research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (S)-sec-butyl­ammonium L-tartrate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Saint Mary's University, 923 Robie St., Halifax, NS, B3H 3C3, Canada
*Correspondence e-mail: kai.ylijoki@smu.ca

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 7 April 2017; accepted 10 April 2017; online 18 April 2017)

The title hydrated mol­ecular salt, C4H12N+·C4H5O6·H2O, was prepared by deprotonation of enanti­opure L-tartaric acid with racemic sec-butyl­amine in water. Only one enanti­omer was observed crystallographically, resulting from the combination of (S)-sec-butyl­amine with L-tartaric acid. The sec-butyl­ammonium moiety is disordered over two conformations related by rotation around the CH–CH2 bond; the refined occupancy ratio is 0.68 (1):0.32 (1). In the crystal, mol­ecules are linked through a network of O—H⋯O and N—H⋯O hydrogen-bonding inter­actions, between the ammonium H atoms, the tartrate hy­droxy H atoms, and the inter­stitial water, forming a three-dimensional supra­molecular structure.

1. Chemical context

Given that the two enanti­omers of chiral compounds can display significantly different reactivity in the presence of other chiral compounds (e.g., enzymatic reactions), the separation of racemic mixtures is an important process in chemical synthesis. Since enanti­omers have identical physical properties, they cannot be separated by standard physical means such as distillation, crystallization, or chromatography. One common method to overcome this issue is to convert the racemic compound into a mixture of diastereomers through reaction with an enanti­opure component (Fogassy et al., 2006[Fogassy, E., Nógrádi, M., Kozma, D., Egri, G., Pálovics, E. & Kiss, V. (2006). Org. Biomol. Chem. 4, 3011-3030.]). This method has been used for the resolution of amine enanti­omers by protonation with chiral tartaric acid to produce diastereomeric salts. Examples include resolution of α-phenyl­ethyl­amine (Ault 1965[Ault, A. (1965). J. Chem. Educ. 42, 269.]; Kokila et al., 2002[Kokila, L., Cai, S. & Chen, K. (2002). Chin. J. Chem. Eng. 10, 244-248.]), N-methyl­amphetamines (Kmecz et al., 2004[Kmecz, I., Simándi, B., Székely, E. & Fogassy, E. (2004). Tetrahedron Asymmetry, 15, 1841-1845.]), 2-(benzyl­amino)-4-oxo-4-phenyl­butano­ate (Berkeš et al., 2003[Berkeš, D., Lopuch, J., Proksa, B. & Považanec, F. (2003). Chem. Pap. 57, 350-354.]), 3-amino­butanol (Yatcherla et al., 2015[Yatcherla, S. R., Islam, A., Nageshwar, D. & Hari Babu, B. (2015). Heteroletters, 5, 241-244.]), aminona­phthols (Periasamy et al., 2009[Periasamy, M., Anwar, S. & Reddy, M. N. (2009). Indian J. Chem. Sect. B, 48, 1261-1273.]), and serotonin and dopamine antagonists (Campiani et al., 2002[Campiani, G., Butini, S., Gemma, S., Nacci, V., Fattorusso, C., Catalanotti, B., Giorgi, G., Cagnotto, A., Goegan, M., Mennini, T., Minetti, P., Di Cesare, M. A., Mastroianni, D., Scafetta, N., Galletti, B., Stasi, M. A., Castorina, M., Pacifici, L., Ghirardi, O., Tinti, O. & Carminati, P. (2002). J. Med. Chem. 45, 344-359.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title hydrated mol­ecular salt is shown in Fig. 1[link]. The salt crystallized as a single enanti­omer, consisting of an (S)-sec-butyl ammonium cation, the L-tartrate anion, and one mol­ecule of water in the asymmetric unit. The Flack parameter [–2.7 (8)] was not of use in determining the absolute configuration of the sec-butyl­amine in the crystal. The absolute configuration of the (S)-sec-butyl ammonium cation is therefore based on the known absolute configuration of the L-tartaric acid used during compound preparation. The final structure is disordered, with the sec-butyl ammonium moiety taking on two different rotamers about the C2–C3 axis [refined occupancy ratio is 0.68 (1):0.32 (1)]. The major component takes on a conformation where the C4 methyl group and N9 ammonium are in a gauche relationship (Fig. 1[link]a), while the minor component places the C4A methyl group anti­periplanar to the N9A ammonium (Fig. 1[link]b). The C—C bond lengths in the amine and tartrate units average 1.523 (11) Å [1.516 (22) Å for the minor component of the disorder] and 1.532 (5) Å, respectively. The C—N bonds of the two components of the disorder average 1.498 (17) Å. The tartrate C—OH bonds average 1.411 (4) Å, while the C—O bonds of the carboxyl moieties average 1.257 (4) Å for the one involved in hydrogen bonding with the amine, and 1.258 (4) Å for the other. An intra­molecular hydrogen bond [2.00 (3) Å] occurs with O12 acting as a hydrogen-bond donor to O11.

[Figure 1]
Figure 1
The mol­ecular structure of the title hydrated mol­ecular salt, showing (a) the major and (b) the minor components of the disordered sec-butyl­ammonium moiety. Displacement ellipsoids are drawn at the 50% probability level. Red lines indicate the hydrogen bonds present within the asymmetric unit (see Table 1[link]).

3. Supra­molecular features

The supra­molecular structure of the crystal consists of a network of inter­molecular O—H⋯O and N—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]). Within the asymmetric unit, the N9—H9A atom of the sec-butyl ammonium cation acts as a hydrogen-bond donor to O11 of the tartrate anion [1.89 (2) Å], and the tartrate O13 donates a hydrogen bond to O16 of water [1.83 (3) Å]. The water in turn acts as a hydrogen-bond donor to O10 [2.01 (3) Å] and O15 [1.93 (4) Å] of two adjacent symmetry-related mol­ecules. Three additional hydrogen bonds are formed from N9, with N9—H9B donating to O12 of an adjacent mol­ecule [1.97 (3) Å], and N9—H9C donating to both O13 [2.16 (4) Å] and O15 [2.20 (4) Å] of a second adjacent mol­ecule. Finally, O14 donates a hydrogen bond to O10 of an additional symmetry-related mol­ecule [1.58 (5) Å]. A view of the crystal packing reveals the amine, tartrate, and water mol­ecules form columns when viewed down the c axis (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O11 0.90 (3) 2.00 (3) 2.602 (2) 123 (3)
O13—H13⋯O16 0.85 (3) 1.83 (3) 2.662 (2) 167 (3)
O14—H14⋯O10i 0.93 (4) 1.58 (5) 2.499 (2) 171 (5)
O16—H16A⋯O15ii 0.87 (4) 1.93 (4) 2.791 (2) 169 (4)
O16—H16B⋯O10iii 0.83 (4) 2.01 (3) 2.822 (2) 167 (3)
N9—H9A⋯O11 0.93 (2) 1.89 (2) 2.803 (9) 167 (4)
N9—H9B⋯O12ii 0.91 (2) 1.97 (3) 2.869 (11) 169 (4)
N9—H9C⋯O13iv 0.92 (2) 2.16 (4) 2.922 (13) 140 (5)
N9—H9C⋯O15iv 0.92 (2) 2.20 (4) 3.001 (12) 145 (5)
N9A—H9AA⋯O11 0.91 (3) 1.87 (4) 2.76 (2) 164 (8)
N9A—H9AB⋯O13iv 0.90 (3) 1.96 (6) 2.79 (3) 151 (9)
N9A—H9AB⋯O15iv 0.90 (3) 2.21 (8) 2.83 (3) 126 (6)
N9A—H9AC⋯O12ii 0.91 (3) 1.99 (5) 2.81 (3) 150 (7)
Symmetry codes: (i) x, y, z-1; (ii) x, y, z+1; (iii) -x+2, -y+1, z; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
A view of the crystal packing of the title hydrated mol­ecular salt, viewed along the c axis (major component of the disorder only). Red dashed lines indicate the inter­molecular hydrogen-bonding network (see Table 1[link]). Displacement ellipsoids are drawn at the 50% probability level.

4. Database survey

The Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) does not contain any other examples of simple secondary alkyl ammonium tartrate compounds. Two primary alkyl ammonium compounds have been reported: methyl­ammonium L-tartrate (XOJMOA; Callear et al., 2008a[Callear, S. K., Hursthouse, M. B. & Threllfall, T. L. (2008a). University of Southampton, Crystal Structure Report Archive, 577.]) and n-butyl ammonium tartrate monohydrate (XOJDIL; Callear et al., 2008b[Callear, S. K., Hursthouse, M. B. & Threllfall, T. L. (2008b). University of Southampton, Crystal Structure Report Archive, 582.]). Multiple stereoisomers of the phenyl­ethyl­ammonium tartrate salt have also been reported, viz. BUSHED (Mei et al., 2010[Mei, L., Jie, S. & Ying, J. (2010). Res. Chem. Intermed. 36, 227-236.]), JADTUD (Molins et al., 1989[Molins, E., Miravitlles, C., López-Calahorra, F., Castells, J. & Raventós, J. (1989). Acta Cryst. C45, 104-106.]), QAMYIN (Turkington et al., 2005[Turkington, D. E., MacLean, E. J., Lough, A. J., Ferguson, G. & Glidewell, C. (2005). Acta Cryst. B61, 103-114.]), along with the related napthylethyl ammonium tartrate (QAPTEG; Gül & Nelson, 1999[Gül, N. & Nelson, J. H. (1999). J. Mol. Struct. 475, 121-130.]).

5. Synthesis and crystallization

The title compound was prepared via a modification to a previously published procedure (Helmkamp & Johnson, 1983[Helmkamp, G. K. & Johnson, H. W. Jr (1983). Selected Experiments in Organic Chemistry, 3rd ed. New York: W. H. Freeman and Company.]). Racemic sec-butyl­amine (23.7 g, 17.2 ml, 324.0 mmol) was added to 40 ml of water and stirred to ensure homogeneity. While stirring, L-tartaric acid (50.0 g, 333.1 mmol) was slowly added. The solution was covered and allowed to stand at ambient temperature. After 24 h, crystal formation was evident. The crystallization process was allowed to continue undisturbed for one week, at which point a crystal for diffraction analysis was selected directly from the reaction mixture without further purification or isolation. The crystals can be isolated by vacuum filtration to yield a white crystalline solid (33.5 g, 42%).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. The H atoms on the N and O atoms were located in a difference-Fourier map and freely refined. The alkyl H atoms were included at geometrically idealized positions (C—H = 0.98–1.00 Å) and treated as riding with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms. The sec-butyl ammonium moiety displays a twofold disorder arising from two different rotamers being present that is best described as a 0.68 (1):0.32 (1) ratio of the two possible conformations. In the final cycles of refinement SAME restraints were applied to the two components of the disordered sec-butyl ammonium moiety and DFIX restraints were applied to the N—H bonds [N—H = 0.91 (2) Å] and the ammonium H⋯H distances [H⋯H = 1.50 (2) Å], to improve the refinement and geometry.

Table 2
Experimental details

Crystal data
Chemical formula C4H12N+·C4H5O6·H2O
Mr 241.24
Crystal system, space group Orthorhombic, P21212
Temperature (K) 125
a, b, c (Å) 11.0921 (10), 14.8876 (14), 7.2070 (7)
V3) 1190.13 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.21 × 0.09 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.567, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9652, 2925, 2613
Rint 0.067
(sin θ/λ)max−1) 0.680
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.03
No. of reflections 2925
No. of parameters 236
No. of restraints 20
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Crystal Impact, 2014[Crystal Impact (2014). DIAMOND. Crystal Impact, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Crystal Impact, 2014); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(S)-sec-Butylammonium L-tartrate monohydrate top
Crystal data top
C4H12N+·C4H5O6·H2ODx = 1.346 Mg m3
Mr = 241.24Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 5745 reflections
a = 11.0921 (10) Åθ = 2.3–28.6°
b = 14.8876 (14) ŵ = 0.12 mm1
c = 7.2070 (7) ÅT = 125 K
V = 1190.13 (19) Å3Needle, clear light colourless
Z = 40.21 × 0.09 × 0.04 mm
F(000) = 520
Data collection top
Bruker APEXII CCD
diffractometer
2613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
φ and ω scansθmax = 28.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.567, Tmax = 0.746k = 1920
9652 measured reflectionsl = 99
2925 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.1359P]
where P = (Fo2 + 2Fc2)/3
2925 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.30 e Å3
20 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O100.78822 (15)0.45123 (9)0.6188 (2)0.0219 (3)
O110.72627 (15)0.30780 (10)0.6134 (2)0.0250 (4)
O120.72284 (14)0.29621 (10)0.2532 (2)0.0225 (3)
H120.702 (3)0.264 (2)0.353 (4)0.047 (9)*
O130.97215 (14)0.34543 (11)0.3063 (2)0.0232 (4)
H131.001 (3)0.358 (2)0.412 (4)0.041 (9)*
O140.78763 (14)0.44450 (10)0.0347 (2)0.0212 (3)
H140.792 (4)0.442 (3)0.163 (6)0.092 (15)*
O150.96848 (16)0.37910 (14)0.0496 (3)0.0382 (5)
C50.75823 (18)0.37845 (14)0.5374 (3)0.0177 (4)
C60.75836 (18)0.38090 (14)0.3251 (3)0.0181 (4)
H60.6988770.4271170.2832100.022*
C70.88300 (18)0.40657 (13)0.2505 (3)0.0184 (4)
H70.9045880.4675670.2981690.022*
C80.88361 (19)0.40887 (13)0.0376 (3)0.0189 (4)
O161.09484 (15)0.38045 (11)0.6154 (2)0.0239 (4)
H16A1.048 (3)0.383 (3)0.713 (6)0.057 (11)*
H16B1.139 (3)0.425 (2)0.614 (5)0.049 (10)*
C10.4453 (5)0.3844 (4)0.7178 (9)0.0343 (12)0.683 (8)
H1A0.4096480.3280620.6737320.052*0.683 (8)
H1B0.5139090.4004090.6387530.052*0.683 (8)
H1C0.3847590.4322490.7127190.052*0.683 (8)
C20.4888 (4)0.3725 (4)0.9196 (8)0.0251 (11)0.683 (8)
H20.5321250.4283490.9579900.030*0.683 (8)
C30.3852 (3)0.3571 (3)1.0525 (6)0.0325 (11)0.683 (8)
H3A0.3237960.4042271.0315520.039*0.683 (8)
H3B0.3475760.2984781.0232350.039*0.683 (8)
C40.4201 (4)0.3577 (3)1.2555 (6)0.0386 (12)0.683 (8)
H4A0.4696750.3048461.2828530.058*0.683 (8)
H4B0.3470900.3562921.3320280.058*0.683 (8)
H4C0.4660330.4123061.2829610.058*0.683 (8)
N90.5762 (8)0.2958 (8)0.9253 (15)0.0176 (14)0.683 (8)
H9C0.544 (7)0.240 (3)0.909 (7)0.07 (2)*0.683 (8)
H9A0.634 (3)0.305 (3)0.834 (5)0.015 (11)*0.683 (8)
H9B0.615 (4)0.300 (3)1.037 (4)0.030 (12)*0.683 (8)
C1A0.4346 (13)0.3806 (9)0.8007 (19)0.040 (3)0.317 (8)
H1AA0.3879490.3310550.7473480.060*0.317 (8)
H1AB0.4945910.4012060.7103390.060*0.317 (8)
H1AC0.3802460.4303370.8316450.060*0.317 (8)
C2A0.4980 (13)0.3487 (9)0.9750 (18)0.034 (3)0.317 (8)
H2A0.5442710.4009261.0254130.041*0.317 (8)
C3A0.4163 (8)0.3153 (6)1.1293 (12)0.033 (2)0.317 (8)
H3AA0.3652090.2664241.0795280.039*0.317 (8)
H3AB0.4672130.2892961.2285550.039*0.317 (8)
C4A0.3352 (11)0.3859 (7)1.2147 (17)0.058 (4)0.317 (8)
H4AA0.2818800.4106071.1189910.088*0.317 (8)
H4AB0.3846000.4341911.2671140.088*0.317 (8)
H4AC0.2865380.3585571.3131440.088*0.317 (8)
N9A0.588 (2)0.2777 (18)0.925 (4)0.022 (4)0.317 (8)
H9AA0.645 (7)0.290 (8)0.837 (10)0.027*0.317 (8)
H9AB0.535 (8)0.236 (6)0.885 (12)0.027*0.317 (8)
H9AC0.623 (7)0.263 (6)1.034 (7)0.027*0.317 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O100.0275 (8)0.0241 (7)0.0140 (7)0.0008 (6)0.0003 (6)0.0008 (6)
O110.0334 (9)0.0258 (7)0.0157 (7)0.0013 (7)0.0032 (7)0.0015 (6)
O120.0247 (8)0.0274 (7)0.0153 (7)0.0058 (6)0.0008 (6)0.0013 (6)
O130.0196 (8)0.0349 (9)0.0150 (7)0.0060 (6)0.0035 (6)0.0035 (6)
O140.0217 (8)0.0293 (7)0.0127 (7)0.0025 (6)0.0002 (6)0.0004 (6)
O150.0310 (9)0.0638 (12)0.0197 (8)0.0206 (9)0.0083 (8)0.0092 (8)
C50.0153 (9)0.0247 (9)0.0132 (9)0.0035 (7)0.0017 (7)0.0002 (8)
C60.0175 (10)0.0236 (9)0.0133 (9)0.0003 (8)0.0001 (7)0.0009 (7)
C70.0171 (10)0.0232 (9)0.0151 (10)0.0000 (8)0.0009 (8)0.0001 (8)
C80.0199 (10)0.0215 (9)0.0153 (9)0.0010 (8)0.0015 (8)0.0008 (8)
O160.0232 (8)0.0309 (8)0.0178 (8)0.0013 (7)0.0002 (7)0.0037 (7)
C10.026 (2)0.037 (2)0.039 (3)0.0030 (17)0.009 (2)0.004 (3)
C20.0195 (19)0.023 (3)0.033 (3)0.0017 (17)0.000 (2)0.000 (2)
C30.0249 (18)0.029 (2)0.044 (2)0.0039 (15)0.0006 (17)0.0014 (18)
C40.031 (2)0.041 (2)0.044 (2)0.0027 (17)0.0089 (18)0.0054 (19)
N90.015 (3)0.021 (4)0.017 (2)0.0038 (19)0.0024 (18)0.001 (2)
C1A0.050 (7)0.030 (5)0.040 (7)0.001 (4)0.007 (8)0.002 (6)
C2A0.043 (6)0.033 (7)0.025 (6)0.005 (5)0.001 (5)0.010 (4)
C3A0.030 (4)0.038 (5)0.030 (5)0.007 (4)0.010 (4)0.000 (4)
C4A0.065 (8)0.048 (6)0.063 (7)0.027 (5)0.029 (6)0.015 (5)
N9A0.024 (6)0.021 (9)0.021 (5)0.010 (4)0.003 (4)0.003 (5)
Geometric parameters (Å, º) top
O10—C51.276 (3)C3—H3B0.9900
O11—C51.238 (3)C3—C41.513 (6)
O12—H120.90 (3)C4—H4A0.9800
O12—C61.419 (2)C4—H4B0.9800
O13—H130.85 (3)C4—H4C0.9800
O13—C71.403 (3)N9—H9C0.92 (2)
O14—H140.93 (4)N9—H9A0.93 (2)
O14—C81.299 (3)N9—H9B0.91 (2)
O15—C81.216 (3)C1A—H1AA0.9800
C5—C61.530 (3)C1A—H1AB0.9800
C6—H61.0000C1A—H1AC0.9800
C6—C71.532 (3)C1A—C2A1.517 (14)
C7—H71.0000C2A—H2A1.0000
C7—C81.535 (3)C2A—C3A1.518 (12)
O16—H16A0.87 (4)C2A—N9A1.497 (15)
O16—H16B0.83 (4)C3A—H3AA0.9900
C1—H1A0.9800C3A—H3AB0.9900
C1—H1B0.9800C3A—C4A1.514 (12)
C1—H1C0.9800C4A—H4AA0.9800
C1—C21.542 (7)C4A—H4AB0.9800
C2—H21.0000C4A—H4AC0.9800
C2—C31.513 (6)N9A—H9AA0.91 (3)
C2—N91.498 (8)N9A—H9AB0.90 (3)
C3—H3A0.9900N9A—H9AC0.91 (3)
C6—O12—H12105 (2)C3—C4—H4B109.5
C7—O13—H13112 (2)C3—C4—H4C109.5
C8—O14—H14110 (3)H4A—C4—H4B109.5
O10—C5—C6116.04 (18)H4A—C4—H4C109.5
O11—C5—O10126.33 (19)H4B—C4—H4C109.5
O11—C5—C6117.59 (18)C2—N9—H9C116 (5)
O12—C6—C5110.11 (17)C2—N9—H9A108 (3)
O12—C6—H6108.5C2—N9—H9B106 (3)
O12—C6—C7110.12 (16)H9C—N9—H9A108 (3)
C5—C6—H6108.5H9C—N9—H9B111 (4)
C5—C6—C7110.96 (17)H9A—N9—H9B107 (3)
C7—C6—H6108.5H1AA—C1A—H1AB109.5
O13—C7—C6111.94 (17)H1AA—C1A—H1AC109.5
O13—C7—H7108.8H1AB—C1A—H1AC109.5
O13—C7—C8107.33 (16)C2A—C1A—H1AA109.5
C6—C7—H7108.8C2A—C1A—H1AB109.5
C6—C7—C8111.13 (17)C2A—C1A—H1AC109.5
C8—C7—H7108.8C1A—C2A—H2A107.1
O14—C8—C7114.02 (18)C1A—C2A—C3A115.6 (11)
O15—C8—O14125.2 (2)C3A—C2A—H2A107.1
O15—C8—C7120.83 (19)N9A—C2A—C1A109.4 (13)
H16A—O16—H16B109 (3)N9A—C2A—H2A107.1
H1A—C1—H1B109.5N9A—C2A—C3A110.0 (12)
H1A—C1—H1C109.5C2A—C3A—H3AA108.5
H1B—C1—H1C109.5C2A—C3A—H3AB108.5
C2—C1—H1A109.5H3AA—C3A—H3AB107.5
C2—C1—H1B109.5C4A—C3A—C2A115.2 (8)
C2—C1—H1C109.5C4A—C3A—H3AA108.5
C1—C2—H2108.4C4A—C3A—H3AB108.5
C3—C2—C1112.1 (4)C3A—C4A—H4AA109.5
C3—C2—H2108.4C3A—C4A—H4AB109.5
N9—C2—C1108.4 (5)C3A—C4A—H4AC109.5
N9—C2—H2108.4H4AA—C4A—H4AB109.5
N9—C2—C3111.0 (5)H4AA—C4A—H4AC109.5
C2—C3—H3A108.6H4AB—C4A—H4AC109.5
C2—C3—H3B108.6C2A—N9A—H9AA119 (8)
H3A—C3—H3B107.6C2A—N9A—H9AB98 (8)
C4—C3—C2114.7 (4)C2A—N9A—H9AC104 (6)
C4—C3—H3A108.6H9AA—N9A—H9AB111 (4)
C4—C3—H3B108.6H9AA—N9A—H9AC111 (4)
C3—C4—H4A109.5H9AB—N9A—H9AC112 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12···O110.90 (3)2.00 (3)2.602 (2)123 (3)
O13—H13···O160.85 (3)1.83 (3)2.662 (2)167 (3)
O14—H14···O10i0.93 (4)1.58 (5)2.499 (2)171 (5)
O16—H16A···O15ii0.87 (4)1.93 (4)2.791 (2)169 (4)
O16—H16B···O10iii0.83 (4)2.01 (3)2.822 (2)167 (3)
N9—H9A···O110.93 (2)1.89 (2)2.803 (9)167 (4)
N9—H9B···O12ii0.91 (2)1.97 (3)2.869 (11)169 (4)
N9—H9C···O13iv0.92 (2)2.16 (4)2.922 (13)140 (5)
N9—H9C···O15iv0.92 (2)2.20 (4)3.001 (12)145 (5)
N9A—H9AA···O110.91 (3)1.87 (4)2.76 (2)164 (8)
N9A—H9AB···O13iv0.90 (3)1.96 (6)2.79 (3)151 (9)
N9A—H9AB···O15iv0.90 (3)2.21 (8)2.83 (3)126 (6)
N9A—H9AC···O12ii0.91 (3)1.99 (5)2.81 (3)150 (7)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+2, y+1, z; (iv) x1/2, y+1/2, z+1.
 

Acknowledgements

Financial support from the Canada Foundation for Innovation (CFI), the Faculties of Science and Graduate Studies and Research of Saint Mary's University, and the SMUworks program (SMUworks Summer 2016 Grant) is gratefully acknowledged. The authors thank Dr Katherine N. Robertson for many helpful discussions during the preparation of this manuscript.

Funding information

Funding for this research was provided by: Canada Foundation for Innovation; Saint Mary's University SMUworks Program; Saint Mary's University Faculty of Science; Saint Mary's University Faculty of Graduate Studies and Research.

References

First citationAult, A. (1965). J. Chem. Educ. 42, 269.  CrossRef Google Scholar
First citationBerkeš, D., Lopuch, J., Proksa, B. & Považanec, F. (2003). Chem. Pap. 57, 350–354.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCallear, S. K., Hursthouse, M. B. & Threllfall, T. L. (2008a). University of Southampton, Crystal Structure Report Archive, 577.  Google Scholar
First citationCallear, S. K., Hursthouse, M. B. & Threllfall, T. L. (2008b). University of Southampton, Crystal Structure Report Archive, 582.  Google Scholar
First citationCampiani, G., Butini, S., Gemma, S., Nacci, V., Fattorusso, C., Catalanotti, B., Giorgi, G., Cagnotto, A., Goegan, M., Mennini, T., Minetti, P., Di Cesare, M. A., Mastroianni, D., Scafetta, N., Galletti, B., Stasi, M. A., Castorina, M., Pacifici, L., Ghirardi, O., Tinti, O. & Carminati, P. (2002). J. Med. Chem. 45, 344–359.  CSD CrossRef PubMed CAS Google Scholar
First citationCrystal Impact (2014). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFogassy, E., Nógrádi, M., Kozma, D., Egri, G., Pálovics, E. & Kiss, V. (2006). Org. Biomol. Chem. 4, 3011–3030.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGül, N. & Nelson, J. H. (1999). J. Mol. Struct. 475, 121–130.  Google Scholar
First citationHelmkamp, G. K. & Johnson, H. W. Jr (1983). Selected Experiments in Organic Chemistry, 3rd ed. New York: W. H. Freeman and Company.  Google Scholar
First citationKmecz, I., Simándi, B., Székely, E. & Fogassy, E. (2004). Tetrahedron Asymmetry, 15, 1841–1845.  CrossRef CAS Google Scholar
First citationKokila, L., Cai, S. & Chen, K. (2002). Chin. J. Chem. Eng. 10, 244–248.  CAS Google Scholar
First citationMei, L., Jie, S. & Ying, J. (2010). Res. Chem. Intermed. 36, 227–236.  CSD CrossRef CAS Google Scholar
First citationMolins, E., Miravitlles, C., López-Calahorra, F., Castells, J. & Raventós, J. (1989). Acta Cryst. C45, 104–106.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPeriasamy, M., Anwar, S. & Reddy, M. N. (2009). Indian J. Chem. Sect. B, 48, 1261–1273.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurkington, D. E., MacLean, E. J., Lough, A. J., Ferguson, G. & Glidewell, C. (2005). Acta Cryst. B61, 103–114.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYatcherla, S. R., Islam, A., Nageshwar, D. & Hari Babu, B. (2015). Heteroletters, 5, 241–244.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds