research communications
Crystal structures of dibromido{N-[(pyridin-2-yl-κN)methylidene]picolinohydrazide-κ2N′,O}cadmium methanol monosolvate and diiodido{N-[(pyridin-2-yl-κN)methylidene]picolinohydrazide-κ2N′,O}cadmium
aYoung Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran, bUniversität Leipzig, Fakultätfür Chemie und Mineralogie, Johannisallee 29, D-04103 Leipzig, Germany, cDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway, dİlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, and eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
The title compounds, [CdBr2(C12H10N4O)]·CH3OH, (I), and [CdI2(C12H10N4O)], (II), are cadmium bromide and cadmium iodide complexes of the ligand (E)-N′-(pyridin-2-ylmethylene)picolinohydrazide. Complex (I) crystallizes as the methanol monosolvate. In both compounds, the Cd2+ cation is ligated by one O atom and two N atoms of the tridentate ligand, and by two bromide anions forming a Br2N2O pentacoordination sphere for (I), and by two iodide anions forming an I2N2O pentacoordination sphere for (II), both with a distorted square-pyramidal geometry. In the crystal of complex (I), molecules are linked by pairs of N—H⋯O and O—H⋯Br hydrogen bonds, involving the solvent molecule, forming dimeric units, which are linked by C—H⋯Br hydrogen bonds forming layers parallel to (101). In the crystal of complex (II), molecules are linked by N—H⋯I hydrogen bonds, forming chains propagating along [010]. In complex (II), measured at room temperature, the two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2):0.25 (2).
Keywords: crystal structure; hydrazone: tridentate ligand; cadmium; bromide; iodide; hydrogen bonding.
1. Chemical context
The cadmium(II) ion, has a d10 and exhibits a variety of coordination geometries and modes. Hydrazone ligands are one of the most important classes of flexible and versatile polydentate ligands and show very high efficiency in chelating transition metal ions (Afkhami et al., 2017a). Hydrazone ligands obtained from 2-pyridine carboxylic acid can act as ditopic ligands via two different donor sites (a tridentate coordination pocket and through an N-donor pyridine group), and have the potential to form mono- and multinuclear structures (Afkhami et al., 2017b). Herein, we report on the crystal structures of two new CdII complexes based on the tridentate hydrazone ligand, (E)-N′-(pyridin-2-ylmethylene)picolinohydrazide, obtained by condensation of an equimolar mixture of 2-pyridinecarbaldehyde and picolinic acid hydrazide in methanol.
2. Structural commentary
The molecular structures of compounds (I) and (II) are shown in Figs. 1 and 2, respectively. In compound (I), the ligand is almost planar with a dihedral angle between the pyridine rings of 6.9 (3)°. The Cd1—Br1 and Cd1—Br2 bond lengths are 2.5585 (6) and 2.5490 (7) Å, respectively, and the Cd1—N2 bond length is 2.336 (4) Å. Atom Cd1 is ligated by one O atom (O1) and two N atoms (N1 and N2) of the tridentate ligand, and by two bromide anions, hence the Cd2+ cation has a fivefold Br2N2O coordination sphere with a distorted shape and a τ5 value of 0.33 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal-pyramidal coordination sphere; Addison et al., 1984).
In compound (II), the ligand is also almost planar with a dihedral angle between the pyridine rings of 8.0 (2)°. The two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2):0.25 (2) for atoms I1A/I2A:I1B/I2B. Considering the major components only, the Cd1—I1A and Cd1—I2A bond lengths are 2.736 (3) and 2.7128 (19) Å, respectively, and the Cd1—N2 bond length is 2.336 (3) Å. Atom Cd1 is ligated by one O atom (O1) and two N atoms (N1 and N2) of the tridentate ligand, and by two iodide anions. Atom Cd1 has a fivefold I2N2O coordination sphere with a distorted shape and a τ5 value of 0.28.
3. Supramolecular features
In the crystal of compound (I), molecules are linked by pairs of N—H⋯O and O—H⋯Br hydrogen bonds, involving the solvent molecule, forming dimeric units, which are linked by C—H⋯Br hydrogen bonds forming layers parallel to (101); see Table 1 and Fig. 3. In the crystal of complex (II), molecules are linked by N—H⋯I hydrogen bonds forming chains propagating along [010]; see Table 2 and Fig. 4.
4. Database survey
All bond lengths and angles in the title compounds fall within acceptable ranges and are comparable with those reported for related structures, such as bis{N′-[(E)-4-hydroxybenzylidene]pyridine-4-carbohydrazide-κN1}diiodidocadmium methanol disolvate (Afkhami et al., 2017c), dibromido{N′-[1-(pyridin-2-yl)ethylidene]picolinohydrazide-κ2N′,O}cadmium (Akkurt et al., 2012), di-μ-chlorido-bis(chlorido{N′-[phenyl-(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide-κ2N′,O}cadmium) (Akkurt et al., 2014), bis{2-[(2,4-dimethylphenyl)iminomethyl]pyridine-κ2N,N′}bis(thiocyanato-κN)cadmium (Malekshahian et al., 2012), and cis-diaquabis-[(E)-4-(2-hydroxybenzylideneamino)benzoato-κ2O,O′]cadmium in which layers are built from strong O—H⋯O hydrogen bonds (Yao et al., 2006).
5. Synthesis and crystallization
A solution of the ligand N′-(pyridin-2-ylmethylene)picolinohydrazide (0.151 g, 0.5 mmol) in 30 ml of methanol was treated with a methanolic solution of the appropriate cadmium(II) salt (0.5 mmol); CdBr2 for complex (I) and CdI2 for (II). The solutions were heated under reflux for 4 h and then allowed to stand at room temperature. After slow evaporation of the solvent, single crystals separated out. They were collected, washed with ether and dried over P4O10 in vacuum.
6. Refinement
Crystal data, data collection and structure and (II) are summarized in Table 3. For complex (I), measured at 130 K, H atoms were placed in calculated positions (C—H = 0.95–0.98 Å, N—H = 0.88 Å and O—H = 0.84 Å) and included in the in the riding-model approximation, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N,C) for other H atoms. Owing to poor agreement, two reflections, ( 4 6 and 10 3), were omitted from the final cycles of For complex (II), measured at 296 K, the C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and included in the in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in a difference-Fourier map but were refined with a distance restraint of N—H = 0.86 (4) Å with Uiso(H) = 1.2Ueq(N). In complex (II), the two iodide anions (I1 and I2) are each disordered over two sites, and their site-occupation factors refined to 0.75 (2):0.25 (2).
details for compounds (I)
|
Supporting information
https://doi.org/10.1107/S2056989017005308/su5361sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017005308/su5361Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017005308/su5361IIsup3.hkl
Data collection: CrysAlis PRO (Agilent, 2011) for (I); APEX3 (Bruker, 2016) for (II). Cell
CrysAlis PRO (Agilent, 2011) for (I); SAINT-Plus (Bruker, 2016) for (II). Data reduction: CrysAlis PRO (Agilent, 2011) for (I); SAINT-Plus (Bruker, 2016) for (II). Program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008) for (I); SHELXT (Sheldrick, 2015a) for (II). Program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b) for (I); SHELXL2014 (Sheldrick, 2015b) for (II). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) for (I); Mercury (Macrae et al., 2008) for (II). Software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009) for (I); SHELXL2014 (Sheldrick, 2015b) for (II).[CdBr2(C12H10N4O)]·CH4O | F(000) = 1016 |
Mr = 530.50 | Dx = 2.032 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.5418 Å |
a = 7.5482 (4) Å | Cell parameters from 2435 reflections |
b = 15.7571 (8) Å | θ = 3.0–74.4° |
c = 14.6407 (6) Å | µ = 15.59 mm−1 |
β = 95.132 (4)° | T = 130 K |
V = 1734.35 (15) Å3 | Prism, light yellow |
Z = 4 | 0.08 × 0.05 × 0.04 mm |
Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer | 3458 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 2764 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.038 |
ω scans | θmax = 74.6°, θmin = 4.1° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −9→9 |
Tmin = 0.561, Tmax = 1.000 | k = −18→19 |
6773 measured reflections | l = −18→10 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.0275P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
3458 reflections | Δρmax = 0.63 e Å−3 |
201 parameters | Δρmin = −0.76 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3542 (9) | 0.3896 (4) | 0.5136 (4) | 0.0494 (16) | |
H1 | 0.3566 | 0.4180 | 0.4565 | 0.059* | |
C2 | 0.2666 (9) | 0.4292 (4) | 0.5819 (4) | 0.0482 (16) | |
H2 | 0.2058 | 0.4814 | 0.5708 | 0.058* | |
C3 | 0.2712 (8) | 0.3898 (4) | 0.6662 (3) | 0.0376 (12) | |
H3 | 0.2154 | 0.4151 | 0.7150 | 0.045* | |
C4 | 0.3584 (7) | 0.3128 (3) | 0.6786 (3) | 0.0315 (11) | |
H4 | 0.3643 | 0.2850 | 0.7364 | 0.038* | |
C5 | 0.4375 (6) | 0.2763 (3) | 0.6056 (3) | 0.0259 (10) | |
C6 | 0.5190 (6) | 0.1927 (3) | 0.6130 (3) | 0.0257 (9) | |
H6 | 0.5270 | 0.1620 | 0.6690 | 0.031* | |
C7 | 0.7080 (6) | 0.0589 (3) | 0.4588 (3) | 0.0239 (9) | |
C8 | 0.7879 (6) | −0.0271 (3) | 0.4567 (3) | 0.0261 (10) | |
C9 | 0.8393 (6) | −0.0581 (3) | 0.3740 (3) | 0.0311 (11) | |
H9 | 0.8205 | −0.0258 | 0.3192 | 0.037* | |
C10 | 0.9185 (7) | −0.1374 (4) | 0.3737 (3) | 0.0338 (11) | |
H10 | 0.9544 | −0.1609 | 0.3185 | 0.041* | |
C11 | 0.9440 (6) | −0.1815 (3) | 0.4546 (3) | 0.0306 (11) | |
H11 | 1.0005 | −0.2354 | 0.4566 | 0.037* | |
C12 | 0.8857 (7) | −0.1459 (3) | 0.5335 (3) | 0.0321 (11) | |
H12 | 0.9033 | −0.1772 | 0.5890 | 0.039* | |
C13 | 0.2406 (12) | 0.4864 (5) | 0.2809 (5) | 0.083 (3) | |
H13A | 0.3593 | 0.5002 | 0.2631 | 0.124* | |
H13B | 0.2374 | 0.4268 | 0.2999 | 0.124* | |
H13C | 0.2133 | 0.5229 | 0.3321 | 0.124* | |
N1 | 0.4340 (6) | 0.3153 (3) | 0.5234 (3) | 0.0333 (10) | |
N2 | 0.5791 (5) | 0.1625 (3) | 0.5414 (2) | 0.0240 (8) | |
N3 | 0.6507 (5) | 0.0828 (3) | 0.5400 (2) | 0.0265 (8) | |
H3N | 0.6589 | 0.0495 | 0.5884 | 0.032* | |
N4 | 0.8071 (5) | −0.0709 (3) | 0.5358 (2) | 0.0267 (8) | |
O1 | 0.6971 (5) | 0.1057 (2) | 0.3907 (2) | 0.0291 (7) | |
O2 | 0.1154 (6) | 0.4997 (3) | 0.2070 (2) | 0.0401 (9) | |
H2A | 0.1202 | 0.5505 | 0.1898 | 0.060* | |
Cd1 | 0.57044 (5) | 0.24361 (2) | 0.40754 (2) | 0.02814 (10) | |
Br1 | 0.34115 (7) | 0.21728 (4) | 0.27099 (3) | 0.03309 (13) | |
Br2 | 0.82753 (8) | 0.34184 (4) | 0.37807 (4) | 0.03634 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.081 (5) | 0.035 (4) | 0.033 (3) | 0.020 (3) | 0.011 (3) | 0.004 (2) |
C2 | 0.076 (4) | 0.028 (3) | 0.041 (3) | 0.024 (3) | 0.012 (3) | −0.003 (2) |
C3 | 0.049 (3) | 0.027 (3) | 0.038 (3) | 0.003 (2) | 0.009 (2) | −0.011 (2) |
C4 | 0.042 (3) | 0.024 (3) | 0.029 (2) | −0.004 (2) | 0.006 (2) | −0.001 (2) |
C5 | 0.031 (2) | 0.021 (3) | 0.026 (2) | −0.003 (2) | 0.0001 (17) | −0.0046 (18) |
C6 | 0.031 (2) | 0.022 (3) | 0.024 (2) | −0.003 (2) | 0.0019 (17) | 0.0018 (18) |
C7 | 0.022 (2) | 0.017 (2) | 0.032 (2) | −0.0017 (18) | −0.0005 (17) | −0.0006 (19) |
C8 | 0.026 (2) | 0.023 (3) | 0.029 (2) | −0.0033 (19) | −0.0015 (17) | −0.0036 (19) |
C9 | 0.031 (2) | 0.032 (3) | 0.030 (2) | 0.003 (2) | 0.0019 (19) | −0.001 (2) |
C10 | 0.034 (3) | 0.030 (3) | 0.039 (3) | 0.002 (2) | 0.008 (2) | −0.001 (2) |
C11 | 0.027 (2) | 0.020 (3) | 0.045 (3) | 0.0005 (19) | 0.003 (2) | −0.002 (2) |
C12 | 0.031 (2) | 0.025 (3) | 0.039 (2) | 0.000 (2) | 0.001 (2) | 0.003 (2) |
C13 | 0.123 (8) | 0.050 (5) | 0.065 (4) | 0.023 (5) | −0.045 (5) | −0.006 (4) |
N1 | 0.050 (3) | 0.025 (2) | 0.0260 (18) | 0.004 (2) | 0.0066 (17) | −0.0026 (17) |
N2 | 0.0269 (19) | 0.023 (2) | 0.0222 (16) | −0.0018 (16) | 0.0007 (14) | −0.0002 (15) |
N3 | 0.033 (2) | 0.021 (2) | 0.0258 (18) | 0.0001 (17) | 0.0004 (15) | 0.0017 (16) |
N4 | 0.0272 (19) | 0.024 (2) | 0.0295 (18) | 0.0008 (17) | 0.0035 (15) | −0.0002 (16) |
O1 | 0.0388 (19) | 0.0215 (19) | 0.0274 (16) | 0.0022 (15) | 0.0046 (13) | 0.0044 (14) |
O2 | 0.060 (2) | 0.032 (2) | 0.0284 (17) | 0.0022 (19) | 0.0041 (16) | −0.0001 (15) |
Cd1 | 0.03855 (18) | 0.0225 (2) | 0.02370 (15) | 0.00179 (15) | 0.00451 (12) | 0.00180 (13) |
Br1 | 0.0344 (3) | 0.0331 (3) | 0.0313 (2) | −0.0030 (2) | 0.00060 (19) | 0.0069 (2) |
Br2 | 0.0439 (3) | 0.0243 (3) | 0.0413 (3) | −0.0036 (2) | 0.0063 (2) | −0.0008 (2) |
C1—N1 | 1.319 (7) | C9—H9 | 0.9500 |
C1—C2 | 1.394 (7) | C10—C11 | 1.370 (7) |
C1—H1 | 0.9500 | C10—H10 | 0.9500 |
C2—C3 | 1.378 (8) | C11—C12 | 1.391 (7) |
C2—H2 | 0.9500 | C11—H11 | 0.9500 |
C3—C4 | 1.385 (8) | C12—N4 | 1.324 (7) |
C3—H3 | 0.9500 | C12—H12 | 0.9500 |
C4—C5 | 1.395 (6) | C13—O2 | 1.388 (7) |
C4—H4 | 0.9500 | C13—H13A | 0.9800 |
C5—N1 | 1.349 (6) | C13—H13B | 0.9800 |
C5—C6 | 1.453 (7) | C13—H13C | 0.9800 |
C6—N2 | 1.271 (6) | N1—Cd1 | 2.351 (4) |
C6—H6 | 0.9500 | N2—N3 | 1.368 (6) |
C7—O1 | 1.236 (5) | N2—Cd1 | 2.336 (4) |
C7—N3 | 1.354 (6) | N3—H3N | 0.8800 |
C7—C8 | 1.485 (7) | O1—Cd1 | 2.396 (3) |
C8—N4 | 1.344 (6) | O2—H2A | 0.8400 |
C8—C9 | 1.393 (6) | Cd1—Br2 | 2.5490 (7) |
C9—C10 | 1.385 (7) | Cd1—Br1 | 2.5585 (6) |
N1—C1—C2 | 124.1 (5) | C12—C11—H11 | 120.6 |
N1—C1—H1 | 118.0 | N4—C12—C11 | 123.9 (5) |
C2—C1—H1 | 118.0 | N4—C12—H12 | 118.1 |
C3—C2—C1 | 117.7 (5) | C11—C12—H12 | 118.1 |
C3—C2—H2 | 121.1 | O2—C13—H13A | 109.5 |
C1—C2—H2 | 121.1 | O2—C13—H13B | 109.5 |
C2—C3—C4 | 119.1 (5) | H13A—C13—H13B | 109.5 |
C2—C3—H3 | 120.5 | O2—C13—H13C | 109.5 |
C4—C3—H3 | 120.5 | H13A—C13—H13C | 109.5 |
C3—C4—C5 | 119.4 (5) | H13B—C13—H13C | 109.5 |
C3—C4—H4 | 120.3 | C1—N1—C5 | 118.3 (4) |
C5—C4—H4 | 120.3 | C1—N1—Cd1 | 125.0 (3) |
N1—C5—C4 | 121.3 (5) | C5—N1—Cd1 | 116.7 (3) |
N1—C5—C6 | 117.0 (4) | C6—N2—N3 | 121.8 (4) |
C4—C5—C6 | 121.6 (4) | C6—N2—Cd1 | 120.1 (3) |
N2—C6—C5 | 117.3 (4) | N3—N2—Cd1 | 118.1 (3) |
N2—C6—H6 | 121.4 | C7—N3—N2 | 115.3 (4) |
C5—C6—H6 | 121.4 | C7—N3—H3N | 122.4 |
O1—C7—N3 | 122.6 (4) | N2—N3—H3N | 122.4 |
O1—C7—C8 | 121.7 (4) | C12—N4—C8 | 116.7 (4) |
N3—C7—C8 | 115.7 (4) | C7—O1—Cd1 | 117.1 (3) |
N4—C8—C9 | 123.5 (5) | C13—O2—H2A | 109.5 |
N4—C8—C7 | 117.6 (4) | N2—Cd1—N1 | 68.80 (14) |
C9—C8—C7 | 118.9 (4) | N2—Cd1—O1 | 66.95 (12) |
C10—C9—C8 | 118.2 (5) | N1—Cd1—O1 | 135.60 (13) |
C10—C9—H9 | 120.9 | N2—Cd1—Br2 | 120.65 (9) |
C8—C9—H9 | 120.9 | N1—Cd1—Br2 | 102.70 (12) |
C11—C10—C9 | 118.8 (5) | O1—Cd1—Br2 | 102.51 (8) |
C11—C10—H10 | 120.6 | N2—Cd1—Br1 | 122.22 (9) |
C9—C10—H10 | 120.6 | N1—Cd1—Br1 | 109.42 (11) |
C10—C11—C12 | 118.9 (5) | O1—Cd1—Br1 | 91.20 (8) |
C10—C11—H11 | 120.6 | Br2—Cd1—Br1 | 115.99 (2) |
N1—C1—C2—C3 | 3.2 (11) | C2—C1—N1—Cd1 | 176.8 (5) |
C1—C2—C3—C4 | −1.3 (10) | C4—C5—N1—C1 | 0.4 (8) |
C2—C3—C4—C5 | −0.8 (8) | C6—C5—N1—C1 | 177.2 (5) |
C3—C4—C5—N1 | 1.4 (8) | C4—C5—N1—Cd1 | −179.2 (4) |
C3—C4—C5—C6 | −175.4 (5) | C6—C5—N1—Cd1 | −2.3 (6) |
N1—C5—C6—N2 | −0.6 (7) | C5—C6—N2—N3 | −176.9 (4) |
C4—C5—C6—N2 | 176.2 (5) | C5—C6—N2—Cd1 | 3.4 (6) |
O1—C7—C8—N4 | 174.9 (4) | O1—C7—N3—N2 | 0.2 (6) |
N3—C7—C8—N4 | −4.3 (6) | C8—C7—N3—N2 | 179.3 (4) |
O1—C7—C8—C9 | −5.0 (7) | C6—N2—N3—C7 | 179.5 (4) |
N3—C7—C8—C9 | 175.9 (4) | Cd1—N2—N3—C7 | −0.8 (5) |
N4—C8—C9—C10 | −1.7 (7) | C11—C12—N4—C8 | −1.6 (7) |
C7—C8—C9—C10 | 178.1 (4) | C9—C8—N4—C12 | 2.7 (7) |
C8—C9—C10—C11 | −0.5 (7) | C7—C8—N4—C12 | −177.1 (4) |
C9—C10—C11—C12 | 1.5 (7) | N3—C7—O1—Cd1 | 0.5 (6) |
C10—C11—C12—N4 | −0.5 (8) | C8—C7—O1—Cd1 | −178.6 (3) |
C2—C1—N1—C5 | −2.7 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···O2i | 0.88 | 1.96 | 2.803 (5) | 161 |
O2—H2A···Br1ii | 0.84 | 2.70 | 3.456 (4) | 150 |
C2—H2···Br2iii | 0.95 | 2.90 | 3.734 (6) | 147 |
C4—H4···Br2iv | 0.95 | 2.91 | 3.826 (5) | 162 |
C10—H10···Br1v | 0.95 | 2.85 | 3.703 (5) | 149 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) x−1/2, −y+1/2, z+1/2; (v) −x+3/2, y−1/2, −z+1/2. |
[CdI2(C12H10N4O)] | F(000) = 1088 |
Mr = 592.44 | Dx = 2.409 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5264 (7) Å | Cell parameters from 6468 reflections |
b = 13.1325 (12) Å | θ = 2.5–28.0° |
c = 16.5718 (15) Å | µ = 5.12 mm−1 |
β = 94.384 (1)° | T = 296 K |
V = 1633.2 (3) Å3 | Plate, light yellow |
Z = 4 | 0.48 × 0.20 × 0.02 mm |
Bruker D8 Venture diffractometer with Photon 100 CMOS detector | 3946 independent reflections |
Radiation source: fine-focus sealed tube | 3193 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 8.3 pixels mm-1 | θmax = 28.2°, θmin = 2.0° |
Sets of exposures each taken over 0.5° ω rotation scans | h = −9→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −17→17 |
Tmin = 0.616, Tmax = 0.903 | l = −21→21 |
3946 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.0256P)2 + 0.6207P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
3946 reflections | Δρmax = 0.65 e Å−3 |
204 parameters | Δρmin = −0.39 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.5553 (5) | 0.3164 (3) | 0.9481 (2) | 0.0622 (9) | |
H1 | 0.5027 | 0.2525 | 0.9506 | 0.075* | |
C2 | 0.6695 (5) | 0.3481 (3) | 1.0130 (2) | 0.0691 (10) | |
H2 | 0.6933 | 0.3064 | 1.0578 | 0.083* | |
C3 | 0.7462 (5) | 0.4426 (3) | 1.0092 (2) | 0.0662 (9) | |
H3 | 0.8220 | 0.4664 | 1.0520 | 0.079* | |
C4 | 0.7095 (4) | 0.5017 (3) | 0.9414 (2) | 0.0591 (8) | |
H4 | 0.7609 | 0.5657 | 0.9376 | 0.071* | |
C5 | 0.5948 (4) | 0.4646 (2) | 0.87896 (18) | 0.0481 (7) | |
C6 | 0.5559 (4) | 0.5222 (2) | 0.80398 (18) | 0.0503 (7) | |
H6 | 0.5999 | 0.5879 | 0.7986 | 0.060* | |
C7 | 0.3276 (4) | 0.4766 (2) | 0.61592 (18) | 0.0488 (7) | |
C8 | 0.2989 (4) | 0.5342 (2) | 0.53845 (18) | 0.0498 (7) | |
C9 | 0.2074 (5) | 0.4925 (3) | 0.4719 (2) | 0.0635 (9) | |
H9 | 0.1609 | 0.4269 | 0.4732 | 0.076* | |
C10 | 0.1865 (5) | 0.5520 (3) | 0.4020 (2) | 0.0695 (10) | |
H10 | 0.1230 | 0.5271 | 0.3558 | 0.083* | |
C11 | 0.2590 (5) | 0.6460 (3) | 0.4019 (2) | 0.0692 (10) | |
H11 | 0.2461 | 0.6865 | 0.3558 | 0.083* | |
C12 | 0.3516 (6) | 0.6809 (3) | 0.4704 (2) | 0.0727 (11) | |
H12 | 0.4031 | 0.7453 | 0.4695 | 0.101 (15)* | |
N1 | 0.5174 (3) | 0.3727 (2) | 0.88258 (15) | 0.0496 (6) | |
N2 | 0.4609 (3) | 0.48064 (19) | 0.74667 (15) | 0.0473 (6) | |
N3 | 0.4243 (4) | 0.5284 (2) | 0.67483 (16) | 0.0508 (6) | |
H3N | 0.461 (5) | 0.590 (3) | 0.668 (2) | 0.061* | |
N4 | 0.3717 (5) | 0.6265 (2) | 0.53900 (18) | 0.0659 (8) | |
O1 | 0.2696 (3) | 0.39087 (18) | 0.62576 (14) | 0.0592 (6) | |
Cd1 | 0.32992 (3) | 0.32196 (2) | 0.76532 (2) | 0.05080 (8) | |
I1A | 0.4779 (3) | 0.1408 (2) | 0.7239 (2) | 0.0549 (3) | 0.75 (2) |
I2A | −0.0093 (3) | 0.31832 (13) | 0.81000 (15) | 0.0555 (4) | 0.75 (2) |
I1B | 0.4749 (10) | 0.1451 (7) | 0.7364 (9) | 0.0654 (16) | 0.25 (2) |
I2B | 0.0012 (11) | 0.3249 (6) | 0.8180 (7) | 0.0787 (18) | 0.25 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.071 (2) | 0.060 (2) | 0.055 (2) | 0.0027 (17) | 0.0032 (17) | 0.0053 (16) |
C2 | 0.073 (2) | 0.081 (3) | 0.053 (2) | 0.018 (2) | −0.0004 (17) | 0.0083 (18) |
C3 | 0.058 (2) | 0.088 (3) | 0.0519 (19) | 0.0085 (19) | −0.0055 (15) | −0.0109 (18) |
C4 | 0.0529 (18) | 0.065 (2) | 0.0587 (19) | −0.0021 (16) | 0.0016 (15) | −0.0105 (16) |
C5 | 0.0423 (15) | 0.0520 (18) | 0.0500 (16) | 0.0055 (13) | 0.0039 (12) | −0.0044 (13) |
C6 | 0.0490 (17) | 0.0468 (18) | 0.0551 (18) | −0.0015 (13) | 0.0048 (13) | −0.0003 (14) |
C7 | 0.0480 (16) | 0.0503 (18) | 0.0485 (16) | 0.0069 (13) | 0.0062 (13) | −0.0016 (13) |
C8 | 0.0491 (17) | 0.0503 (17) | 0.0502 (17) | 0.0049 (13) | 0.0059 (13) | 0.0020 (13) |
C9 | 0.067 (2) | 0.065 (2) | 0.058 (2) | −0.0120 (17) | 0.0011 (16) | −0.0026 (17) |
C10 | 0.071 (2) | 0.088 (3) | 0.0490 (19) | −0.004 (2) | −0.0041 (16) | 0.0038 (18) |
C11 | 0.075 (2) | 0.077 (3) | 0.055 (2) | 0.006 (2) | 0.0017 (17) | 0.0150 (18) |
C12 | 0.096 (3) | 0.058 (2) | 0.063 (2) | −0.003 (2) | −0.001 (2) | 0.0137 (18) |
N1 | 0.0526 (15) | 0.0482 (15) | 0.0478 (14) | 0.0044 (11) | 0.0029 (11) | −0.0017 (11) |
N2 | 0.0469 (14) | 0.0479 (15) | 0.0473 (13) | 0.0069 (11) | 0.0043 (11) | 0.0008 (11) |
N3 | 0.0601 (16) | 0.0426 (14) | 0.0494 (14) | 0.0027 (12) | 0.0028 (12) | 0.0037 (11) |
N4 | 0.088 (2) | 0.0536 (18) | 0.0547 (17) | −0.0011 (15) | −0.0024 (15) | 0.0027 (13) |
O1 | 0.0695 (15) | 0.0508 (13) | 0.0565 (13) | −0.0077 (11) | −0.0013 (11) | 0.0046 (10) |
Cd1 | 0.05478 (14) | 0.04400 (13) | 0.05349 (14) | −0.00171 (9) | 0.00328 (10) | −0.00142 (9) |
I1A | 0.0610 (5) | 0.0468 (4) | 0.0568 (7) | 0.0081 (3) | 0.0034 (5) | −0.0055 (4) |
I2A | 0.0516 (5) | 0.0512 (7) | 0.0641 (5) | 0.0071 (3) | 0.0069 (4) | 0.0103 (3) |
I1B | 0.0736 (17) | 0.0486 (12) | 0.077 (4) | 0.0009 (11) | 0.0232 (18) | −0.0098 (15) |
I2B | 0.065 (2) | 0.097 (3) | 0.077 (2) | 0.0126 (15) | 0.0233 (17) | 0.0117 (15) |
C1—N1 | 1.326 (4) | C9—C10 | 1.396 (5) |
C1—C2 | 1.389 (5) | C9—H9 | 0.9300 |
C1—H1 | 0.9300 | C10—C11 | 1.350 (6) |
C2—C3 | 1.372 (6) | C10—H10 | 0.9300 |
C2—H2 | 0.9300 | C11—C12 | 1.365 (6) |
C3—C4 | 1.376 (5) | C11—H11 | 0.9300 |
C3—H3 | 0.9300 | C12—N4 | 1.341 (5) |
C4—C5 | 1.384 (5) | C12—H12 | 0.9300 |
C4—H4 | 0.9300 | N1—Cd1 | 2.407 (3) |
C5—N1 | 1.343 (4) | N2—N3 | 1.355 (4) |
C5—C6 | 1.465 (4) | N2—Cd1 | 2.336 (3) |
C6—N2 | 1.268 (4) | N3—H3N | 0.86 (4) |
C6—H6 | 0.9300 | O1—Cd1 | 2.493 (2) |
C7—O1 | 1.223 (4) | Cd1—I1B | 2.626 (10) |
C7—N3 | 1.355 (4) | Cd1—I2B | 2.687 (6) |
C7—C8 | 1.492 (4) | Cd1—I2A | 2.7128 (19) |
C8—N4 | 1.329 (4) | Cd1—I1A | 2.736 (3) |
C8—C9 | 1.370 (5) | ||
N1—C1—C2 | 123.2 (4) | C12—C11—H11 | 120.4 |
N1—C1—H1 | 118.4 | N4—C12—C11 | 122.9 (4) |
C2—C1—H1 | 118.4 | N4—C12—H12 | 118.6 |
C3—C2—C1 | 118.3 (4) | C11—C12—H12 | 118.6 |
C3—C2—H2 | 120.8 | C1—N1—C5 | 118.1 (3) |
C1—C2—H2 | 120.8 | C1—N1—Cd1 | 125.6 (2) |
C2—C3—C4 | 119.2 (3) | C5—N1—Cd1 | 116.3 (2) |
C2—C3—H3 | 120.4 | C6—N2—N3 | 121.6 (3) |
C4—C3—H3 | 120.4 | C6—N2—Cd1 | 120.3 (2) |
C3—C4—C5 | 119.1 (4) | N3—N2—Cd1 | 118.0 (2) |
C3—C4—H4 | 120.5 | N2—N3—C7 | 117.6 (3) |
C5—C4—H4 | 120.5 | N2—N3—H3N | 120 (2) |
N1—C5—C4 | 122.1 (3) | C7—N3—H3N | 122 (2) |
N1—C5—C6 | 116.3 (3) | C8—N4—C12 | 117.4 (3) |
C4—C5—C6 | 121.6 (3) | C7—O1—Cd1 | 114.6 (2) |
N2—C6—C5 | 118.5 (3) | N2—Cd1—N1 | 68.43 (9) |
N2—C6—H6 | 120.7 | N2—Cd1—O1 | 66.56 (8) |
C5—C6—H6 | 120.7 | N1—Cd1—O1 | 134.63 (8) |
O1—C7—N3 | 122.9 (3) | N2—Cd1—I1B | 125.4 (2) |
O1—C7—C8 | 123.5 (3) | N1—Cd1—I1B | 99.6 (3) |
N3—C7—C8 | 113.6 (3) | O1—Cd1—I1B | 101.6 (3) |
N4—C8—C9 | 123.5 (3) | N2—Cd1—I2B | 116.02 (18) |
N4—C8—C7 | 115.1 (3) | N1—Cd1—I2B | 103.4 (3) |
C9—C8—C7 | 121.4 (3) | O1—Cd1—I2B | 100.9 (2) |
C8—C9—C10 | 117.5 (3) | I1B—Cd1—I2B | 118.5 (2) |
C8—C9—H9 | 121.3 | N2—Cd1—I2A | 117.87 (7) |
C10—C9—H9 | 121.3 | N1—Cd1—I2A | 106.89 (9) |
C11—C10—C9 | 119.5 (4) | O1—Cd1—I2A | 98.69 (7) |
C11—C10—H10 | 120.2 | N2—Cd1—I1A | 123.94 (9) |
C9—C10—H10 | 120.2 | N1—Cd1—I1A | 102.63 (9) |
C10—C11—C12 | 119.2 (4) | O1—Cd1—I1A | 97.56 (9) |
C10—C11—H11 | 120.4 | I2A—Cd1—I1A | 117.57 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···I2Ai | 0.87 (4) | 3.04 (4) | 3.866 (3) | 161 (3) |
Symmetry code: (i) −x+1/2, y+1/2, −z+3/2. |
Acknowledgements
We are grateful to the University of Tabriz Research Council for the financial support for this research.
Funding information
Funding for this research was provided by: University of Tabriz Research Council.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017a). CrystEngComm, 19, 1389–1399. Web of Science CSD CrossRef CAS Google Scholar
Afkhami, F. A., Khandar, A. A., White, J. M., Guerri, A., Ienco, A., Bryant, J. T., Mhesn, N. & Lampropoulos, C. (2017b). Inorg. Chim. Acta, 457, 150–159. CrossRef CAS Google Scholar
Afkhami, F. A., Krautscheid, H., Atioğlu, Z. & Akkurt, M. (2017c). Acta Cryst. E73, 28–30. Web of Science CSD CrossRef IUCr Journals Google Scholar
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Akkurt, M., Khandar, A. A., Tahir, M. N., Afkhami, F. A. & Yazdi, S. A. H. (2014). Acta Cryst. E70, m213–m214. CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Khandar, A. A., Tahir, M. N., Yazdi, S. A. H. & Afkhami, F. A. (2012). Acta Cryst. E68, m842. CSD CrossRef IUCr Journals Google Scholar
Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Malekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218–m219. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yao, S.-Q., Zhu, M.-L., Lu, L.-P. & Gao, X.-L. (2006). Acta Cryst. C62, m183–m185. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.