research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of di­bromido­{N-[(pyridin-2-yl-κN)methyl­­idene]picolinohydrazide-κ2N′,O}cadmium methanol monosolvate and di­iodido{N-[(pyridin-2-yl-κN)methyl­­idene]picolinohydrazide-κ2N′,O}cadmium

CROSSMARK_Color_square_no_text.svg

aYoung Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran, bUniversität Leipzig, Fakultätfür Chemie und Mineralogie, Johannisallee 29, D-04103 Leipzig, Germany, cDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway, dİlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, and eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 March 2017; accepted 8 April 2017; online 13 April 2017)

The title compounds, [CdBr2(C12H10N4O)]·CH3OH, (I), and [CdI2(C12H10N4O)], (II), are cadmium bromide and cadmium iodide complexes of the ligand (E)-N′-(pyridin-2-yl­methyl­ene)picolinohydrazide. Complex (I) crystallizes as the methanol monosolvate. In both compounds, the Cd2+ cation is ligated by one O atom and two N atoms of the tridentate ligand, and by two bromide anions forming a Br2N2O penta­coordination sphere for (I), and by two iodide anions forming an I2N2O penta­coordination sphere for (II), both with a distorted square-pyramidal geometry. In the crystal of complex (I), mol­ecules are linked by pairs of N—H⋯O and O—H⋯Br hydrogen bonds, involving the solvent mol­ecule, forming dimeric units, which are linked by C—H⋯Br hydrogen bonds forming layers parallel to (101). In the crystal of complex (II), mol­ecules are linked by N—H⋯I hydrogen bonds, forming chains propagating along [010]. In complex (II), measured at room temperature, the two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2):0.25 (2).

1. Chemical context

The cadmium(II) ion, has a d10 electronic configuration and exhibits a variety of coordination geometries and modes. Hydrazone ligands are one of the most important classes of flexible and versatile polydentate ligands and show very high efficiency in chelating transition metal ions (Afkhami et al., 2017a[Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017a). CrystEngComm, 19, 1389-1399.]). Hydrazone ligands obtained from 2-pyridine carb­oxy­lic acid can act as ditopic ligands via two different donor sites (a tridentate coordination pocket and through an N-donor pyridine group), and have the potential to form mono- and multinuclear structures (Afkhami et al., 2017b[Afkhami, F. A., Khandar, A. A., White, J. M., Guerri, A., Ienco, A., Bryant, J. T., Mhesn, N. & Lampropoulos, C. (2017b). Inorg. Chim. Acta, 457, 150-159.]). Herein, we report on the crystal structures of two new CdII complexes based on the tridentate hydrazone ligand, (E)-N′-(pyridin-2-yl­methyl­ene)picolinohydrazide, obtained by condensation of an equimolar mixture of 2-pyridine­carbaldehyde and picolinic acid hydrazide in methanol.

2. Structural commentary

The mol­ecular structures of compounds (I)[link] and (II)[link] are shown in Figs. 1[link] and 2[link], respectively. In compound (I)[link], the ligand is almost planar with a dihedral angle between the pyridine rings of 6.9 (3)°. The Cd1—Br1 and Cd1—Br2 bond lengths are 2.5585 (6) and 2.5490 (7) Å, respectively, and the Cd1—N2 bond length is 2.336 (4) Å. Atom Cd1 is ligated by one O atom (O1) and two N atoms (N1 and N2) of the tridentate ligand, and by two bromide anions, hence the Cd2+ cation has a fivefold Br2N2O coordination sphere with a distorted shape and a τ5 value of 0.33 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal-pyramidal coordination sphere; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular components in the structure of compound (I)[link], with atom labelling. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with atom labelling. Displacement ellipsoids are shown at the 30% probability level. Only the major components of the disordered I atoms are shown.

In compound (II)[link], the ligand is also almost planar with a dihedral angle between the pyridine rings of 8.0 (2)°. The two iodide anions are each disordered over two sites; the refined occupancy ratio is 0.75 (2):0.25 (2) for atoms I1A/I2A:I1B/I2B. Considering the major components only, the Cd1—I1A and Cd1—I2A bond lengths are 2.736 (3) and 2.7128 (19) Å, respectively, and the Cd1—N2 bond length is 2.336 (3) Å. Atom Cd1 is ligated by one O atom (O1) and two N atoms (N1 and N2) of the tridentate ligand, and by two iodide anions. Atom Cd1 has a fivefold I2N2O coordination sphere with a distorted shape and a τ5 value of 0.28.

3. Supra­molecular features

In the crystal of compound (I)[link], mol­ecules are linked by pairs of N—H⋯O and O—H⋯Br hydrogen bonds, involving the solvent mol­ecule, forming dimeric units, which are linked by C—H⋯Br hydrogen bonds forming layers parallel to (101); see Table 1[link] and Fig. 3[link]. In the crystal of complex (II)[link], mol­ecules are linked by N—H⋯I hydrogen bonds forming chains propagating along [010]; see Table 2[link] and Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2i 0.88 1.96 2.803 (5) 161
O2—H2A⋯Br1ii 0.84 2.70 3.456 (4) 150
C2—H2⋯Br2iii 0.95 2.90 3.734 (6) 147
C4—H4⋯Br2iv 0.95 2.91 3.826 (5) 162
C10—H10⋯Br1v 0.95 2.85 3.703 (5) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯I2Ai 0.87 (4) 3.04 (4) 3.866 (3) 161 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
A view normal to (101) of the crystal packing of compound (I)[link]. The hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, only the H atoms involved in hydrogen bonding have been included.
[Figure 4]
Figure 4
A view along the a axis of the crystal packing of compound (II)[link]. The hydrogen bonds are shown as dashed lines (see Table 2[link]). For clarity, only the H atoms involved in hydrogen bonding and only the major components of the disordered I atoms have been included.

4. Database survey

All bond lengths and angles in the title compounds fall within acceptable ranges and are comparable with those reported for related structures, such as bis­{N′-[(E)-4-hy­droxy­benzyl­idene]pyridine-4-carbohydrazide-κN1}di­iodido­cadmium methanol disolvate (Afkhami et al., 2017c[Afkhami, F. A., Krautscheid, H., Atioğlu, Z. & Akkurt, M. (2017c). Acta Cryst. E73, 28-30.]), di­bromido­{N′-[1-(pyridin-2-yl)ethyl­idene]picolinohydrazide-κ2N′,O}cadmium (Akkurt et al., 2012[Akkurt, M., Khandar, A. A., Tahir, M. N., Yazdi, S. A. H. & Afkhami, F. A. (2012). Acta Cryst. E68, m842.]), di-μ-chlorido-bis­(chlorido­{N′-[phenyl-(pyridin-2-yl-κN)methyl­idene]pyridine-2-carbohydrazide-κ2N′,O}cadmium) (Akkurt et al., 2014[Akkurt, M., Khandar, A. A., Tahir, M. N., Afkhami, F. A. & Yazdi, S. A. H. (2014). Acta Cryst. E70, m213-m214.]), bis­{2-[(2,4-di­methyl­phen­yl)imino­meth­yl]pyridine-κ2N,N′}bis­(thio­cyanato-κN)cadmium (Malekshah­ian et al., 2012[Malekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218-m219.]), and cis-di­aqua­bis-[(E)-4-(2-hy­droxybenzyl­idene­amino)­benzoato-κ2O,O′]cadmium in which layers are built from strong O—H⋯O hydrogen bonds (Yao et al., 2006[Yao, S.-Q., Zhu, M.-L., Lu, L.-P. & Gao, X.-L. (2006). Acta Cryst. C62, m183-m185.]).

5. Synthesis and crystallization

A solution of the ligand N′-(pyridin-2-yl­methyl­ene)picolinohydrazide (0.151 g, 0.5 mmol) in 30 ml of methanol was treated with a methano­lic solution of the appropriate cadmium(II) salt (0.5 mmol); CdBr2 for complex (I)[link] and CdI2 for (II)[link]. The solutions were heated under reflux for 4 h and then allowed to stand at room temperature. After slow evaporation of the solvent, single crystals separated out. They were collected, washed with ether and dried over P4O10 in vacuum.

6. Refinement

Crystal data, data collection and structure refinement details for compounds (I)[link] and (II)[link] are summarized in Table 3[link]. For complex (I)[link], measured at 130 K, H atoms were placed in calculated positions (C—H = 0.95–0.98 Å, N—H = 0.88 Å and O—H = 0.84 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N,C) for other H atoms. Owing to poor agreement, two reflections, ([\overline{4}] 4 6 and [\overline{7}] 10 3), were omitted from the final cycles of refinement. For complex (II)[link], measured at 296 K, the C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in a difference-Fourier map but were refined with a distance restraint of N—H = 0.86 (4) Å with Uiso(H) = 1.2Ueq(N). In complex (II)[link], the two iodide anions (I1 and I2) are each disordered over two sites, and their site-occupation factors refined to 0.75 (2):0.25 (2).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [CdBr2(C12H10N4O)]·CH4O [CdI2(C12H10N4O)]
Mr 530.50 592.44
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 130 296
a, b, c (Å) 7.5482 (4), 15.7571 (8), 14.6407 (6) 7.5264 (7), 13.1325 (12), 16.5718 (15)
β (°) 95.132 (4) 94.384 (1)
V3) 1734.35 (15) 1633.2 (3)
Z 4 4
Radiation type Cu Kα Mo Kα
μ (mm−1) 15.59 5.12
Crystal size (mm) 0.08 × 0.05 × 0.04 0.48 × 0.20 × 0.02
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas Bruker D8 Venture diffractometer with Photon 100 CMOS detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.561, 1.000 0.616, 0.903
No. of measured, independent and observed [I > 2σ(I)] reflections 6773, 3458, 2764 3946, 3946, 3193
Rint 0.038 0.023
(sin θ/λ)max−1) 0.625 0.665
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.078, 1.02 0.023, 0.058, 1.06
No. of reflections 3458 3946
No. of parameters 201 204
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −0.76 0.65, −0.39
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]), APEX3 and SAINT-Plus (Bruker, 2016[Bruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014/7 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 and SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2011) for (I); APEX3 (Bruker, 2016) for (II). Cell refinement: CrysAlis PRO (Agilent, 2011) for (I); SAINT-Plus (Bruker, 2016) for (II). Data reduction: CrysAlis PRO (Agilent, 2011) for (I); SAINT-Plus (Bruker, 2016) for (II). Program(s) used to solve structure: SHELXS2014/7 (Sheldrick, 2008) for (I); SHELXT (Sheldrick, 2015a) for (II). Program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b) for (I); SHELXL2014 (Sheldrick, 2015b) for (II). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) for (I); Mercury (Macrae et al., 2008) for (II). Software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009) for (I); SHELXL2014 (Sheldrick, 2015b) for (II).

(I) Dibromido{N-[(pyridin-2-yl-κN)methylidene]picolinohydrazide-κ2N',O}cadmium methanol monosolvate top
Crystal data top
[CdBr2(C12H10N4O)]·CH4OF(000) = 1016
Mr = 530.50Dx = 2.032 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
a = 7.5482 (4) ÅCell parameters from 2435 reflections
b = 15.7571 (8) Åθ = 3.0–74.4°
c = 14.6407 (6) ŵ = 15.59 mm1
β = 95.132 (4)°T = 130 K
V = 1734.35 (15) Å3Prism, light yellow
Z = 40.08 × 0.05 × 0.04 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
3458 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2764 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
ω scansθmax = 74.6°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 99
Tmin = 0.561, Tmax = 1.000k = 1819
6773 measured reflectionsl = 1810
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0275P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3458 reflectionsΔρmax = 0.63 e Å3
201 parametersΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3542 (9)0.3896 (4)0.5136 (4)0.0494 (16)
H10.35660.41800.45650.059*
C20.2666 (9)0.4292 (4)0.5819 (4)0.0482 (16)
H20.20580.48140.57080.058*
C30.2712 (8)0.3898 (4)0.6662 (3)0.0376 (12)
H30.21540.41510.71500.045*
C40.3584 (7)0.3128 (3)0.6786 (3)0.0315 (11)
H40.36430.28500.73640.038*
C50.4375 (6)0.2763 (3)0.6056 (3)0.0259 (10)
C60.5190 (6)0.1927 (3)0.6130 (3)0.0257 (9)
H60.52700.16200.66900.031*
C70.7080 (6)0.0589 (3)0.4588 (3)0.0239 (9)
C80.7879 (6)0.0271 (3)0.4567 (3)0.0261 (10)
C90.8393 (6)0.0581 (3)0.3740 (3)0.0311 (11)
H90.82050.02580.31920.037*
C100.9185 (7)0.1374 (4)0.3737 (3)0.0338 (11)
H100.95440.16090.31850.041*
C110.9440 (6)0.1815 (3)0.4546 (3)0.0306 (11)
H111.00050.23540.45660.037*
C120.8857 (7)0.1459 (3)0.5335 (3)0.0321 (11)
H120.90330.17720.58900.039*
C130.2406 (12)0.4864 (5)0.2809 (5)0.083 (3)
H13A0.35930.50020.26310.124*
H13B0.23740.42680.29990.124*
H13C0.21330.52290.33210.124*
N10.4340 (6)0.3153 (3)0.5234 (3)0.0333 (10)
N20.5791 (5)0.1625 (3)0.5414 (2)0.0240 (8)
N30.6507 (5)0.0828 (3)0.5400 (2)0.0265 (8)
H3N0.65890.04950.58840.032*
N40.8071 (5)0.0709 (3)0.5358 (2)0.0267 (8)
O10.6971 (5)0.1057 (2)0.3907 (2)0.0291 (7)
O20.1154 (6)0.4997 (3)0.2070 (2)0.0401 (9)
H2A0.12020.55050.18980.060*
Cd10.57044 (5)0.24361 (2)0.40754 (2)0.02814 (10)
Br10.34115 (7)0.21728 (4)0.27099 (3)0.03309 (13)
Br20.82753 (8)0.34184 (4)0.37807 (4)0.03634 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.081 (5)0.035 (4)0.033 (3)0.020 (3)0.011 (3)0.004 (2)
C20.076 (4)0.028 (3)0.041 (3)0.024 (3)0.012 (3)0.003 (2)
C30.049 (3)0.027 (3)0.038 (3)0.003 (2)0.009 (2)0.011 (2)
C40.042 (3)0.024 (3)0.029 (2)0.004 (2)0.006 (2)0.001 (2)
C50.031 (2)0.021 (3)0.026 (2)0.003 (2)0.0001 (17)0.0046 (18)
C60.031 (2)0.022 (3)0.024 (2)0.003 (2)0.0019 (17)0.0018 (18)
C70.022 (2)0.017 (2)0.032 (2)0.0017 (18)0.0005 (17)0.0006 (19)
C80.026 (2)0.023 (3)0.029 (2)0.0033 (19)0.0015 (17)0.0036 (19)
C90.031 (2)0.032 (3)0.030 (2)0.003 (2)0.0019 (19)0.001 (2)
C100.034 (3)0.030 (3)0.039 (3)0.002 (2)0.008 (2)0.001 (2)
C110.027 (2)0.020 (3)0.045 (3)0.0005 (19)0.003 (2)0.002 (2)
C120.031 (2)0.025 (3)0.039 (2)0.000 (2)0.001 (2)0.003 (2)
C130.123 (8)0.050 (5)0.065 (4)0.023 (5)0.045 (5)0.006 (4)
N10.050 (3)0.025 (2)0.0260 (18)0.004 (2)0.0066 (17)0.0026 (17)
N20.0269 (19)0.023 (2)0.0222 (16)0.0018 (16)0.0007 (14)0.0002 (15)
N30.033 (2)0.021 (2)0.0258 (18)0.0001 (17)0.0004 (15)0.0017 (16)
N40.0272 (19)0.024 (2)0.0295 (18)0.0008 (17)0.0035 (15)0.0002 (16)
O10.0388 (19)0.0215 (19)0.0274 (16)0.0022 (15)0.0046 (13)0.0044 (14)
O20.060 (2)0.032 (2)0.0284 (17)0.0022 (19)0.0041 (16)0.0001 (15)
Cd10.03855 (18)0.0225 (2)0.02370 (15)0.00179 (15)0.00451 (12)0.00180 (13)
Br10.0344 (3)0.0331 (3)0.0313 (2)0.0030 (2)0.00060 (19)0.0069 (2)
Br20.0439 (3)0.0243 (3)0.0413 (3)0.0036 (2)0.0063 (2)0.0008 (2)
Geometric parameters (Å, º) top
C1—N11.319 (7)C9—H90.9500
C1—C21.394 (7)C10—C111.370 (7)
C1—H10.9500C10—H100.9500
C2—C31.378 (8)C11—C121.391 (7)
C2—H20.9500C11—H110.9500
C3—C41.385 (8)C12—N41.324 (7)
C3—H30.9500C12—H120.9500
C4—C51.395 (6)C13—O21.388 (7)
C4—H40.9500C13—H13A0.9800
C5—N11.349 (6)C13—H13B0.9800
C5—C61.453 (7)C13—H13C0.9800
C6—N21.271 (6)N1—Cd12.351 (4)
C6—H60.9500N2—N31.368 (6)
C7—O11.236 (5)N2—Cd12.336 (4)
C7—N31.354 (6)N3—H3N0.8800
C7—C81.485 (7)O1—Cd12.396 (3)
C8—N41.344 (6)O2—H2A0.8400
C8—C91.393 (6)Cd1—Br22.5490 (7)
C9—C101.385 (7)Cd1—Br12.5585 (6)
N1—C1—C2124.1 (5)C12—C11—H11120.6
N1—C1—H1118.0N4—C12—C11123.9 (5)
C2—C1—H1118.0N4—C12—H12118.1
C3—C2—C1117.7 (5)C11—C12—H12118.1
C3—C2—H2121.1O2—C13—H13A109.5
C1—C2—H2121.1O2—C13—H13B109.5
C2—C3—C4119.1 (5)H13A—C13—H13B109.5
C2—C3—H3120.5O2—C13—H13C109.5
C4—C3—H3120.5H13A—C13—H13C109.5
C3—C4—C5119.4 (5)H13B—C13—H13C109.5
C3—C4—H4120.3C1—N1—C5118.3 (4)
C5—C4—H4120.3C1—N1—Cd1125.0 (3)
N1—C5—C4121.3 (5)C5—N1—Cd1116.7 (3)
N1—C5—C6117.0 (4)C6—N2—N3121.8 (4)
C4—C5—C6121.6 (4)C6—N2—Cd1120.1 (3)
N2—C6—C5117.3 (4)N3—N2—Cd1118.1 (3)
N2—C6—H6121.4C7—N3—N2115.3 (4)
C5—C6—H6121.4C7—N3—H3N122.4
O1—C7—N3122.6 (4)N2—N3—H3N122.4
O1—C7—C8121.7 (4)C12—N4—C8116.7 (4)
N3—C7—C8115.7 (4)C7—O1—Cd1117.1 (3)
N4—C8—C9123.5 (5)C13—O2—H2A109.5
N4—C8—C7117.6 (4)N2—Cd1—N168.80 (14)
C9—C8—C7118.9 (4)N2—Cd1—O166.95 (12)
C10—C9—C8118.2 (5)N1—Cd1—O1135.60 (13)
C10—C9—H9120.9N2—Cd1—Br2120.65 (9)
C8—C9—H9120.9N1—Cd1—Br2102.70 (12)
C11—C10—C9118.8 (5)O1—Cd1—Br2102.51 (8)
C11—C10—H10120.6N2—Cd1—Br1122.22 (9)
C9—C10—H10120.6N1—Cd1—Br1109.42 (11)
C10—C11—C12118.9 (5)O1—Cd1—Br191.20 (8)
C10—C11—H11120.6Br2—Cd1—Br1115.99 (2)
N1—C1—C2—C33.2 (11)C2—C1—N1—Cd1176.8 (5)
C1—C2—C3—C41.3 (10)C4—C5—N1—C10.4 (8)
C2—C3—C4—C50.8 (8)C6—C5—N1—C1177.2 (5)
C3—C4—C5—N11.4 (8)C4—C5—N1—Cd1179.2 (4)
C3—C4—C5—C6175.4 (5)C6—C5—N1—Cd12.3 (6)
N1—C5—C6—N20.6 (7)C5—C6—N2—N3176.9 (4)
C4—C5—C6—N2176.2 (5)C5—C6—N2—Cd13.4 (6)
O1—C7—C8—N4174.9 (4)O1—C7—N3—N20.2 (6)
N3—C7—C8—N44.3 (6)C8—C7—N3—N2179.3 (4)
O1—C7—C8—C95.0 (7)C6—N2—N3—C7179.5 (4)
N3—C7—C8—C9175.9 (4)Cd1—N2—N3—C70.8 (5)
N4—C8—C9—C101.7 (7)C11—C12—N4—C81.6 (7)
C7—C8—C9—C10178.1 (4)C9—C8—N4—C122.7 (7)
C8—C9—C10—C110.5 (7)C7—C8—N4—C12177.1 (4)
C9—C10—C11—C121.5 (7)N3—C7—O1—Cd10.5 (6)
C10—C11—C12—N40.5 (8)C8—C7—O1—Cd1178.6 (3)
C2—C1—N1—C52.7 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.881.962.803 (5)161
O2—H2A···Br1ii0.842.703.456 (4)150
C2—H2···Br2iii0.952.903.734 (6)147
C4—H4···Br2iv0.952.913.826 (5)162
C10—H10···Br1v0.952.853.703 (5)149
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1/2, y+1/2, z+1/2; (v) x+3/2, y1/2, z+1/2.
(II) Diiodido{N-[(pyridin-2-yl-κN)methylidene]picolinohydrazide-κ2N',O}cadmium top
Crystal data top
[CdI2(C12H10N4O)]F(000) = 1088
Mr = 592.44Dx = 2.409 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.5264 (7) ÅCell parameters from 6468 reflections
b = 13.1325 (12) Åθ = 2.5–28.0°
c = 16.5718 (15) ŵ = 5.12 mm1
β = 94.384 (1)°T = 296 K
V = 1633.2 (3) Å3Plate, light yellow
Z = 40.48 × 0.20 × 0.02 mm
Data collection top
Bruker D8 Venture
diffractometer with Photon 100 CMOS detector
3946 independent reflections
Radiation source: fine-focus sealed tube3193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3 pixels mm-1θmax = 28.2°, θmin = 2.0°
Sets of exposures each taken over 0.5° ω rotation scansh = 910
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1717
Tmin = 0.616, Tmax = 0.903l = 2121
3946 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.6207P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3946 reflectionsΔρmax = 0.65 e Å3
204 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5553 (5)0.3164 (3)0.9481 (2)0.0622 (9)
H10.50270.25250.95060.075*
C20.6695 (5)0.3481 (3)1.0130 (2)0.0691 (10)
H20.69330.30641.05780.083*
C30.7462 (5)0.4426 (3)1.0092 (2)0.0662 (9)
H30.82200.46641.05200.079*
C40.7095 (4)0.5017 (3)0.9414 (2)0.0591 (8)
H40.76090.56570.93760.071*
C50.5948 (4)0.4646 (2)0.87896 (18)0.0481 (7)
C60.5559 (4)0.5222 (2)0.80398 (18)0.0503 (7)
H60.59990.58790.79860.060*
C70.3276 (4)0.4766 (2)0.61592 (18)0.0488 (7)
C80.2989 (4)0.5342 (2)0.53845 (18)0.0498 (7)
C90.2074 (5)0.4925 (3)0.4719 (2)0.0635 (9)
H90.16090.42690.47320.076*
C100.1865 (5)0.5520 (3)0.4020 (2)0.0695 (10)
H100.12300.52710.35580.083*
C110.2590 (5)0.6460 (3)0.4019 (2)0.0692 (10)
H110.24610.68650.35580.083*
C120.3516 (6)0.6809 (3)0.4704 (2)0.0727 (11)
H120.40310.74530.46950.101 (15)*
N10.5174 (3)0.3727 (2)0.88258 (15)0.0496 (6)
N20.4609 (3)0.48064 (19)0.74667 (15)0.0473 (6)
N30.4243 (4)0.5284 (2)0.67483 (16)0.0508 (6)
H3N0.461 (5)0.590 (3)0.668 (2)0.061*
N40.3717 (5)0.6265 (2)0.53900 (18)0.0659 (8)
O10.2696 (3)0.39087 (18)0.62576 (14)0.0592 (6)
Cd10.32992 (3)0.32196 (2)0.76532 (2)0.05080 (8)
I1A0.4779 (3)0.1408 (2)0.7239 (2)0.0549 (3)0.75 (2)
I2A0.0093 (3)0.31832 (13)0.81000 (15)0.0555 (4)0.75 (2)
I1B0.4749 (10)0.1451 (7)0.7364 (9)0.0654 (16)0.25 (2)
I2B0.0012 (11)0.3249 (6)0.8180 (7)0.0787 (18)0.25 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.071 (2)0.060 (2)0.055 (2)0.0027 (17)0.0032 (17)0.0053 (16)
C20.073 (2)0.081 (3)0.053 (2)0.018 (2)0.0004 (17)0.0083 (18)
C30.058 (2)0.088 (3)0.0519 (19)0.0085 (19)0.0055 (15)0.0109 (18)
C40.0529 (18)0.065 (2)0.0587 (19)0.0021 (16)0.0016 (15)0.0105 (16)
C50.0423 (15)0.0520 (18)0.0500 (16)0.0055 (13)0.0039 (12)0.0044 (13)
C60.0490 (17)0.0468 (18)0.0551 (18)0.0015 (13)0.0048 (13)0.0003 (14)
C70.0480 (16)0.0503 (18)0.0485 (16)0.0069 (13)0.0062 (13)0.0016 (13)
C80.0491 (17)0.0503 (17)0.0502 (17)0.0049 (13)0.0059 (13)0.0020 (13)
C90.067 (2)0.065 (2)0.058 (2)0.0120 (17)0.0011 (16)0.0026 (17)
C100.071 (2)0.088 (3)0.0490 (19)0.004 (2)0.0041 (16)0.0038 (18)
C110.075 (2)0.077 (3)0.055 (2)0.006 (2)0.0017 (17)0.0150 (18)
C120.096 (3)0.058 (2)0.063 (2)0.003 (2)0.001 (2)0.0137 (18)
N10.0526 (15)0.0482 (15)0.0478 (14)0.0044 (11)0.0029 (11)0.0017 (11)
N20.0469 (14)0.0479 (15)0.0473 (13)0.0069 (11)0.0043 (11)0.0008 (11)
N30.0601 (16)0.0426 (14)0.0494 (14)0.0027 (12)0.0028 (12)0.0037 (11)
N40.088 (2)0.0536 (18)0.0547 (17)0.0011 (15)0.0024 (15)0.0027 (13)
O10.0695 (15)0.0508 (13)0.0565 (13)0.0077 (11)0.0013 (11)0.0046 (10)
Cd10.05478 (14)0.04400 (13)0.05349 (14)0.00171 (9)0.00328 (10)0.00142 (9)
I1A0.0610 (5)0.0468 (4)0.0568 (7)0.0081 (3)0.0034 (5)0.0055 (4)
I2A0.0516 (5)0.0512 (7)0.0641 (5)0.0071 (3)0.0069 (4)0.0103 (3)
I1B0.0736 (17)0.0486 (12)0.077 (4)0.0009 (11)0.0232 (18)0.0098 (15)
I2B0.065 (2)0.097 (3)0.077 (2)0.0126 (15)0.0233 (17)0.0117 (15)
Geometric parameters (Å, º) top
C1—N11.326 (4)C9—C101.396 (5)
C1—C21.389 (5)C9—H90.9300
C1—H10.9300C10—C111.350 (6)
C2—C31.372 (6)C10—H100.9300
C2—H20.9300C11—C121.365 (6)
C3—C41.376 (5)C11—H110.9300
C3—H30.9300C12—N41.341 (5)
C4—C51.384 (5)C12—H120.9300
C4—H40.9300N1—Cd12.407 (3)
C5—N11.343 (4)N2—N31.355 (4)
C5—C61.465 (4)N2—Cd12.336 (3)
C6—N21.268 (4)N3—H3N0.86 (4)
C6—H60.9300O1—Cd12.493 (2)
C7—O11.223 (4)Cd1—I1B2.626 (10)
C7—N31.355 (4)Cd1—I2B2.687 (6)
C7—C81.492 (4)Cd1—I2A2.7128 (19)
C8—N41.329 (4)Cd1—I1A2.736 (3)
C8—C91.370 (5)
N1—C1—C2123.2 (4)C12—C11—H11120.4
N1—C1—H1118.4N4—C12—C11122.9 (4)
C2—C1—H1118.4N4—C12—H12118.6
C3—C2—C1118.3 (4)C11—C12—H12118.6
C3—C2—H2120.8C1—N1—C5118.1 (3)
C1—C2—H2120.8C1—N1—Cd1125.6 (2)
C2—C3—C4119.2 (3)C5—N1—Cd1116.3 (2)
C2—C3—H3120.4C6—N2—N3121.6 (3)
C4—C3—H3120.4C6—N2—Cd1120.3 (2)
C3—C4—C5119.1 (4)N3—N2—Cd1118.0 (2)
C3—C4—H4120.5N2—N3—C7117.6 (3)
C5—C4—H4120.5N2—N3—H3N120 (2)
N1—C5—C4122.1 (3)C7—N3—H3N122 (2)
N1—C5—C6116.3 (3)C8—N4—C12117.4 (3)
C4—C5—C6121.6 (3)C7—O1—Cd1114.6 (2)
N2—C6—C5118.5 (3)N2—Cd1—N168.43 (9)
N2—C6—H6120.7N2—Cd1—O166.56 (8)
C5—C6—H6120.7N1—Cd1—O1134.63 (8)
O1—C7—N3122.9 (3)N2—Cd1—I1B125.4 (2)
O1—C7—C8123.5 (3)N1—Cd1—I1B99.6 (3)
N3—C7—C8113.6 (3)O1—Cd1—I1B101.6 (3)
N4—C8—C9123.5 (3)N2—Cd1—I2B116.02 (18)
N4—C8—C7115.1 (3)N1—Cd1—I2B103.4 (3)
C9—C8—C7121.4 (3)O1—Cd1—I2B100.9 (2)
C8—C9—C10117.5 (3)I1B—Cd1—I2B118.5 (2)
C8—C9—H9121.3N2—Cd1—I2A117.87 (7)
C10—C9—H9121.3N1—Cd1—I2A106.89 (9)
C11—C10—C9119.5 (4)O1—Cd1—I2A98.69 (7)
C11—C10—H10120.2N2—Cd1—I1A123.94 (9)
C9—C10—H10120.2N1—Cd1—I1A102.63 (9)
C10—C11—C12119.2 (4)O1—Cd1—I1A97.56 (9)
C10—C11—H11120.4I2A—Cd1—I1A117.57 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···I2Ai0.87 (4)3.04 (4)3.866 (3)161 (3)
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

We are grateful to the University of Tabriz Research Council for the financial support for this research.

Funding information

Funding for this research was provided by: University of Tabriz Research Council.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAfkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017a). CrystEngComm, 19, 1389–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationAfkhami, F. A., Khandar, A. A., White, J. M., Guerri, A., Ienco, A., Bryant, J. T., Mhesn, N. & Lampropoulos, C. (2017b). Inorg. Chim. Acta, 457, 150–159.  CrossRef CAS Google Scholar
First citationAfkhami, F. A., Krautscheid, H., Atioğlu, Z. & Akkurt, M. (2017c). Acta Cryst. E73, 28–30.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationAkkurt, M., Khandar, A. A., Tahir, M. N., Afkhami, F. A. & Yazdi, S. A. H. (2014). Acta Cryst. E70, m213–m214.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Khandar, A. A., Tahir, M. N., Yazdi, S. A. H. & Afkhami, F. A. (2012). Acta Cryst. E68, m842.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218–m219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, S.-Q., Zhu, M.-L., Lu, L.-P. & Gao, X.-L. (2006). Acta Cryst. C62, m183–m185.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds