
C8A—H8A1.0000C13B—C14B1.538 (3)
C9A—O3A1.456 (2)C14B—C15B1.524 (3)
C9A—C21A1.525 (3)C14B—H14A0.9900
C9A—C10A1.535 (3)C14B—H14B0.9900
C10A—C11A1.524 (3)C15B—C16B1.523 (3)
C10A—H10C0.9900C15B—H15A0.9900
C10A—H10D0.9900C15B—H15B0.9900
C11A—C12A1.522 (3)C16B—O5B1.434 (2)
C11A—H11A0.9900C16B—C17B1.525 (3)
C11A—H11B0.9900C16B—H16B1.0000
C12A—O3A1.415 (2)C17B—O4B1.452 (2)
C12A—O4A1.433 (2)C17B—C18B1.518 (3)
C12A—C13A1.541 (3)C17B—C19B1.521 (3)
C13A—O5A1.455 (2)C18B—H18D0.9800
C13A—C20A1.511 (3)C18B—H18E0.9800
C13A—C14A1.538 (3)C18B—H18F0.9800
C14A—C15A1.535 (3)C19B—H19D0.9800
C14A—H14C0.9900C19B—H19E0.9800
C14A—H14D0.9900C19B—H19F0.9800
C15A—C16A1.522 (3)C20B—H20D0.9800
C15A—H15C0.9900C20B—H20E0.9800
C15A—H15D0.9900C20B—H20F0.9800
C16A—O5A1.438 (2)C21B—H21A0.9800
C16A—C17A1.524 (3)C21B—H21B0.9800
C16A—H16A1.0000C21B—H21C0.9800
C17A—O4A1.448 (2)C22B—H22A0.9800
C17A—C18A1.521 (3)C22B—H22B0.9800
C17A—C19A1.523 (3)C22B—H22C0.9800
C1A—O1A—C4A111.5 (4)H18B—C18A—H18C109.5
O6A—C1A—O1A120.9 (4)C17A—C19A—H19A109.5
O6A—C1A—C2A129.0 (4)C17A—C19A—H19B109.5
O1A—C1A—C2A110.1 (4)H19A—C19A—H19B109.5
C1A—C2A—C3A105.2 (3)C17A—C19A—H19C109.5
C1A—C2A—H2A1110.7H19A—C19A—H19C109.5
C3A—C2A—H2A1110.7H19B—C19A—H19C109.5
C1A—C2A—H2A2110.7C13A—C20A—H20A109.5
C3A—C2A—H2A2110.7C13A—C20A—H20B109.5
H2A1—C2A—H2A2108.8H20A—C20A—H20B109.5
C2A—C3A—C4A104.4 (3)C13A—C20A—H20C109.5
C2A—C3A—H3A1110.9H20A—C20A—H20C109.5
C4A—C3A—H3A1110.9H20B—C20A—H20C109.5
C2A—C3A—H3A2110.9C9A—C21A—H21D109.5
C4A—C3A—H3A2110.9C9A—C21A—H21E109.5
H3A1—C3A—H3A2108.9H21D—C21A—H21E109.5
O1A—C4A—C5A107.5 (4)C9A—C21A—H21F109.5
O1A—C4A—C22A109.2 (4)H21D—C21A—H21F109.5
C5A—C4A—C22A111.4 (6)H21E—C21A—H21F109.5
O1A—C4A—C3A104.8 (3)C5A—O2A—C8A110.0 (2)
C5A—C4A—C3A108.9 (4)C8A—O2A—C5AA98.7 (10)
C22A—C4A—C3A114.6 (5)C12A—O3A—C9A111.45 (14)
O2A—C5A—C4A111.9 (5)C12A—O4A—C17A117.81 (14)
O2A—C5A—C6A105.1 (5)C16A—O5A—C13A103.34 (14)
C4A—C5A—C6A119.6 (5)O6B—C1B—O1B121.6 (2)
O2A—C5A—H5A106.5O6B—C1B—C2B128.4 (2)
C4A—C5A—H5A106.5O1B—C1B—C2B110.03 (18)
C6A—C5A—H5A106.5C1B—C2B—C3B105.16 (17)
C4A—C22A—H22D109.5C1B—C2B—H2B1110.7
C4A—C22A—H22E109.5C3B—C2B—H2B1110.7
H22D—C22A—H22E109.5C1B—C2B—H2B2110.7
C4A—C22A—H22F109.5C3B—C2B—H2B2110.7
H22D—C22A—H22F109.5H2B1—C2B—H2B2108.8
H22E—C22A—H22F109.5C2B—C3B—C4B103.78 (16)
C7A—C6A—C5A105.5 (5)C2B—C3B—H3B1111.0
C7A—C6A—H6A1110.6C4B—C3B—H3B1111.0
C5A—C6A—H6A1110.6C2B—C3B—H3B2111.0
C7A—C6A—H6A2110.6C4B—C3B—H3B2111.0
C5A—C6A—H6A2110.6H3B1—C3B—H3B2109.0
H6A1—C6A—H6A2108.8O1B—C4B—C22B107.36 (16)
C6A—C7A—C8A102.6 (3)O1B—C4B—C5B108.01 (15)
C6A—C7A—H7A1111.3C22B—C4B—C5B110.79 (16)
C8A—C7A—H7A1111.3O1B—C4B—C3B104.90 (15)
C6A—C7A—H7A2111.3C22B—C4B—C3B111.96 (17)
C8A—C7A—H7A2111.3C5B—C4B—C3B113.39 (17)
H7A1—C7A—H7A2109.2O2B—C5B—C4B109.47 (15)
C1AA—O1AA—C4AA111 (2)O2B—C5B—C6B106.46 (16)
O6AA—C1AA—O1AA120 (2)C4B—C5B—C6B115.39 (17)
O6AA—C1AA—C2AA131 (3)O2B—C5B—H5B108.4
O1AA—C1AA—C2AA109 (2)C4B—C5B—H5B108.4
C1AA—C2AA—C3AA105.3 (19)C6B—C5B—H5B108.4
C1AA—C2AA—H2A3110.7C7B—C6B—C5B103.64 (16)
C3AA—C2AA—H2A3110.7C7B—C6B—H6B1111.0
C1AA—C2AA—H2A4110.7C5B—C6B—H6B1111.0
C3AA—C2AA—H2A4110.7C7B—C6B—H6B2111.0
H2A3—C2AA—H2A4108.8C5B—C6B—H6B2111.0
C2AA—C3AA—C4AA102.4 (17)H6B1—C6B—H6B2109.0
C2AA—C3AA—H3A3111.3C8B—C7B—C6B102.36 (16)
C4AA—C3AA—H3A3111.3C8B—C7B—H7B1111.3
C2AA—C3AA—H3A4111.3C6B—C7B—H7B1111.3
C4AA—C3AA—H3A4111.3C8B—C7B—H7B2111.3
H3A3—C3AA—H3A4109.2C6B—C7B—H7B2111.3
O1AA—C4AA—C5AA113 (2)H7B1—C7B—H7B2109.2
O1AA—C4AA—C22C95 (2)O2B—C8B—C9B110.87 (14)
C5AA—C4AA—C22C112 (3)O2B—C8B—C7B102.99 (15)
O1AA—C4AA—C3AA104.2 (18)C9B—C8B—C7B116.84 (16)
C5AA—C4AA—C3AA127 (2)O2B—C8B—H8B108.6
C22C—C4AA—C3AA100 (3)C9B—C8B—H8B108.6
C4AA—C5AA—O2A92 (2)C7B—C8B—H8B108.6
C4AA—C5AA—C6AA95 (2)O3B—C9B—C8B108.28 (15)
O2A—C5AA—C6AA106 (3)O3B—C9B—C21B107.89 (15)
C4AA—C5AA—H5AA119.5C8B—C9B—C21B113.21 (16)
O2A—C5AA—H5AA119.5O3B—C9B—C10B103.86 (15)
C6AA—C5AA—H5AA119.5C8B—C9B—C10B110.72 (15)
C4AA—C22C—H22G109.5C21B—C9B—C10B112.34 (16)
C4AA—C22C—H22H109.5C11B—C10B—C9B102.84 (15)
H22G—C22C—H22H109.5C11B—C10B—H10A111.2
C4AA—C22C—H22I109.5C9B—C10B—H10A111.2
H22G—C22C—H22I109.5C11B—C10B—H10B111.2
H22H—C22C—H22I109.5C9B—C10B—H10B111.2
C7AA—C6AA—C5AA96.0 (19)H10A—C10B—H10B109.1
C7AA—C6AA—H6A3112.5C10B—C11B—C12B101.56 (15)
C5AA—C6AA—H6A3112.5C10B—C11B—H11C111.5
C7AA—C6AA—H6A4112.5C12B—C11B—H11C111.5
C5AA—C6AA—H6A4112.5C10B—C11B—H11D111.5
H6A3—C6AA—H6A4110.1C12B—C11B—H11D111.5
C6AA—C7AA—C8A112.1 (9)H11C—C11B—H11D109.3
C6AA—C7AA—H7A3109.2O3B—C12B—O4B110.98 (14)
C8A—C7AA—H7A3109.2O3B—C12B—C11B105.08 (15)
C6AA—C7AA—H7A4109.2O4B—C12B—C11B104.98 (14)
C8A—C7AA—H7A4109.2O3B—C12B—C13B109.10 (14)
H7A3—C7AA—H7A4107.9O4B—C12B—C13B110.59 (15)
O2A—C8A—C9A109.92 (15)C11B—C12B—C13B115.95 (16)
O2A—C8A—C7A103.93 (16)O5B—C13B—C20B107.19 (16)
C9A—C8A—C7A117.02 (17)O5B—C13B—C14B102.72 (16)
O2A—C8A—C7AA103.93 (16)C20B—C13B—C14B115.09 (17)
C9A—C8A—C7AA117.02 (17)O5B—C13B—C12B107.96 (15)
O2A—C8A—H8A108.5C20B—C13B—C12B113.03 (17)
C9A—C8A—H8A108.5C14B—C13B—C12B110.06 (16)
C7A—C8A—H8A108.5C15B—C14B—C13B104.27 (16)
O3A—C9A—C8A106.95 (15)C15B—C14B—H14A110.9
O3A—C9A—C21A107.88 (15)C13B—C14B—H14A110.9
C8A—C9A—C21A113.05 (17)C15B—C14B—H14B110.9
O3A—C9A—C10A104.33 (15)C13B—C14B—H14B110.9
C8A—C9A—C10A112.00 (16)H14A—C14B—H14B108.9
C21A—C9A—C10A112.03 (17)C16B—C15B—C14B103.42 (17)
C11A—C10A—C9A102.66 (16)C16B—C15B—H15A111.1
C11A—C10A—H10C111.2C14B—C15B—H15A111.1
C9A—C10A—H10C111.2C16B—C15B—H15B111.1
C11A—C10A—H10D111.2C14B—C15B—H15B111.1
C9A—C10A—H10D111.2H15A—C15B—H15B109.0
H10C—C10A—H10D109.1O5B—C16B—C15B103.74 (17)
C12A—C11A—C10A101.66 (16)O5B—C16B—C17B107.34 (17)
C12A—C11A—H11A111.4C15B—C16B—C17B115.43 (17)
C10A—C11A—H11A111.4O5B—C16B—H16B110.0
C12A—C11A—H11B111.4C15B—C16B—H16B110.0
C10A—C11A—H11B111.4C17B—C16B—H16B110.0
H11A—C11A—H11B109.3O4B—C17B—C18B105.42 (16)
O3A—C12A—O4A112.13 (15)O4B—C17B—C19B111.07 (17)
O3A—C12A—C11A104.77 (15)C18B—C17B—C19B109.49 (18)
O4A—C12A—C11A104.51 (15)O4B—C17B—C16B107.82 (15)
O3A—C12A—C13A107.64 (14)C18B—C17B—C16B112.08 (18)
O4A—C12A—C13A109.83 (15)C19B—C17B—C16B110.85 (17)
C11A—C12A—C13A117.95 (16)C17B—C18B—H18D109.5
O5A—C13A—C20A107.20 (16)C17B—C18B—H18E109.5
O5A—C13A—C14A103.47 (16)H18D—C18B—H18E109.5
C20A—C13A—C14A115.17 (17)C17B—C18B—H18F109.5
O5A—C13A—C12A106.63 (15)H18D—C18B—H18F109.5
C20A—C13A—C12A113.08 (17)H18E—C18B—H18F109.5
C14A—C13A—C12A110.42 (16)C17B—C19B—H19D109.5
C15A—C14A—C13A103.99 (16)C17B—C19B—H19E109.5
C15A—C14A—H14C111.0H19D—C19B—H19E109.5
C13A—C14A—H14C111.0C17B—C19B—H19F109.5
C15A—C14A—H14D111.0H19D—C19B—H19F109.5
C13A—C14A—H14D111.0H19E—C19B—H19F109.5
H14C—C14A—H14D109.0C13B—C20B—H20D109.5
C16A—C15A—C14A103.55 (17)C13B—C20B—H20E109.5
C16A—C15A—H15C111.1H20D—C20B—H20E109.5
C14A—C15A—H15C111.1C13B—C20B—H20F109.5
C16A—C15A—H15D111.1H20D—C20B—H20F109.5
C14A—C15A—H15D111.1H20E—C20B—H20F109.5
H15C—C15A—H15D109.0C9B—C21B—H21A109.5
O5A—C16A—C15A102.84 (16)C9B—C21B—H21B109.5
O5A—C16A—C17A107.85 (16)H21A—C21B—H21B109.5
C15A—C16A—C17A115.43 (17)C9B—C21B—H21C109.5
O5A—C16A—H16A110.1H21A—C21B—H21C109.5
C15A—C16A—H16A110.1H21B—C21B—H21C109.5
C17A—C16A—H16A110.1C4B—C22B—H22A109.5
O4A—C17A—C18A106.01 (15)C4B—C22B—H22B109.5
O4A—C17A—C19A110.16 (16)H22A—C22B—H22B109.5
C18A—C17A—C19A109.42 (17)C4B—C22B—H22C109.5
O4A—C17A—C16A108.77 (15)H22A—C22B—H22C109.5
C18A—C17A—C16A111.31 (17)H22B—C22B—H22C109.5
C19A—C17A—C16A111.04 (16)C1B—O1B—C4B111.83 (16)
C17A—C18A—H18A109.5C5B—O2B—C8B108.66 (14)
C17A—C18A—H18B109.5C12B—O3B—C9B111.50 (13)
H18A—C18A—H18B109.5C12B—O4B—C17B117.36 (14)
C17A—C18A—H18C109.5C16B—O5B—C13B103.05 (14)
H18A—C18A—H18C109.5
C4A—O1A—C1A—O6A178.2 (4)C8A—C9A—O3A—C12A123.21 (15)
C4A—O1A—C1A—C2A2.4 (5)C21A—C9A—O3A—C12A114.90 (17)
O6A—C1A—C2A—C3A168.8 (5)C10A—C9A—O3A—C12A4.39 (19)
O1A—C1A—C2A—C3A10.5 (5)O3A—C12A—O4A—C17A75.1 (2)
C1A—C2A—C3A—C4A18.2 (4)C11A—C12A—O4A—C17A171.95 (15)
C1A—O1A—C4A—C5A101.7 (5)C13A—C12A—O4A—C17A44.5 (2)
C1A—O1A—C4A—C22A137.3 (6)C18A—C17A—O4A—C12A164.31 (16)
C1A—O1A—C4A—C3A14.0 (5)C19A—C17A—O4A—C12A77.4 (2)
C2A—C3A—C4A—O1A19.5 (4)C16A—C17A—O4A—C12A44.5 (2)
C2A—C3A—C4A—C5A95.3 (5)C15A—C16A—O5A—C13A48.12 (18)
C2A—C3A—C4A—C22A139.2 (5)C17A—C16A—O5A—C13A74.30 (18)
O1A—C4A—C5A—O2A65.7 (5)C20A—C13A—O5A—C16A165.85 (16)
C22A—C4A—C5A—O2A174.7 (4)C14A—C13A—O5A—C16A43.71 (18)
C3A—C4A—C5A—O2A47.3 (5)C12A—C13A—O5A—C16A72.77 (17)
O1A—C4A—C5A—C6A57.8 (8)O6B—C1B—C2B—C3B167.3 (2)
C22A—C4A—C5A—C6A61.8 (8)O1B—C1B—C2B—C3B12.1 (2)
C3A—C4A—C5A—C6A170.8 (6)C1B—C2B—C3B—C4B19.4 (2)
O2A—C5A—C6A—C7A3.7 (6)C2B—C3B—C4B—O1B20.0 (2)
C4A—C5A—C6A—C7A122.9 (6)C2B—C3B—C4B—C22B136.08 (19)
C5A—C6A—C7A—C8A23.3 (5)C2B—C3B—C4B—C5B97.7 (2)
C4AA—O1AA—C1AA—O6AA167 (2)O1B—C4B—C5B—O2B66.91 (19)
C4AA—O1AA—C1AA—C2AA10 (3)C22B—C4B—C5B—O2B175.77 (16)
O6AA—C1AA—C2AA—C3AA174 (3)C3B—C4B—C5B—O2B48.9 (2)
O1AA—C1AA—C2AA—C3AA9 (3)O1B—C4B—C5B—C6B53.1 (2)
C1AA—C2AA—C3AA—C4AA23 (3)C22B—C4B—C5B—C6B64.2 (2)
C1AA—O1AA—C4AA—C5AA118 (3)C3B—C4B—C5B—C6B168.92 (16)
C1AA—O1AA—C4AA—C22C125 (3)O2B—C5B—C6B—C7B10.0 (2)
C1AA—O1AA—C4AA—C3AA24 (3)C4B—C5B—C6B—C7B111.69 (19)
C2AA—C3AA—C4AA—O1AA28 (3)C5B—C6B—C7B—C8B30.1 (2)
C2AA—C3AA—C4AA—C5AA106 (3)C6B—C7B—C8B—O2B39.82 (18)
C2AA—C3AA—C4AA—C22C126 (2)C6B—C7B—C8B—C9B161.60 (16)
O1AA—C4AA—C5AA—O2A83 (2)O2B—C8B—C9B—O3B77.34 (18)
C22C—C4AA—C5AA—O2A170 (2)C7B—C8B—C9B—O3B165.11 (15)
C3AA—C4AA—C5AA—O2A48 (3)O2B—C8B—C9B—C21B42.2 (2)
O1AA—C4AA—C5AA—C6AA23 (4)C7B—C8B—C9B—C21B75.3 (2)
C22C—C4AA—C5AA—C6AA83 (3)O2B—C8B—C9B—C10B169.42 (15)
C3AA—C4AA—C5AA—C6AA154 (2)C7B—C8B—C9B—C10B51.9 (2)
C4AA—C5AA—C6AA—C7AA133 (2)O3B—C9B—C10B—C11B28.65 (18)
O2A—C5AA—C6AA—C7AA39 (2)C8B—C9B—C10B—C11B144.68 (16)
C5AA—C6AA—C7AA—C8A16 (2)C21B—C9B—C10B—C11B87.67 (19)
C6A—C7A—C8A—O2A34.7 (3)C9B—C10B—C11B—C12B38.20 (18)
C6A—C7A—C8A—C9A156.1 (3)C10B—C11B—C12B—O3B34.34 (18)
C6AA—C7AA—C8A—O2A13.6 (12)C10B—C11B—C12B—O4B82.79 (17)
C6AA—C7AA—C8A—C9A134.9 (12)C10B—C11B—C12B—C13B154.86 (16)
O2A—C8A—C9A—O3A67.97 (18)O3B—C12B—C13B—O5B67.88 (18)
C7A—C8A—C9A—O3A173.84 (16)O4B—C12B—C13B—O5B54.45 (19)
C7AA—C8A—C9A—O3A173.84 (16)C11B—C12B—C13B—O5B173.78 (15)
O2A—C8A—C9A—C21A50.6 (2)O3B—C12B—C13B—C20B50.5 (2)
C7A—C8A—C9A—C21A67.6 (2)O4B—C12B—C13B—C20B172.83 (15)
C7AA—C8A—C9A—C21A67.6 (2)C11B—C12B—C13B—C20B67.8 (2)
O2A—C8A—C9A—C10A178.31 (16)O3B—C12B—C13B—C14B179.27 (15)
C7A—C8A—C9A—C10A60.1 (2)O4B—C12B—C13B—C14B56.9 (2)
C7AA—C8A—C9A—C10A60.1 (2)C11B—C12B—C13B—C14B62.4 (2)
O3A—C9A—C10A—C11A26.54 (19)O5B—C13B—C14B—C15B26.0 (2)
C8A—C9A—C10A—C11A141.86 (16)C20B—C13B—C14B—C15B142.16 (19)
C21A—C9A—C10A—C11A89.9 (2)C12B—C13B—C14B—C15B88.73 (19)
C9A—C10A—C11A—C12A37.60 (19)C13B—C14B—C15B—C16B1.6 (2)
C10A—C11A—C12A—O3A35.65 (19)C14B—C15B—C16B—O5B29.1 (2)
C10A—C11A—C12A—O4A82.43 (17)C14B—C15B—C16B—C17B88.0 (2)
C10A—C11A—C12A—C13A155.29 (16)O5B—C16B—C17B—O4B61.82 (19)
O3A—C12A—C13A—O5A65.08 (18)C15B—C16B—C17B—O4B53.3 (2)
O4A—C12A—C13A—O5A57.26 (18)O5B—C16B—C17B—C18B177.39 (16)
C11A—C12A—C13A—O5A176.79 (15)C15B—C16B—C17B—C18B62.3 (2)
O3A—C12A—C13A—C20A52.5 (2)O5B—C16B—C17B—C19B59.9 (2)
O4A—C12A—C13A—C20A174.83 (15)C15B—C16B—C17B—C19B175.04 (18)
C11A—C12A—C13A—C20A65.6 (2)O6B—C1B—O1B—C4B179.49 (19)
O3A—C12A—C13A—C14A176.82 (15)C2B—C1B—O1B—C4B1.1 (2)
O4A—C12A—C13A—C14A54.5 (2)C22B—C4B—O1B—C1B132.90 (17)
C11A—C12A—C13A—C14A65.0 (2)C5B—C4B—O1B—C1B107.58 (17)
O5A—C13A—C14A—C15A21.82 (19)C3B—C4B—O1B—C1B13.6 (2)
C20A—C13A—C14A—C15A138.47 (19)C4B—C5B—O2B—C8B141.03 (16)
C12A—C13A—C14A—C15A91.95 (19)C6B—C5B—O2B—C8B15.7 (2)
C13A—C14A—C15A—C16A6.4 (2)C9B—C8B—O2B—C5B160.70 (15)
C14A—C15A—C16A—O5A32.83 (19)C7B—C8B—O2B—C5B34.98 (19)
C14A—C15A—C16A—C17A84.3 (2)O4B—C12B—O3B—C9B95.87 (16)
O5A—C16A—C17A—O4A58.47 (19)C11B—C12B—O3B—C9B17.09 (19)
C15A—C16A—C17A—O4A55.8 (2)C13B—C12B—O3B—C9B142.04 (15)
O5A—C16A—C17A—C18A174.91 (16)C8B—C9B—O3B—C12B125.12 (15)
C15A—C16A—C17A—C18A60.6 (2)C21B—C9B—O3B—C12B112.01 (16)
O5A—C16A—C17A—C19A62.9 (2)C10B—C9B—O3B—C12B7.39 (19)
C15A—C16A—C17A—C19A177.22 (17)O3B—C12B—O4B—C17B78.00 (19)
C4A—C5A—O2A—C8A150.6 (3)C11B—C12B—O4B—C17B168.98 (15)
C6A—C5A—O2A—C8A19.3 (5)C13B—C12B—O4B—C17B43.2 (2)
C9A—C8A—O2A—C5A160.7 (3)C18B—C17B—O4B—C12B166.08 (17)
C7A—C8A—O2A—C5A34.7 (3)C19B—C17B—O4B—C12B75.4 (2)
C9A—C8A—O2A—C5AA162.3 (13)C16B—C17B—O4B—C12B46.2 (2)
C7AA—C8A—O2A—C5AA36.3 (13)C15B—C16B—O5B—C13B47.09 (19)
C4AA—C5AA—O2A—C8A145.5 (14)C17B—C16B—O5B—C13B75.55 (18)
C6AA—C5AA—O2A—C8A49.8 (19)C20B—C13B—O5B—C16B167.10 (16)
O4A—C12A—O3A—C9A92.95 (17)C14B—C13B—O5B—C16B45.44 (18)
C11A—C12A—O3A—C9A19.82 (19)C12B—C13B—O5B—C16B70.84 (18)
C13A—C12A—O3A—C9A146.15 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19A—H19A···O3A0.982.393.041 (3)124
C19B—H19D···O3B0.982.463.038 (3)117
C7A—H7A1···O6Bi0.992.553.464 (4)154
Symmetry code: (i) x+1, y+2, z+1.
Table 1. Parameters of the Hirshfeld surface of the two crystallographically independent molecules top
Hirshfeld surface analysis was performed using the program CrystalExplorer (Wolff et al. 2012).
Moleculevolume (Å3)area (Å2)globularityasphericity
A506.20398.920.7700.127
B500.14401.640.7590.151
 

Acknowledgements

The authors thank the Centro Regionale di Competenza NTAP of Regione Campania (Italy) for the X-ray facility.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBifulco, G., Caserta, T., Gomez-Paloma, L. & Piccialli, V. (2003). Tetrahedron Lett. 44, 3429–3429.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCentore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. pp. 3721–3728.  Web of Science CSD CrossRef Google Scholar
First citationD'Errico, S., Oliviero, G., Amato, J., Borbone, N., Cerullo, V., Hemminki, A., Piccialli, V., Zaccaria, S., Mayol, L. & Piccialli, G. (2012a). Chem. Commun. 48, 9310–9312.  CAS Google Scholar
First citationD'Errico, S., Oliviero, G., Borbone, N., Amato, J., D'Alonzo, D., Piccialli, V., Mayol, L. & Piccialli, G. (2012b). Molecules, 17, 13036–13044.  CAS PubMed Google Scholar
First citationD'Errico, S., Oliviero, G., Borbone, N., Amato, J., Piccialli, V., Varra, M., Mayol, L. & Piccialli, G. (2011). Molecules, 16, 8110–8118.  CAS PubMed Google Scholar
First citationDuisenberg, A. J. M., Hooft, R., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIovine, B., Oliviero, B., Garofalo, M., Orefice, M., Nocella, F., Borbone, N., Piccialli, V., Centore, R., Mazzone, M., Piccialli, G. & Bevilaqua, M. A. (2014). PLoS One, 9, e96755. https://doi.org/10.1371/journal.pone.0096755  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliviero, G., Amato, J., Borbone, N., D'Errico, S., Piccialli, G., Bucci, E., Piccialli, V. & Mayol, L. (2008). Tetrahedron, 64, 6475–6481.  Web of Science CrossRef CAS Google Scholar
First citationOliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Piccialli, G. & Mayol, L. (2010a). Eur. J. Org. Chem. pp. 1517–1524.  Web of Science CrossRef Google Scholar
First citationOliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Varra, M., Piccialli, G. & Mayol, L. (2010b). Tetrahedron, 66, 1931–1936.  Web of Science CrossRef CAS Google Scholar
First citationPiccialli, V. (2014). Molecules, 19, 6534–6582.  CrossRef PubMed Google Scholar
First citationPiccialli, V., Borbone, N. & Oliviero, G. (2007). Tetrahedron Lett. 48, 5131–5135.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiccialli, V., Borbone, N. & Oliviero, G. (2008). Tetrahedron, 64, 11185–11192.  CrossRef CAS Google Scholar
First citationPiccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781–1789.  Web of Science CSD CrossRef Google Scholar
First citationPiccialli, V., Oliviero, G., Borbone, N., Tuzi, A., Centore, R., Hemminki, A., Ugolini, M. & Cerullo, V. (2009). Org. Biomol. Chem. 7, 3036–3039.  CrossRef CAS Google Scholar
First citationPiccialli, V., Zaccaria, S., Borbone, N., Oliviero, G., D'Errico, S., Hemminki, A., Cerullo, V., Romano, V., Tuzi, A. & Centore, R. (2010). Tetrahedron, 66, 9370–9378.  CrossRef CAS Google Scholar
First citationRussell, S. T., Robinson, J. A. & Williams, D. J. (1987). J. Chem. Soc. Chem. Commun. pp. 351–352.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationStill, W. C. & Romero, A. G. (1986). J. Am. Chem. Soc. 108, 2105–2106.  CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar
First citationXiong, Z. & Corey, E. J. (2000). J. Am. Chem. Soc. 122, 4831–4832.  CrossRef CAS Google Scholar
First citationYang, P., Li, P.-F., Qu, J. & Tang, L.-F. (2012). Org. Lett. 14, 3932–3935.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds