research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 10-ethyl-7-(9-ethyl-9H-carbazol-3-yl)-10H-pheno­thia­zine-3-carbaldehyde

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bIndustrial Chemistry Polymer Division, CSIR Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 8 March 2017; accepted 12 April 2017; online 21 April 2017)

The title compound, C29H24N2OS, contains a pheno­thia­zine moiety linked to a planar carbazole unit (r.m.s. deviation = 0.029 Å) by a C—C single bond. The pheno­thia­zine moiety possesses a typical non-planar butterfly structure with a fold angle of 27.36 (9)° between the two benzene rings. The dihedral angle between the mean planes of the carbazole and pheno­thia­zine units is 27.28 (5)°. In the crystal, mol­ecules stack in pairs along the c-axis direction, linked by offset ππ inter­actions [inter­centroid distance = 3.797 (1) Å]. There are C—H⋯π inter­actions present linking these dimers to form a three-dimensional structure.

1. Chemical context

Pheno­thia­zine, related to the thia­zine class of heterocyclic compounds, is very important as it occurs in various anti­psychotic drugs. Pheno­thia­zine derivatives have been used in dye-sensitized solar cells to study the effect of conjugated linkers on device performance (Kim et al., 2011[Kim, S. H., Kim, H. W., Sakong, C., Namgoong, J., Park, S. W., Ko, M. J., Lee, C. H., Lee, W. I. & Kim, J. P. (2011). Org. Lett. 13, 5784-5787.]; Hagfeldt et al., 2010[Hagfeldt, A., Boschloo, G., Sun, L.-C., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595-6663.]). One pheno­thia­zine derivative (MCDP) is used to measure the activity of mono­amine oxidase in blood (Fujii et al., 1993[Fujii, I., Hirayama, N. & Miike, A. (1993). Acta Cryst. C49, 1540-1541.]). They are also used as neuroleptics, sedatives, analgesics, anti-emetics and anti­histamines (Harris & Klein, 1987[Harris, J. E. & Klein, C. L. (1987). Acta Cryst. C43, 1737-1739.]). Triflupromazine pheno­thia­zine hydro­chloride is one of the most potent tranquilizer drug mol­ecules (Phelps & Cordes, 1974[Phelps, D. W. & Cordes, A. W. (1974). Acta Cryst. B30, 2812-2816.]). The pheno­thia­zine derivative thi­ethyl­perazine has the properties of an anti-emetic and is widely used for the control of post-operative vomiting, in radiation therapy and vomiting associated with malignant disease (McDowell, 1970[McDowell, J. J. H. (1970). Acta Cryst. B26, 954-964.], 1978[McDowell, J. J. H. (1978). Acta Cryst. B34, 686-689.]). N-Alkyl­amino carbazoles show significant anti-convulsant and diuretic activity (Shoeb et al., 1973[Shoeb, A., Anwer, F., Kapil, R. S., Popli, S. P., Dua, P. & Dhawan, B. N. (1973). J. Med. Chem. 16, 425-427.]). One of them, rimcazole, is a well known anti-pyretic and neuroleptic agent (Ferris et al., 1986[Ferris, R. M., White, H. L., Tang, F. L. M., Russell, A. & Harfenist, M. (1986). Drug Dev. Res. 9, 171-188.]). In view of this inter­est, we have synthesized the title pheno­thia­zine derivative and report herein on its crystal structure.

[Scheme 1]

2. Structural commentary

In the title compound, the pheno­thia­zine moiety has a non-planar butterfly structure (Fig. 1[link]), similar to that observed for 10-methyl-10H-pheno­thia­zine (Malikireddy et al., 2016[Malikireddy, P., Siddan, G., Madurai, S., Chandramouleeswaran, S. & Srinivasakannan, L. (2016). IUCrData, 1, x161299.]). The central six-membered ring (N2/C18/C19/S1/C28/C23) adopts a boat conformation [puckering parameters are: QT = 0.4567 (16) Å, θ = 102.8 (2)°, φ = 182.8 (2)°]. The fold angle of 27.36 (9)° between the two benzene rings of this moiety compares well with the values reported for similar compounds (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The dihedral angle between the planes of the two benzene rings of the carbazole ring is 2.94 (10)° and the dihedral angle between the mean planes of the carbazole and pheno­thia­zine ring systems is 27.28 (5)°. The aldehyde group is almost coplanar with the benzene ring to which it is attached, the C27—C26—C29—O1 torsion angle being 0.9 (4)°. The ethyl groups protrude out of the planes of the carbazole and pheno­thia­zine skeletons, as indicated by the torsion angles C6—N1—C7—C8 = 87.7 (3)° and C23—N2—C21—C22 = −83.2 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, inversion-related mol­ecules stack in pairs along the c-axis direction, linked by offset ππ inter­actions [Cg5⋯Cg5i = 3.7965 (11) Å, inter­planar distance = 3.5133 (8) Å, slippage = 1.439 Å, Cg5 is the centroid of the C15–C20 ring; symmetry code: (i) −x + 1, −y, −z + 2]. There are also C–H⋯π inter­actions present linking these dimers to form a three-dimensional structure (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21ACg4i 0.97 2.95 3.596 (2) 125
C25—H25⋯Cg3ii 0.93 2.96 3.558 (2) 123
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. The C15–C20 rings linked by ππ inter­actions are shown in red. For clarity, only the H atoms (grey balls) involved in the C—H⋯π inter­actions (dashed lines; see Table 1[link]) have been included.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds containing either a pheno­thia­zine, carbazole or carbaldehyde unit gave 433 hits for compounds containing a pheno­thia­zine unit, and 2293 hits for compounds containing a carbazole unit. Out of these entries, six compounds were found to possess both pheno­thia­zine and carbazole ring systems, and one compound contains all three units, pheno­thia­zine, carbazole and a carbaldehyde unit, but with the carbazole unit linked directly to the N atom of the pheno­thia­zine unit, viz. 10-(9-hexyl-9H-carbazol-3­yl)-10H-pheno­thia­zine-3-carbaldehyde (IWABUF; Karuppasamy et al., 2017[Karuppasamy, A., Krishnan, K. G., Pillai, M. P. V. & Ramalingan, C. (2017). J. Mol. Struct. 1128, 674-684.]).

5. Synthesis and crystallization

To a mixture of 7-bromo-10-ethyl-10H-pheno­thia­zine-3-carbaldehyde (3 g, 0.0089 mol), 9-ethyl-9H-carbazole-3-boronic acid pinnacol ester (3.17 g, 1.1 eq.), Pd(PPh3)4 (518 mg, 5% mol) and K2CO3 (2.48 g, 2 eq.) under high vacuum was added a mixture of toluene:water (2:1). The resulting mixture was heated to reflux under an N2 atmos­phere for ca 24 h. On completion of the reaction (monitored by TLC), it was quenched by addition of saturated double-distilled H2O and extracted with di­chloro­methane. The organic phases were collected and washed with brine and dried over anhydrous Na2SO4 and then concentrated. The product was purified by column chromatography on silica gel using ethyl acetate:n-hexane (12:88, v/v) as eluent, to give the title compound as a pale-yellow crystalline solid (yield 80%). It was characterized by 1H NMR, 13C NMR, IR and ESI–MASS. Brown block-like crystals of the title compound were obtained by slow evaporation at room temperature of a solution in di­chloro­methane and aceto­nitrile (1:1 v/v).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions and refined using a riding-model approximation: C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C29H24N2OS
Mr 448.56
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 9.4677 (6), 25.7169 (13), 9.5704 (5)
β (°) 103.681 (2)
V3) 2264.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.17
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.677, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 25526, 3981, 2974
Rint 0.036
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.03
No. of reflections 3981
No. of parameters 300
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

10-Ethyl-7-(9-ethyl-9H-carbazol-3-yl)-10H-phenothiazine-3-carbaldehyde top
Crystal data top
C29H24N2OSF(000) = 944
Mr = 448.56Dx = 1.316 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4677 (6) ÅCell parameters from 6254 reflections
b = 25.7169 (13) Åθ = 2.4–23.8°
c = 9.5704 (5) ŵ = 0.17 mm1
β = 103.681 (2)°T = 296 K
V = 2264.1 (2) Å3Block, brown
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2974 reflections with I > 2σ(I)
Bruker axs kappa axes2 CCD scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 25.0°, θmin = 2.3°
Tmin = 0.677, Tmax = 0.745h = 119
25526 measured reflectionsk = 3030
3981 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.8313P]
where P = (Fo2 + 2Fc2)/3
3981 reflections(Δ/σ)max = 0.004
300 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49912 (6)0.15680 (2)0.93196 (6)0.04721 (18)
N20.78333 (17)0.11025 (6)1.10224 (16)0.0385 (4)
C50.3217 (2)0.16204 (8)0.5560 (2)0.0395 (5)
C150.5175 (2)0.01031 (7)0.7928 (2)0.0385 (5)
C120.4282 (2)0.02290 (8)0.6785 (2)0.0393 (5)
C100.3469 (2)0.10671 (8)0.5781 (2)0.0380 (5)
C170.7263 (2)0.02401 (8)0.9923 (2)0.0423 (5)
H170.80810.01011.05470.051*
C180.6941 (2)0.07646 (7)1.0030 (2)0.0362 (5)
C230.7869 (2)0.16369 (7)1.0771 (2)0.0374 (5)
C210.9010 (2)0.08767 (8)1.2138 (2)0.0443 (5)
H21A0.86540.05611.24890.053*
H21B0.92530.11191.29360.053*
C280.6646 (2)0.18995 (7)0.9936 (2)0.0381 (5)
C160.6397 (2)0.00788 (8)0.8909 (2)0.0424 (5)
H160.66420.04280.88840.051*
N10.1914 (2)0.11924 (7)0.35912 (18)0.0470 (5)
C110.4296 (2)0.07678 (8)0.6882 (2)0.0394 (5)
H110.48640.09290.76920.047*
C260.7923 (2)0.27184 (8)1.0287 (2)0.0438 (5)
C270.6683 (2)0.24282 (8)0.9705 (2)0.0436 (5)
H270.58660.25930.91520.052*
C90.2620 (2)0.08213 (8)0.4554 (2)0.0420 (5)
C190.5669 (2)0.09442 (7)0.9097 (2)0.0377 (5)
C200.4834 (2)0.06242 (7)0.8066 (2)0.0403 (5)
H200.40140.07620.74420.048*
C140.2576 (2)0.02860 (8)0.4439 (2)0.0498 (6)
H140.19990.01240.36350.060*
O10.7031 (2)0.35389 (7)0.9339 (2)0.0900 (7)
C130.3407 (2)0.00008 (8)0.5540 (2)0.0482 (5)
H130.33920.03610.54630.058*
C240.9103 (2)0.19363 (8)1.1355 (2)0.0444 (5)
H240.99260.17761.19130.053*
C60.2262 (2)0.16776 (8)0.4193 (2)0.0420 (5)
C290.8000 (3)0.32760 (9)1.0036 (3)0.0579 (6)
H290.88700.34431.04480.069*
C40.3684 (2)0.20599 (8)0.6386 (2)0.0474 (5)
H40.43030.20300.72950.057*
C70.0799 (2)0.10852 (9)0.2300 (2)0.0535 (6)
H7A0.07430.13750.16410.064*
H7B0.10740.07790.18360.064*
C250.9118 (2)0.24642 (8)1.1116 (2)0.0474 (5)
H250.99510.26541.15210.057*
C10.1828 (2)0.21668 (8)0.3631 (2)0.0509 (6)
H10.12260.22040.27160.061*
C221.0392 (2)0.07482 (9)1.1657 (2)0.0561 (6)
H22A1.02220.04521.10280.084*
H22B1.11590.06711.24830.084*
H22C1.06650.10411.11560.084*
C30.3213 (3)0.25401 (9)0.5835 (3)0.0553 (6)
H30.35020.28360.63890.066*
C20.2315 (2)0.25924 (9)0.4470 (3)0.0560 (6)
H20.20370.29230.41160.067*
C80.0676 (3)0.09976 (12)0.2586 (3)0.0787 (8)
H8A0.09380.12920.30880.118*
H8B0.13800.09540.16900.118*
H8C0.06540.06910.31630.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0356 (3)0.0397 (3)0.0623 (4)0.0083 (2)0.0034 (3)0.0034 (3)
N20.0359 (10)0.0368 (9)0.0398 (9)0.0067 (7)0.0032 (8)0.0026 (7)
C50.0376 (12)0.0409 (11)0.0417 (11)0.0010 (9)0.0125 (9)0.0006 (9)
C150.0387 (12)0.0376 (11)0.0420 (11)0.0009 (9)0.0150 (9)0.0031 (9)
C120.0394 (12)0.0407 (11)0.0399 (11)0.0002 (9)0.0133 (9)0.0028 (9)
C100.0378 (11)0.0404 (11)0.0376 (11)0.0033 (9)0.0123 (9)0.0023 (9)
C170.0382 (12)0.0389 (11)0.0473 (12)0.0075 (9)0.0052 (10)0.0064 (9)
C180.0345 (11)0.0367 (11)0.0388 (11)0.0034 (9)0.0114 (9)0.0044 (9)
C230.0377 (11)0.0403 (11)0.0346 (10)0.0066 (9)0.0093 (9)0.0006 (9)
C210.0448 (13)0.0438 (12)0.0404 (11)0.0086 (10)0.0023 (10)0.0043 (9)
C280.0386 (12)0.0393 (11)0.0358 (11)0.0042 (9)0.0072 (9)0.0033 (9)
C160.0438 (13)0.0337 (11)0.0503 (12)0.0038 (9)0.0124 (10)0.0026 (9)
N10.0502 (11)0.0465 (10)0.0401 (9)0.0018 (8)0.0023 (8)0.0029 (8)
C110.0397 (12)0.0425 (12)0.0362 (11)0.0041 (9)0.0094 (9)0.0048 (9)
C260.0512 (13)0.0419 (12)0.0379 (11)0.0036 (10)0.0096 (10)0.0023 (9)
C270.0469 (13)0.0407 (12)0.0394 (11)0.0081 (10)0.0026 (10)0.0002 (9)
C90.0457 (13)0.0424 (12)0.0380 (11)0.0021 (10)0.0103 (10)0.0034 (9)
C190.0353 (11)0.0365 (11)0.0418 (11)0.0047 (9)0.0104 (9)0.0034 (9)
C200.0348 (11)0.0417 (12)0.0429 (11)0.0041 (9)0.0060 (9)0.0051 (9)
C140.0568 (14)0.0477 (13)0.0408 (12)0.0019 (11)0.0032 (11)0.0104 (10)
O10.0925 (15)0.0504 (11)0.1099 (16)0.0041 (10)0.0101 (13)0.0203 (11)
C130.0585 (15)0.0379 (11)0.0474 (12)0.0016 (10)0.0109 (11)0.0065 (10)
C240.0384 (12)0.0436 (12)0.0476 (12)0.0065 (10)0.0034 (10)0.0025 (10)
C60.0371 (12)0.0443 (12)0.0453 (12)0.0021 (9)0.0112 (9)0.0009 (10)
C290.0669 (17)0.0443 (13)0.0594 (15)0.0015 (12)0.0087 (13)0.0006 (12)
C40.0461 (13)0.0454 (13)0.0497 (12)0.0033 (10)0.0095 (10)0.0051 (10)
C70.0557 (15)0.0612 (14)0.0395 (12)0.0032 (11)0.0035 (11)0.0043 (11)
C250.0450 (13)0.0477 (12)0.0479 (12)0.0027 (10)0.0076 (10)0.0064 (10)
C10.0441 (13)0.0527 (14)0.0539 (13)0.0096 (11)0.0074 (11)0.0053 (11)
C220.0432 (13)0.0576 (14)0.0610 (15)0.0145 (11)0.0006 (11)0.0043 (12)
C30.0539 (15)0.0431 (13)0.0692 (16)0.0002 (11)0.0152 (13)0.0084 (11)
C20.0500 (14)0.0444 (13)0.0740 (17)0.0101 (11)0.0154 (13)0.0058 (12)
C80.0529 (17)0.099 (2)0.0816 (19)0.0087 (15)0.0108 (14)0.0031 (17)
Geometric parameters (Å, º) top
S1—C281.759 (2)C26—C271.392 (3)
S1—C191.7595 (19)C26—C291.459 (3)
N2—C231.397 (2)C27—H270.9300
N2—C181.412 (2)C9—C141.381 (3)
N2—C211.468 (2)C19—C201.381 (3)
C5—C41.390 (3)C20—H200.9300
C5—C61.411 (3)C14—C131.372 (3)
C5—C101.450 (3)C14—H140.9300
C15—C161.387 (3)O1—C291.206 (3)
C15—C201.392 (3)C13—H130.9300
C15—C121.485 (3)C24—C251.377 (3)
C12—C111.388 (3)C24—H240.9300
C12—C131.410 (3)C6—C11.392 (3)
C10—C111.388 (3)C29—H290.9300
C10—C91.406 (3)C4—C31.375 (3)
C17—C161.382 (3)C4—H40.9300
C17—C181.392 (3)C7—C81.502 (3)
C17—H170.9300C7—H7A0.9700
C18—C191.397 (3)C7—H7B0.9700
C23—C241.400 (3)C25—H250.9300
C23—C281.413 (3)C1—C21.371 (3)
C21—C221.522 (3)C1—H10.9300
C21—H21A0.9700C22—H22A0.9600
C21—H21B0.9700C22—H22B0.9600
C28—C271.379 (3)C22—H22C0.9600
C16—H160.9300C3—C21.386 (3)
N1—C61.381 (3)C3—H30.9300
N1—C91.384 (3)C2—H20.9300
N1—C71.449 (3)C8—H8A0.9600
C11—H110.9300C8—H8B0.9600
C26—C251.383 (3)C8—H8C0.9600
C28—S1—C1999.26 (9)C20—C19—S1117.78 (14)
C23—N2—C18121.66 (15)C18—C19—S1120.54 (15)
C23—N2—C21117.98 (16)C19—C20—C15122.33 (18)
C18—N2—C21118.46 (15)C19—C20—H20118.8
C4—C5—C6119.35 (19)C15—C20—H20118.8
C4—C5—C10134.10 (19)C13—C14—C9118.27 (19)
C6—C5—C10106.54 (17)C13—C14—H14120.9
C16—C15—C20115.82 (18)C9—C14—H14120.9
C16—C15—C12122.90 (18)C14—C13—C12122.65 (19)
C20—C15—C12121.28 (18)C14—C13—H13118.7
C11—C12—C13117.99 (18)C12—C13—H13118.7
C11—C12—C15122.01 (17)C25—C24—C23121.09 (19)
C13—C12—C15119.99 (18)C25—C24—H24119.5
C11—C10—C9119.55 (18)C23—C24—H24119.5
C11—C10—C5134.33 (18)N1—C6—C1129.5 (2)
C9—C10—C5106.12 (17)N1—C6—C5109.26 (17)
C16—C17—C18121.50 (18)C1—C6—C5121.24 (19)
C16—C17—H17119.3O1—C29—C26125.5 (2)
C18—C17—H17119.3O1—C29—H29117.2
C17—C18—C19116.38 (18)C26—C29—H29117.2
C17—C18—N2122.63 (17)C3—C4—C5118.8 (2)
C19—C18—N2120.99 (17)C3—C4—H4120.6
N2—C23—C24121.61 (17)C5—C4—H4120.6
N2—C23—C28121.17 (18)N1—C7—C8113.25 (19)
C24—C23—C28117.21 (18)N1—C7—H7A108.9
N2—C21—C22115.14 (17)C8—C7—H7A108.9
N2—C21—H21A108.5N1—C7—H7B108.9
C22—C21—H21A108.5C8—C7—H7B108.9
N2—C21—H21B108.5H7A—C7—H7B107.7
C22—C21—H21B108.5C24—C25—C26121.5 (2)
H21A—C21—H21B107.5C24—C25—H25119.3
C27—C28—C23120.91 (19)C26—C25—H25119.3
C27—C28—S1118.57 (15)C2—C1—C6117.9 (2)
C23—C28—S1120.23 (15)C2—C1—H1121.1
C17—C16—C15122.44 (18)C6—C1—H1121.1
C17—C16—H16118.8C21—C22—H22A109.5
C15—C16—H16118.8C21—C22—H22B109.5
C6—N1—C9108.37 (16)H22A—C22—H22B109.5
C6—N1—C7125.54 (18)C21—C22—H22C109.5
C9—N1—C7125.18 (18)H22A—C22—H22C109.5
C12—C11—C10120.52 (18)H22B—C22—H22C109.5
C12—C11—H11119.7C4—C3—C2121.3 (2)
C10—C11—H11119.7C4—C3—H3119.4
C25—C26—C27118.33 (19)C2—C3—H3119.4
C25—C26—C29119.6 (2)C1—C2—C3121.4 (2)
C27—C26—C29122.1 (2)C1—C2—H2119.3
C28—C27—C26121.00 (19)C3—C2—H2119.3
C28—C27—H27119.5C7—C8—H8A109.5
C26—C27—H27119.5C7—C8—H8B109.5
C14—C9—N1129.31 (18)H8A—C8—H8B109.5
C14—C9—C10121.02 (19)C7—C8—H8C109.5
N1—C9—C10109.67 (17)H8A—C8—H8C109.5
C20—C19—C18121.40 (18)H8B—C8—H8C109.5
C16—C15—C12—C1121.4 (3)C5—C10—C9—C14178.0 (2)
C20—C15—C12—C11159.25 (19)C11—C10—C9—N1178.85 (18)
C16—C15—C12—C13157.3 (2)C5—C10—C9—N12.0 (2)
C20—C15—C12—C1322.1 (3)C17—C18—C19—C204.0 (3)
C4—C5—C10—C111.8 (4)N2—C18—C19—C20176.20 (18)
C6—C5—C10—C11179.4 (2)C17—C18—C19—S1169.74 (15)
C4—C5—C10—C9177.1 (2)N2—C18—C19—S110.1 (3)
C6—C5—C10—C91.7 (2)C28—S1—C19—C20151.56 (16)
C16—C17—C18—C192.3 (3)C28—S1—C19—C1834.50 (18)
C16—C17—C18—N2177.84 (18)C18—C19—C20—C152.3 (3)
C23—N2—C18—C17153.75 (19)S1—C19—C20—C15171.57 (16)
C21—N2—C18—C1710.2 (3)C16—C15—C20—C191.1 (3)
C23—N2—C18—C1926.4 (3)C12—C15—C20—C19178.31 (19)
C21—N2—C18—C19169.58 (18)N1—C9—C14—C13178.6 (2)
C18—N2—C23—C24152.34 (19)C10—C9—C14—C131.3 (3)
C21—N2—C23—C2411.7 (3)C9—C14—C13—C120.9 (3)
C18—N2—C23—C2828.8 (3)C11—C12—C13—C140.2 (3)
C21—N2—C23—C28167.15 (17)C15—C12—C13—C14178.9 (2)
C23—N2—C21—C2283.2 (2)N2—C23—C24—C25179.10 (19)
C18—N2—C21—C2281.4 (2)C28—C23—C24—C250.2 (3)
N2—C23—C28—C27179.27 (18)C9—N1—C6—C1179.4 (2)
C24—C23—C28—C270.4 (3)C7—N1—C6—C111.1 (4)
N2—C23—C28—S15.6 (3)C9—N1—C6—C50.6 (2)
C24—C23—C28—S1173.33 (15)C7—N1—C6—C5170.09 (19)
C19—S1—C28—C27153.97 (16)C4—C5—C6—N1178.28 (19)
C19—S1—C28—C2332.19 (17)C10—C5—C6—N10.7 (2)
C18—C17—C16—C151.1 (3)C4—C5—C6—C12.8 (3)
C20—C15—C16—C172.8 (3)C10—C5—C6—C1178.24 (19)
C12—C15—C16—C17176.64 (19)C25—C26—C29—O1179.7 (2)
C13—C12—C11—C100.0 (3)C27—C26—C29—O10.9 (4)
C15—C12—C11—C10178.71 (18)C6—C5—C4—C30.8 (3)
C9—C10—C11—C120.4 (3)C10—C5—C4—C3179.5 (2)
C5—C10—C11—C12178.4 (2)C6—N1—C7—C887.7 (3)
C23—C28—C27—C260.0 (3)C9—N1—C7—C880.1 (3)
S1—C28—C27—C26173.83 (16)C23—C24—C25—C260.4 (3)
C25—C26—C27—C280.6 (3)C27—C26—C25—C240.8 (3)
C29—C26—C27—C28178.8 (2)C29—C26—C25—C24178.6 (2)
C6—N1—C9—C14178.4 (2)N1—C6—C1—C2178.9 (2)
C7—N1—C9—C148.8 (4)C5—C6—C1—C22.4 (3)
C6—N1—C9—C101.7 (2)C5—C4—C3—C21.4 (3)
C7—N1—C9—C10171.23 (19)C6—C1—C2—C30.1 (3)
C11—C10—C9—C141.1 (3)C4—C3—C2—C11.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C21—H21A···Cg4i0.972.953.596 (2)125
C25—H25···Cg3ii0.932.963.558 (2)123
Symmetry codes: (i) x+1, y, z+2; (ii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerris, R. M., White, H. L., Tang, F. L. M., Russell, A. & Harfenist, M. (1986). Drug Dev. Res. 9, 171–188.  CrossRef CAS Web of Science Google Scholar
First citationFujii, I., Hirayama, N. & Miike, A. (1993). Acta Cryst. C49, 1540–1541.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHagfeldt, A., Boschloo, G., Sun, L.-C., Kloo, L. & Pettersson, H. (2010). Chem. Rev. 110, 6595–6663.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHarris, J. E. & Klein, C. L. (1987). Acta Cryst. C43, 1737–1739.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaruppasamy, A., Krishnan, K. G., Pillai, M. P. V. & Ramalingan, C. (2017). J. Mol. Struct. 1128, 674–684.  CSD CrossRef CAS Google Scholar
First citationKim, S. H., Kim, H. W., Sakong, C., Namgoong, J., Park, S. W., Ko, M. J., Lee, C. H., Lee, W. I. & Kim, J. P. (2011). Org. Lett. 13, 5784–5787.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalikireddy, P., Siddan, G., Madurai, S., Chandramouleeswaran, S. & Srinivasakannan, L. (2016). IUCrData, 1, x161299.  Google Scholar
First citationMcDowell, J. J. H. (1970). Acta Cryst. B26, 954–964.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMcDowell, J. J. H. (1978). Acta Cryst. B34, 686–689.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPhelps, D. W. & Cordes, A. W. (1974). Acta Cryst. B30, 2812–2816.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShoeb, A., Anwer, F., Kapil, R. S., Popli, S. P., Dua, P. & Dhawan, B. N. (1973). J. Med. Chem. 16, 425–427.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds