research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structure of (C2H9N2)2[Zn3(HPO3)4], a three-dimensional zincophosphite framework containing 16-membered rings templated by the unsymmetrical di­methyl hydrazinium cation

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by J. Simpson, University of Otago, New Zealand (Received 14 April 2017; accepted 16 April 2017; online 28 April 2017)

The solution-mediated synthesis and crystal structure of 1,1-di­methyl­hydrazinium tetra­phoshonoatotrizincate, (C2H9N2)2[Zn3(HPO3)4], are described. The anionic [Zn3(HPO3)4]2− framework is built up from alternating ZnO4 tetra­hedra and HPO3 pseudo-pyramids to generate a three-dimensional 4,3-net encapsulating the C2H9N2+ cations. The organic cations, which are protonated at their central N atoms, occupy pores delineated by large 16-membered polyhedral rings and inter­act with the framework by way of N—H⋯O hydrogen bonds and possible C—H⋯O inter­actions. One of the zinc ions lies on a crystallographic twofold rotation axis and all the other atoms lie on general positions. The crystal studied was found to be rotationally twinned about the [001] axis in reciprocal space in a 0.585 (5):0.415 (5) ratio.

1. Chemical context

Organically templated zinc phosphites are now a well-established family of open frameworks (e.g.: Phillips et al., 2002[Phillips, M. L. F., Nenoff, T. M., Thompson, C. T. & Harrison, W. T. A. (2002). J. Solid State Chem. 167, 337-343.]; Luo et al., 2010[Luo, X.-C., Gong, M.-C., Chen, Y.-Q. & Lin, Z.-E. (2010). Microporous Mesoporous Mater. 131, 418-422.]; Wang et al., 2011[Wang, S.-D., Luo, D.-B., Luo, X.-C., Chen, Y.-Q. & Lin, Z.-E. (2011). Solid State Sci. 13, 904-907.]; Dong et al., 2015[Dong, Z.-J., Yan, Y., Zhang, W.-Q., Wang, Y. & Li, J.-Y. (2015). Chem. Res. Chin. Univ. 31, 498-502.]; Huang et al., 2017[Huang, H.-L., Lin, H.-Y., Chen, P.-S., Lee, J.-J., Kung, H.-C. & Wang, S.-L. (2017). Dalton Trans. 46, 364-368.]). As part of our occasional studies in this area (Harrison & McNamee, 2010[Harrison, W. T. A. & McNamee, P. M. (2010). J. Chem. Res. (S), 34, 641-642.]), we now describe the synthesis and structure of the title compound, (I)[link], which represents the first example of a protonated unsymmetrical dimethyl hydrazine (C2H8N2 or UDMH is the neutral mol­ecule and C2H9N2+ is the cation) acting as a templating agent for an inorganic open framework. So far as we are aware, the only crystal structures containing C2H9N2+ that have been reported previously are mol­ecular salts with different simple counter-ions (Katinaitė & Harrison, 2016[Katinaitė, J. & Harrison, W. T. A. (2016). Acta Cryst. E72, 1206-1210.], and references therein).

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] comprises two zinc cations (Zn1 with site symmetry 2 and Zn2 on a general position), two HPO32− hydrogen phosphite groups and one C2H9N2+ cation (Fig. 1[link]). Both zinc ions adopt their usual tetra­hedral coord­ination geometries (Table 1[link]) to four nearby O atoms with mean Zn—O separations of 1.942 and 1.945 Å for Zn1 and Zn2, respectively. The range of O—Zn—O bond angles for Zn1 of 100.0 (2)–121.0 (2)° indicates considerable distortion from the ideal tetra­hedral value of 109.5°; the spread of values for Zn2 of 99.8 (2)–115.1 (2)° is somewhat smaller. Bond-valence-sum values (in valence units; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) for Zn1 and Zn2 of 2.11 and 2.09, respectively, are in adequate agreement with the expected values of 2.00.

Table 1
Selected geometric parameters (Å, °)

Zn1—O4 1.938 (5) P1—O2 1.504 (5)
Zn1—O4i 1.938 (5) P1—O1 1.515 (6)
Zn2—O5ii 1.936 (6) P1—O3 1.533 (5)
Zn2—O2iii 1.943 (5) P2—O5 1.500 (6)
Zn2—O6iv 1.946 (5) P2—O6 1.520 (5)
Zn2—O1 1.954 (6) P2—O4 1.529 (5)
       
P1—O1—Zn2 128.0 (3) P2—O4—Zn1 123.6 (3)
P1—O2—Zn2iii 140.3 (3) P2—O5—Zn2v 138.4 (4)
P1—O3—Zn1 137.2 (3) P2—O6—Zn2vi 120.8 (3)
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of (I)[link] expanded to show the zinc coordination polyhedra (50% displacement ellipsoids). For symmetry codes, see Table 1[link].

Both phospho­rus atoms in (I)[link] display their expected HPO3 pseudo-tetra­hedral geometries with mean P—O distances (1.517 Å for P1 and 1.516 Å for P2) and O—P—O angles (112.7° for P1 and 112.6° for P2) that are consistent with previous results (Dong et al., 2015[Dong, Z.-J., Yan, Y., Zhang, W.-Q., Wang, Y. & Li, J.-Y. (2015). Chem. Res. Chin. Univ. 31, 498-502.]). P1 deviates from its pyramid of attached O atoms by 0.418 (4) and the equivalent deviation for P2 is 0.420 (3) Å.

The structure of (I)[link] is completed by the charge-balancing C2H9N2+ cation, which is protonated at the central (methyl­ated) N2 atom, as is most commonly seen for this species (Katinaitė & Harrison, 2016[Katinaitė, J. & Harrison, W. T. A. (2016). Acta Cryst. E72, 1206-1210.]). The C—N and N—N bond lengths are indistinguishable and N2 deviates from the plane of N1, C1 and C2 by 0.434 (8) Å.

In the extended framework structure of (I)[link], the zinc- and phospho­rus-centred building units strictly alternate: every O atom forms a Zn—O—P bridge (mean angle = 131.4°), thus there are no `dangling' Zn—OH2, P=O or P—OH bonds as found in some zincophosphite frameworks (Shi et al., 2004[Shi, S., Qian, W., Li, G., Wang, L., Yuan, H., Xu, J., Zhu, G., Song, T. & Qiu, S. (2004). J. Solid State Chem. 177, 3038-3044.]; Liu et al., 2008[Liu, L., Zhang, L., Wang, X., Li, G., Liu, Y. & Pang, W. (2008). Dalton Trans. pp. 2009-2014.]), which is fully consistent with the 3:4 Zn:P stoichiometry of the anionic [Zn3(HPO3)4]2− component of the structure (Harrison & McNamee, 2010[Harrison, W. T. A. & McNamee, P. M. (2010). J. Chem. Res. (S), 34, 641-642.]). In addition, there are no Zn—N bonds (direct metal-to-template links) in (I)[link]; compare Kirkpatrick & Harrison (2004[Kirkpatrick, A. & Harrison, W. T. A. (2004). Solid State Sci. 6, 593-598.]), Lin et al. (2004[Lin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004). Microporous Mesoporous Mater. 68, 65-70.]) and Harrison (2006[Harrison, W. T. A. (2006). Acta Cryst. C62, m156-m158.]).

The polyhedral connectivity in (I)[link] can be broken down as follows: the Zn2, P1 and P2 polyhedra form four-ring (i.e.: a loop of two Zn atoms and two P atoms) chains, with the zinc atoms as the linking nodes, which propagate alternately in the [[\overline{1}]10] and [110] directions with respect to the c-axis direction. Atom Zn1 serves to link these criss-cross chains into a three-dimensional open framework. If the template is omitted, a PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) analysis indicates that 878 Å3 (43.3%) of the unit cell is `empty space' and the `framework density' (FD) (number of Zn and P atoms per 1000 Å3; Brunner & Meier, 1989[Brunner, G. O. & Meier, W. M. (1989). Nature (London), 337, 146-147.]) of (I)[link] is 13.8. This low FD is comparable to that of the unusual open-framework MAPSO-46, which contains Mg, Al, P and Si as its tetra­hedral framework atoms (Bennett & Marcus, 1988[Bennett, J. M. & Marcus, B. K. (1988). Stud. Surf. Sci. Catal. 37, 269-279.]). When the template is included in the calculation, PLATON indicates no free space, suggesting that the template is a `snug fit' within the inorganic framework of (I)[link].

In the extended structure, large 16-ring pores (Figs. 2[link] and 3[link]) are apparent in the framework, which alternately propagate in [[\overline{1}]10] and [110] with respect to the c-axis direction. Measured atom-to-atom, the 16-ring has a dimension of ∼5.7 × 14.6 Å. Pairs of template cations lie roughly in the plane of the 16-rings and inter­act with framework oxygen atoms by way of N—H⋯O hydrogen bonds (Table 2[link]). It is notable that the H⋯O separation for the charge-assisted N2+—H3N⋯O3 bond is much shorter than the H⋯O separations for the terminal N1H2 grouping. Within the asymmetric unit, an R22(7) loop is apparent (Fig. 1[link]). Possible weak C—H⋯O inter­actions (Table 2[link]) consolidate the structure.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.91 2.34 3.130 (9) 146
N1—H2N⋯O6vii 0.91 2.35 3.133 (9) 144
N2—H3N⋯O3 1.00 1.79 2.762 (8) 163
C1—H1A⋯O1v 0.98 2.50 3.474 (11) 173
C1—H1C⋯O5viii 0.98 2.50 3.295 (11) 138
C2—H2C⋯O2ix 0.98 2.43 3.355 (9) 157
Symmetry codes: (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (viii) -x, -y, -z; (ix) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Fragment of (I)[link] showing a 16-ring channel occupied side-by-side by two C2H9N2+ template cations.
[Figure 3]
Figure 3
The unit-cell packing in (I)[link] viewed approximately along [110] with the framework represented topologically (i.e. as Zn—P links).

3. Database survey

A survey of of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]: updated to April 2017) for organically templated zinc phosphite frameworks (those containing a Zn—O—P—H fragment) revealed 172 matches.

4. Synthesis and crystallization

Caution! UDMH is toxic, potentially carcinogenic and may form explosive mixtures with oxidizing agents: all appropriate safety precautions should be taken when handling it. Zinc oxide (1.63 g), phospho­rus acid (1.64 g) and 20 ml of a 1.0 M aqueous UDMH solution were mixed in a 1:1:1 molar ratio in a sealed PTFE bottle and heated to 353 K for 24 h and then cooled to room temperature over a few hours. Product recovery by vacuum filtration yielded some colourless blocks of (I)[link] accompanied by an unidentified white powder.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N-bound H atoms were located in difference maps, relocated to idealized locations (N—H = 0.91–1.00 Å) and refined as riding atoms. The other hydrogen atoms were placed geometrically (P—H = 1.32, C—H = 0.98 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier) was applied in all cases. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density. The crystal chosen for data collection was found to be rotationally twinned about the [001] axis in reciprocal space in a 0.585 (5):0.415 (5) ratio.

Table 3
Experimental details

Crystal data
Chemical formula (C2H9N2)2[Zn3(HPO3)4]
Mr 638.24
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 15.1154 (5), 8.7269 (3), 16.1675 (6)
β (°) 108.156 (1)
V3) 2026.48 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.90
Crystal size (mm) 0.19 × 0.11 × 0.05
 
Data collection
Diffractometer Rigaku Mercury CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.527, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2273, 2273, 2169
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.239, 1.22
No. of reflections 2273
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.51, −1.24
Computer programs: CrysAlis PRO (Rigaku, 2015[Rigaku (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), ATOMS (Shape Software, 2005[Shape Software (2005). ATOMS. Shape Software Inc., Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku, 2015); cell refinement: CrysAlis PRO (Rigaku, 2015); data reduction: CrysAlis PRO (Rigaku, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and ATOMS (Shape Software, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

1,1-Dimethylhydrazinium tetraphoshonoatotrizincate(II) top
Crystal data top
(C2H9N2)2[Zn3(HPO3)4]F(000) = 1280
Mr = 638.24Dx = 2.092 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.1154 (5) ÅCell parameters from 6272 reflections
b = 8.7269 (3) Åθ = 2.6–27.6°
c = 16.1675 (6) ŵ = 3.90 mm1
β = 108.156 (1)°T = 100 K
V = 2026.48 (12) Å3Block, colourless
Z = 40.19 × 0.11 × 0.05 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2169 reflections with I > 2σ(I)
ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1918
Tmin = 0.527, Tmax = 1.000k = 1111
2273 measured reflectionsl = 1120
2273 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.068 w = 1/[σ2(Fo2) + (0.1587P)2 + 13.6003P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.239(Δ/σ)max < 0.001
S = 1.22Δρmax = 1.51 e Å3
2273 reflectionsΔρmin = 1.24 e Å3
127 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.011 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin with components rotated about (001) in reciprocal space

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.16565 (13)0.25000.0076 (4)
Zn20.36570 (6)0.37073 (9)0.48484 (5)0.0096 (4)
P10.15444 (13)0.3885 (2)0.37817 (11)0.0091 (5)
H10.11470.52480.36620.011*
P20.01597 (13)0.0917 (2)0.11747 (11)0.0088 (5)
H20.02530.19700.17280.011*
O10.2557 (4)0.4152 (7)0.3858 (3)0.0193 (12)
O20.1393 (5)0.3246 (6)0.4592 (3)0.0180 (12)
O30.1081 (4)0.2975 (7)0.2948 (3)0.0160 (11)
O40.0428 (4)0.0362 (6)0.1728 (3)0.0146 (11)
O50.0321 (4)0.1690 (6)0.0604 (4)0.0169 (12)
O60.1139 (4)0.0379 (6)0.0684 (3)0.0124 (10)
C10.1591 (7)0.2877 (11)0.0880 (5)0.028 (2)
H1A0.18210.18250.10020.043*
H1B0.18470.33390.04520.043*
H1C0.09090.28670.06490.043*
C20.1529 (8)0.5365 (10)0.1562 (6)0.029 (2)
H2A0.18180.59630.20910.043*
H2B0.08520.53580.14390.043*
H2C0.16830.58270.10720.043*
N10.2898 (6)0.3663 (9)0.2063 (5)0.0249 (17)
H1N0.30670.38800.26420.030*
H2N0.31700.43460.17930.030*
N20.1884 (5)0.3781 (7)0.1691 (4)0.0132 (13)
H3N0.16080.32800.21100.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0064 (7)0.0080 (6)0.0076 (6)0.0000.0008 (4)0.000
Zn20.0093 (6)0.0109 (5)0.0078 (5)0.0032 (3)0.0015 (4)0.0003 (3)
P10.0106 (10)0.0085 (8)0.0076 (8)0.0011 (6)0.0021 (7)0.0010 (6)
P20.0085 (9)0.0093 (8)0.0077 (8)0.0008 (6)0.0014 (7)0.0001 (6)
O10.020 (3)0.024 (3)0.012 (2)0.006 (2)0.001 (2)0.002 (2)
O20.033 (3)0.009 (2)0.013 (2)0.002 (2)0.009 (2)0.0000 (18)
O30.013 (3)0.023 (3)0.012 (2)0.010 (2)0.004 (2)0.006 (2)
O40.015 (3)0.014 (2)0.014 (2)0.000 (2)0.002 (2)0.006 (2)
O50.025 (3)0.012 (2)0.016 (2)0.005 (2)0.009 (2)0.0021 (19)
O60.008 (3)0.016 (2)0.013 (2)0.000 (2)0.0020 (19)0.004 (2)
C10.039 (5)0.024 (4)0.015 (3)0.003 (4)0.002 (4)0.008 (3)
C20.048 (6)0.020 (4)0.024 (4)0.005 (4)0.020 (4)0.006 (3)
N10.019 (4)0.034 (4)0.020 (3)0.004 (3)0.004 (3)0.002 (3)
N20.017 (4)0.013 (3)0.011 (3)0.004 (2)0.008 (3)0.001 (2)
Geometric parameters (Å, º) top
Zn1—O41.938 (5)O2—Zn2iii1.943 (5)
Zn1—O4i1.938 (5)O5—Zn2v1.936 (6)
Zn1—O3i1.945 (5)O6—Zn2vi1.946 (5)
Zn1—O31.945 (5)C1—N21.475 (9)
Zn2—O5ii1.936 (6)C1—H1A0.9800
Zn2—O2iii1.943 (5)C1—H1B0.9800
Zn2—O6iv1.946 (5)C1—H1C0.9800
Zn2—O11.954 (6)C2—N21.474 (10)
P1—O21.504 (5)C2—H2A0.9800
P1—O11.515 (6)C2—H2B0.9800
P1—O31.533 (5)C2—H2C0.9800
P1—H11.3200N1—N21.465 (10)
P2—O51.500 (6)N1—H1N0.9100
P2—O61.520 (5)N1—H2N0.9100
P2—O41.529 (5)N2—H3N1.0000
P2—H21.3200
O4—Zn1—O4i108.7 (3)P1—O3—Zn1137.2 (3)
O4—Zn1—O3i121.0 (2)P2—O4—Zn1123.6 (3)
O4i—Zn1—O3i100.0 (2)P2—O5—Zn2v138.4 (4)
O4—Zn1—O3100.0 (2)P2—O6—Zn2vi120.8 (3)
O4i—Zn1—O3121.0 (2)N2—C1—H1A109.5
O3i—Zn1—O3107.4 (4)N2—C1—H1B109.5
O5ii—Zn2—O2iii99.8 (2)H1A—C1—H1B109.5
O5ii—Zn2—O6iv115.1 (2)N2—C1—H1C109.5
O2iii—Zn2—O6iv110.8 (2)H1A—C1—H1C109.5
O5ii—Zn2—O1107.5 (3)H1B—C1—H1C109.5
O2iii—Zn2—O1114.1 (3)N2—C2—H2A109.5
O6iv—Zn2—O1109.3 (2)N2—C2—H2B109.5
O2—P1—O1114.2 (3)H2A—C2—H2B109.5
O2—P1—O3115.0 (3)N2—C2—H2C109.5
O1—P1—O3108.9 (3)H2A—C2—H2C109.5
O2—P1—H1106.0H2B—C2—H2C109.5
O1—P1—H1106.0N2—N1—H1N109.3
O3—P1—H1106.0N2—N1—H2N109.2
O5—P2—O6113.4 (3)H1N—N1—H2N109.5
O5—P2—O4112.6 (3)N1—N2—C2114.3 (7)
O6—P2—O4111.9 (3)N1—N2—C1108.3 (6)
O5—P2—H2106.1C2—N2—C1112.4 (7)
O6—P2—H2106.1N1—N2—H3N107.2
O4—P2—H2106.1C2—N2—H3N107.2
P1—O1—Zn2128.0 (3)C1—N2—H3N107.2
P1—O2—Zn2iii140.3 (3)
O2—P1—O1—Zn22.2 (6)O5—P2—O4—Zn1177.2 (3)
O3—P1—O1—Zn2127.8 (4)O6—P2—O4—Zn148.1 (4)
O1—P1—O2—Zn2iii86.8 (7)O6—P2—O5—Zn2v110.4 (6)
O3—P1—O2—Zn2iii40.2 (8)O4—P2—O5—Zn2v18.0 (7)
O2—P1—O3—Zn128.0 (7)O5—P2—O6—Zn2vi68.4 (4)
O1—P1—O3—Zn1157.6 (5)O4—P2—O6—Zn2vi60.3 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.912.343.130 (9)146
N1—H2N···O6vii0.912.353.133 (9)144
N2—H3N···O31.001.792.762 (8)163
C1—H1A···O1v0.982.503.474 (11)173
C1—H1C···O5viii0.982.503.295 (11)138
C2—H2C···O2ix0.982.433.355 (9)157
Symmetry codes: (v) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x, y, z; (ix) x, y+1, z1/2.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for the X-ray data collection.

References

First citationBennett, J. M. & Marcus, B. K. (1988). Stud. Surf. Sci. Catal. 37, 269–279.  CrossRef CAS Google Scholar
First citationBrunner, G. O. & Meier, W. M. (1989). Nature (London), 337, 146–147.  CAS Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDong, Z.-J., Yan, Y., Zhang, W.-Q., Wang, Y. & Li, J.-Y. (2015). Chem. Res. Chin. Univ. 31, 498–502.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2006). Acta Cryst. C62, m156–m158.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A. & McNamee, P. M. (2010). J. Chem. Res. (S), 34, 641–642.  CrossRef CAS Google Scholar
First citationHuang, H.-L., Lin, H.-Y., Chen, P.-S., Lee, J.-J., Kung, H.-C. & Wang, S.-L. (2017). Dalton Trans. 46, 364–368.  CrossRef CAS PubMed Google Scholar
First citationKatinaitė, J. & Harrison, W. T. A. (2016). Acta Cryst. E72, 1206–1210.  CrossRef IUCr Journals Google Scholar
First citationKirkpatrick, A. & Harrison, W. T. A. (2004). Solid State Sci. 6, 593–598.  CSD CrossRef CAS Google Scholar
First citationLin, Z.-E., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2004). Microporous Mesoporous Mater. 68, 65–70.  CrossRef CAS Google Scholar
First citationLiu, L., Zhang, L., Wang, X., Li, G., Liu, Y. & Pang, W. (2008). Dalton Trans. pp. 2009–2014.  CrossRef Google Scholar
First citationLuo, X.-C., Gong, M.-C., Chen, Y.-Q. & Lin, Z.-E. (2010). Microporous Mesoporous Mater. 131, 418–422.  CrossRef CAS Google Scholar
First citationPhillips, M. L. F., Nenoff, T. M., Thompson, C. T. & Harrison, W. T. A. (2002). J. Solid State Chem. 167, 337–343.  CrossRef CAS Google Scholar
First citationRigaku (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShape Software (2005). ATOMS. Shape Software Inc., Kingsport, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, S., Qian, W., Li, G., Wang, L., Yuan, H., Xu, J., Zhu, G., Song, T. & Qiu, S. (2004). J. Solid State Chem. 177, 3038–3044.  CAS Google Scholar
First citationWang, S.-D., Luo, D.-B., Luo, X.-C., Chen, Y.-Q. & Lin, Z.-E. (2011). Solid State Sci. 13, 904–907.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds