research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the diglycidyl ether of eugenol

CROSSMARK_Color_square_no_text.svg

aICMUB CNRS UMR 6302, Université de Bourgogne Franche-Comté, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France, bFEMTO Institute, Applied Mechanics Department, UMR CNRS 6174, Université de Bourgogne Franche-Comté, 24 Chemin de l'Epitaphe, 25000 Besançon, France, and cDRIVE Laboratory, Institut Supérieur de l'Automobile et des Transports, 49 Rue Melle Bourgeois, 58027 Nevers, France
*Correspondence e-mail: laurent.plasseraud@u-bourgogne.fr, hcattey@u-bourgogne.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 March 2017; accepted 10 April 2017; online 13 April 2017)

The diep­oxy monomer, C13H16O4 {DGE-Eu; systematic name: 2-[3-meth­oxy-4-(oxiran-2-ylmeth­oxy)benz­yl]oxirane}, was synthesized from eugenol by a three-step reaction. It consists of a 1,2,4-tris­ubstituted benzene ring substituted by diglycidyl ether, a meth­oxy group and a methyl­oxirane group. The three-membered oxirane rings are inclined to the benzene ring by 61.0 (3) and 27.9 (3)°. The methyl­ene C atom of one of the two terminal epoxide rings is positionally disordered [refined occupancy ratio = 0.69 (1):0.31 (1)]. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ab plane. The layers are linked by C—H⋯π inter­actions, forming a three-dimensional network.

1. Chemical context

The past two decades have witnessed an increasing inter­est in the environmental quest for the replacement of petroleum-based chemicals by monomers from renewable resources. Advances in particular in the catalytic conversion of biomass have led to a wide range of useful platform mol­ecules (Besson et al., 2014[Besson, M., Gallezot, P. & Pinel, C. (2014). Chem. Rev. 114, 1827-1870.]). This sustainable approach is also strongly considered in the field of polymer synthesis (Gandini et al., 2016[Gandini, A., Lacerda, T. M., Carvalho, A. J. F. & Trovatti, E. (2016). Chem. Rev. 116, 1637-1669.]). In the specific domain of ep­oxy thermosets, numerous studies have been conducted in order to find alternatives to the diglycidyl ether of bis­phenol A (BADGE), which is the main building-block used for formulation resins (Auvergne et al., 2014[Auvergne, R., Caillol, S., David, G., Boutevin, B. & Pascault, J.-P. (2014). Chem. Rev. 114, 1082-1115.]). Classically, the synthetic approach is based on the functionalization of bio-sourced mol­ecules by the grafting of glycidyl ether groups. In this context and in our ongoing studies on the chemical modification of bio-based building blocks for material applications (Mhanna et al., 2014[Mhanna, A., Sadaka, F., Boni, G., Brachais, C.-H., Brachais, L., Couvercelle, J.-P., Plasseraud, L. & Lecamp, L. (2014). J. Am. Oil Chem. Soc. 91, 337-348.]; Bigot et al., 2016[Bigot, S., Daghrir, M., Mhanna, A., Boni, G., Pourchet, S., Lecamp, L. & Plasseraud, L. (2016). Eur. Polym. J. 74, 26-37.]; François et al., 2016[François, C., Pourchet, S., Boni, G., Fontaine, S., Gaillard, Y., Placet, V., Galkin, M. V., Orebom, A., Samec, J. & Plasseraud, L. (2016). RSC Adv. 6, 68732-68738.]), we report herein on the synthesis and crystal structure of the diglycidyl ether of eugenol (DGE-Eu), prepared from eugenol in a three-step synthesis (Qin et al., 2014[Qin, J., Liu, H., Zhang, P., Wolcott, M. & Zhang, J. (2014). Polym. Int. 63, 760-765.]).

[Scheme 1]

2. Structural commentary

The title compound (DGE-EU), has an asymmetrical structure, which is depicted in Fig. 1[link]. It is composed of a benzene ring with three oxygenated functional groups: (i) 2-[(λ1-oxidan­yl)meth­yl]oxirane, (ii) meth­oxy and (iii) 2-methyl­oxirane. While atoms O1, O2 and C11 lie in the plane of the benzene ring, the meth­oxy group (O1/C5/C10) is inclined to the benzene ring by 11.2 (3)°. The two oxirane rings (O3/C8/C9 and O4/C12A/C13) are inclined to the benzene ring by 61.0 (3) and 27.9 (3)°, respectively. The mol­ecule shows disorder with an occupation factor equal to 0.69 (1) for the major component of the methyl­ene group (C12A) of the oxirane ring (C11/C12/O3). Such disorder is commonly observed for diglycidyl ether derivatives (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound (DGE-Eu), with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The major and minor components of atom C12 (C12A/C12B) are shown.

3. Supra­molecular features

The crystal packing of DGE-Eu viewed along the c-axis is depicted in Fig. 2[link]. All oxygen atoms of DGE-Eu are involved in C—H⋯O hydrogen bonds with surrounding mol­ecules, forming layers lying parallel to the ab plane (Fig. 2[link] and Table 1[link]). In addition, the layers are linked C—H⋯π inter­actions, with the C7–H7A group positioned almost orthogonally to the benzene ring, so forming a three-dimensional network (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the benzene ring (C1–C6).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O4i 0.99 2.53 3.452 (4) 155
C11—H11C⋯O3ii 0.99 2.43 3.413 (4) 170
C13—H13B⋯O1ii 0.99 2.57 3.358 (4) 136
C12A—H12A⋯O3ii 1.00 2.45 3.177 (5) 129
C7—H7ACgiii 0.99 2.57 3.465 (4) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) x+1, y, z; (iii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of DGE-Eu viewed along the c axis, showing the layer-like C—H⋯O hydrogen-bonded network (dashed lines; see Table 1[link]). Only the major component of atom C12 (C12A) is shown. For clarity, only H atoms H7B, H11C, H12A, H13B and H7A have been included.
[Figure 3]
Figure 3
Crystal packing of DGE-Eu, viewed along the a axis, showing the layer-like C—H⋯O hydrogen-bonded networks linked by C—H⋯π inter­actions (dashed lines and blue arrows, respectively; see Table 1[link]). For clarity, only H atoms H7B, H11C, H12A, H13B and H7A (grey ball) have been included. Only the major component of atom C12 (C12A) is shown.

4. Database survey

To date, and to the best of our knowledge, only nine crystallographic structures comprising diglycidyl ether-substituted benzene ring moieties have been deposited in the Cambridge Structural Database (WebCSD v1.1.2, update 2017-04-05; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). They include 2,2-bis­(3,5-di­bromo-4-hy­droxy­benzene)­propane diglycidyl ether (COMNEX: Saf'yanov et al., 1984[Saf'yanov, Y. N., Golovachev, V. P. & Kuz'min, É. A. (1984). Zh. Struk. Khim. 25, 156-157.]), 2,2-bis­[4-(oxiran-2-ylmeth­oxy)-3,5-di­bromo­phen­yl]propane (COMNEY: Cheban et al., 1985[Cheban, I. M., Simonov, I. A., Rotaru, V. K. & Malinovskii, T. I. (1985). Dokl. Akad. Nauk SSSR, 283, 621-624.]), diglycidyl ether of bis­phenol A (DGEBPA: Flippen-Anderson & Gilardi, 1980[Flippen-Anderson, J. L. & Gilardi, R. (1980). ACA, ser. 2. 8, 36a.]; DGEBPA01: Heinemann et al., 1993[Heinemann, F., Hartung, H. & Derling, S. (1993). Z. Kristallogr. 207, 299-301.]; DGEBPA10: Flippen-Anderson & Gilardi, 1981[Flippen-Anderson, J. L. & Gilardi, R. (1981). Acta Cryst. B37, 1433-1435.]), p-di(2,3-ep­oxy­prop­yloxy)benzene (EOXHQE: Saf'yanov et al., 1977[Saf'yanov, Y. N., Bochkova, T. N., Golovachev, V. P. & Kuz'min, É. A. (1977). Zh. Struk. Khim. 18, 402-405.]), 2,2′-[1,3-phenyl­ene-bis­(oxymethyl­ene)]bis­(oxirane) (FITWOU: Bocelli & Grenier-Loustalot, 1987[Bocelli, G. & Grenier-Loustalot, M.-F. (1987). Acta Cryst. C43, 1221-1223.]), 2-(4-{4-[4-(oxiran-2-ylmeth­oxy)phen­oxy]phen­yl}phen­oxy­meth­yl)oxir­ane (LAQTII: Song et al., 2012[Song, T., Liu, J. & Yang, S. (2012). Acta Cryst. E68, o719.]) and 10-[2,5-bis­(2,3-ep­oxy-1-prop­oxy)phen­yl]-9-oxa-10-phosphaphenanthren-10-one (LIPSOS: Cho et al., 1999[Cho, C.-S., Liau, W.-B. & Chen, L.-W. (1999). Acta Cryst. B55, 525-529.]). In some of these compounds, an ep­oxy ring is disordered, which is also observed for the title compound DGE-Eu. In terms of application, these compounds are used as precursors of thermosetting resins. The polymerization process involving the ep­oxy rings occurs in the presence of amines and acid anhydrides and leads to cross-linked rigid materials.

5. Synthesis and crystallization

The title compound was prepared from a commercial source of eugenol (Sigma–Aldrich), according to a three-step procedure previously reported in the literature (Qin et al., 2014[Qin, J., Liu, H., Zhang, P., Wolcott, M. & Zhang, J. (2014). Polym. Int. 63, 760-765.]). The details of the synthesis of the title compound are summarized in Fig. 4[link]. Following purification by silica gel column chromatography, colourless prismatic crystals were obtained by slow evaporation of an ethyl acetate solution, and were finally characterized as DGE-Eu.

[Figure 4]
Figure 4
Reagents and conditions for the synthesis of DGE-Eu from eugenol (Qin et al., 2014[Qin, J., Liu, H., Zhang, P., Wolcott, M. & Zhang, J. (2014). Polym. Int. 63, 760-765.]): (i) acetic anhydride, 358 K; (ii) m-chloro­per­oxy­benzoic acid, CH2Cl2, room temperature; (iii) epi­chloro­hydrin, NaOH, C2H5OH, 358 K.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were placed at calculated positions and refined using a riding model: C—H = 0.95–1.00 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. Atom C12 atom of the ep­oxy­propane (oxirane) group (C11/C12/O3) was found to be disordered over two positions with a refined occupancy ratio of 0.69 (1): 0.31 (1) for atoms C12A:C12B.

Table 2
Experimental details

Crystal data
Chemical formula C13H16O4
Mr 236.26
Crystal system, space group Monoclinic, Cc
Temperature (K) 115
a, b, c (Å) 9.8262 (5), 13.4434 (7), 9.4251 (8)
β (°) 109.897 (2)
V3) 1170.71 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.4 × 0.35 × 0.3
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.])
Tmin, Tmax 0.700, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 18897, 2680, 2586
Rint 0.021
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.07
No. of reflections 2680
No. of parameters 160
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −0.28
Absolute structure Flack x determined using 1234 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.20 (18)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-[3-Methoxy-4-(oxiran-2-ylmethoxy)benzyl]oxirane top
Crystal data top
C13H16O4F(000) = 504
Mr = 236.26Dx = 1.340 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 9992 reflections
a = 9.8262 (5) Åθ = 2.7–33.0°
b = 13.4434 (7) ŵ = 0.10 mm1
c = 9.4251 (8) ÅT = 115 K
β = 109.897 (2)°Prism, colourless
V = 1170.71 (13) Å30.4 × 0.35 × 0.3 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2680 independent reflections
Radiation source: X-ray tube, Siemens KFF Mo 2K-1802586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1212
Tmin = 0.700, Tmax = 0.747k = 1717
18897 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0641P)2 + 1.3035P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2680 reflectionsΔρmax = 0.69 e Å3
160 parametersΔρmin = 0.28 e Å3
2 restraintsAbsolute structure: Flack x determined using 1234 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.20 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3186 (2)0.75130 (14)0.4046 (2)0.0215 (4)
O20.3043 (2)0.59282 (15)0.5548 (2)0.0221 (4)
O30.0296 (3)0.4884 (2)0.5717 (4)0.0511 (9)
O40.8644 (3)0.79876 (18)0.4484 (3)0.0406 (7)
C10.6472 (3)0.6219 (2)0.3926 (3)0.0204 (6)
C20.6394 (3)0.5387 (2)0.4744 (3)0.0203 (5)
H20.71210.48900.49250.024*
C30.5262 (3)0.5260 (2)0.5313 (3)0.0204 (6)
H30.52200.46770.58670.025*
C40.4203 (3)0.5984 (2)0.5068 (3)0.0169 (5)
C50.4272 (3)0.6842 (2)0.4242 (3)0.0171 (5)
C60.5397 (3)0.6949 (2)0.3680 (3)0.0187 (5)
H60.54410.75270.31190.022*
C70.2935 (3)0.5033 (3)0.6333 (4)0.0287 (7)
H7A0.38280.49350.72130.034*
H7B0.28070.44520.56550.034*
C80.1678 (4)0.5132 (3)0.6838 (5)0.0382 (8)
H80.16910.57010.75260.046*
C90.0890 (4)0.4237 (4)0.6998 (5)0.0522 (12)
H9A0.12740.35840.68260.063*
H9B0.04280.42380.77820.063*
C100.3084 (3)0.8287 (2)0.2985 (4)0.0269 (6)
H10A0.30530.79970.20200.040*
H10B0.39290.87240.33660.040*
H10C0.22010.86740.28390.040*
C110.7701 (3)0.6367 (3)0.3324 (4)0.0278 (7)
H11A0.80710.57080.31590.033*0.690 (11)
H11B0.73230.67060.23340.033*0.690 (11)
H11C0.85360.59740.39650.033*0.310 (11)
H11D0.74010.60740.22990.033*0.310 (11)
C130.9712 (4)0.7691 (2)0.3826 (4)0.0324 (7)
H13A0.94710.77810.27250.039*0.690 (11)
H13B1.07450.77880.44340.039*0.690 (11)
H13C1.04770.72220.44010.039*0.310 (11)
H13D1.00140.81870.32160.039*0.310 (11)
C12A0.8911 (4)0.6954 (3)0.4331 (5)0.0203 (11)0.690 (11)
H12A0.94760.66140.52950.024*0.690 (11)
C12B0.8184 (12)0.7317 (8)0.3230 (12)0.032 (3)*0.310 (11)
H12B0.76000.76580.22740.038*0.310 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0200 (9)0.0204 (9)0.0264 (10)0.0043 (7)0.0107 (7)0.0072 (8)
O20.0216 (10)0.0238 (10)0.0222 (9)0.0004 (8)0.0089 (8)0.0056 (8)
O30.0229 (12)0.0500 (17)0.070 (2)0.0009 (11)0.0028 (12)0.0306 (16)
O40.0437 (14)0.0246 (12)0.0679 (18)0.0074 (10)0.0379 (13)0.0174 (12)
C10.0174 (12)0.0230 (13)0.0210 (13)0.0033 (11)0.0067 (10)0.0078 (11)
C20.0186 (12)0.0202 (12)0.0194 (12)0.0029 (10)0.0029 (10)0.0036 (10)
C30.0226 (13)0.0187 (12)0.0168 (12)0.0001 (10)0.0026 (10)0.0014 (9)
C40.0165 (12)0.0195 (13)0.0129 (11)0.0036 (9)0.0026 (10)0.0003 (9)
C50.0160 (11)0.0170 (12)0.0167 (11)0.0005 (9)0.0035 (9)0.0010 (9)
C60.0191 (12)0.0175 (12)0.0198 (12)0.0019 (9)0.0068 (10)0.0008 (9)
C70.0218 (14)0.0326 (16)0.0299 (15)0.0008 (12)0.0067 (11)0.0146 (13)
C80.0330 (17)0.042 (2)0.0429 (19)0.0016 (15)0.0170 (15)0.0098 (16)
C90.0247 (16)0.056 (2)0.075 (3)0.0001 (16)0.0159 (18)0.040 (2)
C100.0292 (15)0.0234 (14)0.0304 (15)0.0051 (12)0.0133 (12)0.0108 (12)
C110.0215 (13)0.0314 (16)0.0346 (16)0.0047 (12)0.0146 (12)0.0140 (12)
C130.0323 (16)0.0259 (14)0.049 (2)0.0044 (13)0.0267 (15)0.0069 (14)
C12A0.021 (2)0.020 (2)0.023 (2)0.0008 (15)0.0118 (16)0.0013 (15)
Geometric parameters (Å, º) top
O1—C51.361 (3)C8—H81.0000
O1—C101.423 (3)C8—C91.467 (5)
O2—C41.364 (3)C9—H9A0.9900
O2—C71.435 (3)C9—H9B0.9900
O3—C81.447 (5)C10—H10A0.9800
O3—C91.441 (4)C10—H10B0.9800
O4—C131.444 (4)C10—H10C0.9800
O4—C12A1.430 (4)C11—H11A0.9900
O4—C12B1.432 (11)C11—H11B0.9900
C1—C21.374 (4)C11—H11C0.9900
C1—C61.402 (4)C11—H11D0.9900
C1—C111.513 (4)C11—C12A1.473 (5)
C2—H20.9500C11—C12B1.375 (12)
C2—C31.400 (4)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C3—C41.386 (4)C13—H13C0.9900
C4—C51.406 (4)C13—H13D0.9900
C5—C61.386 (4)C13—C12A1.443 (5)
C6—H60.9500C13—C12B1.499 (12)
C7—H7A0.9900C12A—H12A1.0000
C7—H7B0.9900C12B—H12B1.0000
C7—C81.473 (5)
C5—O1—C10116.4 (2)O1—C10—H10B109.5
C4—O2—C7115.7 (2)O1—C10—H10C109.5
C9—O3—C861.1 (2)H10A—C10—H10B109.5
C12A—O4—C1360.3 (2)H10A—C10—H10C109.5
C12B—O4—C1362.8 (5)H10B—C10—H10C109.5
C2—C1—C6118.7 (3)C1—C11—H11A108.8
C2—C1—C11121.4 (3)C1—C11—H11B108.8
C6—C1—C11119.9 (3)C1—C11—H11C107.6
C1—C2—H2119.4C1—C11—H11D107.6
C1—C2—C3121.1 (3)H11A—C11—H11B107.7
C3—C2—H2119.4H11C—C11—H11D107.0
C2—C3—H3120.0C12A—C11—C1113.6 (3)
C4—C3—C2120.0 (2)C12A—C11—H11A108.8
C4—C3—H3120.0C12A—C11—H11B108.8
O2—C4—C3124.8 (2)C12B—C11—C1118.9 (5)
O2—C4—C5115.6 (2)C12B—C11—H11C107.6
C3—C4—C5119.6 (2)C12B—C11—H11D107.6
O1—C5—C4115.8 (2)O4—C13—H13A117.8
O1—C5—C6124.7 (2)O4—C13—H13B117.8
C6—C5—C4119.5 (2)O4—C13—H13C118.0
C1—C6—H6119.4O4—C13—H13D118.0
C5—C6—C1121.2 (2)O4—C13—C12B58.2 (5)
C5—C6—H6119.4H13A—C13—H13B115.0
O2—C7—H7A110.1H13C—C13—H13D115.1
O2—C7—H7B110.1C12A—C13—O459.4 (2)
O2—C7—C8108.0 (3)C12A—C13—H13A117.8
H7A—C7—H7B108.4C12A—C13—H13B117.8
C8—C7—H7A110.1C12B—C13—H13C118.0
C8—C7—H7B110.1C12B—C13—H13D118.0
O3—C8—C7115.2 (3)O4—C12A—C11116.8 (3)
O3—C8—H8116.8O4—C12A—C1360.4 (2)
O3—C8—C959.3 (2)O4—C12A—H12A114.7
C7—C8—H8116.8C11—C12A—H12A114.7
C9—C8—C7119.3 (4)C13—C12A—C11124.5 (4)
C9—C8—H8116.8C13—C12A—H12A114.7
O3—C9—C859.7 (2)O4—C12B—C1359.0 (5)
O3—C9—H9A117.8O4—C12B—H12B112.2
O3—C9—H9B117.8C11—C12B—O4123.4 (8)
C8—C9—H9A117.8C11—C12B—C13127.6 (8)
C8—C9—H9B117.8C11—C12B—H12B112.2
H9A—C9—H9B114.9C13—C12B—H12B112.2
O1—C10—H10A109.5
O1—C5—C6—C1179.6 (3)C3—C4—C5—O1179.6 (2)
O2—C4—C5—O10.9 (3)C3—C4—C5—C60.2 (4)
O2—C4—C5—C6178.5 (2)C4—O2—C7—C8176.7 (3)
O2—C7—C8—O383.5 (4)C4—C5—C6—C10.2 (4)
O2—C7—C8—C9150.9 (4)C6—C1—C2—C30.6 (4)
O4—C13—C12A—C11103.8 (4)C6—C1—C11—C12A84.8 (4)
O4—C13—C12B—C11110.4 (10)C6—C1—C11—C12B31.8 (7)
C1—C2—C3—C40.7 (4)C7—O2—C4—C31.3 (4)
C1—C11—C12A—O469.5 (4)C7—O2—C4—C5177.3 (2)
C1—C11—C12A—C13140.5 (3)C7—C8—C9—O3103.5 (4)
C1—C11—C12B—O454.5 (11)C9—O3—C8—C7110.4 (4)
C1—C11—C12B—C13128.8 (8)C10—O1—C5—C4168.6 (2)
C2—C1—C6—C50.1 (4)C10—O1—C5—C610.8 (4)
C2—C1—C11—C12A93.8 (4)C11—C1—C2—C3179.3 (2)
C2—C1—C11—C12B146.8 (6)C11—C1—C6—C5178.8 (2)
C2—C3—C4—O2178.8 (2)C13—O4—C12A—C11116.3 (4)
C2—C3—C4—C50.3 (4)C13—O4—C12B—C11117.2 (10)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the benzene ring (C1–C6).
D—H···AD—HH···AD···AD—H···A
C7—H7B···O4i0.992.533.452 (4)155
C11—H11C···O3ii0.992.433.413 (4)170
C13—H13B···O1ii0.992.573.358 (4)136
C12A—H12A···O3ii1.002.453.177 (5)129
C7—H7A···Cgiii0.992.573.465 (4)150
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1, y, z; (iii) x, y+1, z+1/2.
 

Acknowledgements

The authors are grateful for general and financial support from the Centre National de la Recherche Scientifique (CNRS-France) and the University of Bourgogne Franche-Comté (BQR PRES 2014–2016 Bourgogne Franche-Comté). CF is thankful for a PhD fellowship awarded by the Conseil Régional de Bourgogne (France) in the frame of the `Jeunes Chercheurs Entrepreneurs-2016' program.

Funding information

Funding for this research was provided by: Centre National de la Recherche Scientifique; University of Bourgogne Franche-Comté (award No. BQR PRES 2014–2016 Bourgogne Franche-Comté).

References

First citationAuvergne, R., Caillol, S., David, G., Boutevin, B. & Pascault, J.-P. (2014). Chem. Rev. 114, 1082–1115.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBesson, M., Gallezot, P. & Pinel, C. (2014). Chem. Rev. 114, 1827–1870.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBigot, S., Daghrir, M., Mhanna, A., Boni, G., Pourchet, S., Lecamp, L. & Plasseraud, L. (2016). Eur. Polym. J. 74, 26–37.  Web of Science CrossRef CAS Google Scholar
First citationBocelli, G. & Grenier-Loustalot, M.-F. (1987). Acta Cryst. C43, 1221–1223.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCheban, I. M., Simonov, I. A., Rotaru, V. K. & Malinovskii, T. I. (1985). Dokl. Akad. Nauk SSSR, 283, 621–624.  CAS Google Scholar
First citationCho, C.-S., Liau, W.-B. & Chen, L.-W. (1999). Acta Cryst. B55, 525–529.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlippen-Anderson, J. L. & Gilardi, R. (1980). ACA, ser. 2. 8, 36a.  Google Scholar
First citationFlippen-Anderson, J. L. & Gilardi, R. (1981). Acta Cryst. B37, 1433–1435.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrançois, C., Pourchet, S., Boni, G., Fontaine, S., Gaillard, Y., Placet, V., Galkin, M. V., Orebom, A., Samec, J. & Plasseraud, L. (2016). RSC Adv. 6, 68732–68738.  Google Scholar
First citationGandini, A., Lacerda, T. M., Carvalho, A. J. F. & Trovatti, E. (2016). Chem. Rev. 116, 1637–1669.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeinemann, F., Hartung, H. & Derling, S. (1993). Z. Kristallogr. 207, 299–301.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMhanna, A., Sadaka, F., Boni, G., Brachais, C.-H., Brachais, L., Couvercelle, J.-P., Plasseraud, L. & Lecamp, L. (2014). J. Am. Oil Chem. Soc. 91, 337–348.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQin, J., Liu, H., Zhang, P., Wolcott, M. & Zhang, J. (2014). Polym. Int. 63, 760–765.  Web of Science CrossRef CAS Google Scholar
First citationSaf'yanov, Y. N., Bochkova, T. N., Golovachev, V. P. & Kuz'min, É. A. (1977). Zh. Struk. Khim. 18, 402–405.  CAS Google Scholar
First citationSaf'yanov, Y. N., Golovachev, V. P. & Kuz'min, É. A. (1984). Zh. Struk. Khim. 25, 156–157.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, T., Liu, J. & Yang, S. (2012). Acta Cryst. E68, o719.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds