research communications
S)-sec-butylammonium L-tartrate monohydrate
of (aDepartment of Chemistry, Saint Mary's University, 923 Robie St., Halifax, NS, B3H 3C3, Canada
*Correspondence e-mail: kai.ylijoki@smu.ca
The title hydrated molecular salt, C4H12N+·C4H5O6−·H2O, was prepared by deprotonation of enantiopure L-tartaric acid with racemic sec-butylamine in water. Only one enantiomer was observed crystallographically, resulting from the combination of (S)-sec-butylamine with L-tartaric acid. The sec-butylammonium moiety is disordered over two conformations related by rotation around the CH–CH2 bond; the refined occupancy ratio is 0.68 (1):0.32 (1). In the crystal, molecules are linked through a network of O—H⋯O and N—H⋯O hydrogen-bonding interactions, between the ammonium H atoms, the tartrate hydroxy H atoms, and the interstitial water, forming a three-dimensional supramolecular structure.
Keywords: crystal structure; sec-butylamine; L-tartaric acid; chiral resolution; monohydrate; hydrogen bonding.
CCDC reference: 1543331
1. Chemical context
Given that the two enantiomers of chiral compounds can display significantly different reactivity in the presence of other chiral compounds (e.g., enzymatic reactions), the separation of racemic mixtures is an important process in chemical synthesis. Since enantiomers have identical physical properties, they cannot be separated by standard physical means such as distillation, crystallization, or One common method to overcome this issue is to convert the into a mixture of through reaction with an enantiopure component (Fogassy et al., 2006). This method has been used for the resolution of amine enantiomers by protonation with chiral tartaric acid to produce diastereomeric salts. Examples include resolution of α-phenylethylamine (Ault 1965; Kokila et al., 2002), N-methylamphetamines (Kmecz et al., 2004), 2-(benzylamino)-4-oxo-4-phenylbutanoate (Berkeš et al., 2003), 3-aminobutanol (Yatcherla et al., 2015), aminonaphthols (Periasamy et al., 2009), and serotonin and dopamine antagonists (Campiani et al., 2002).
2. Structural commentary
The molecular structure of the title hydrated molecular salt is shown in Fig. 1. The salt crystallized as a single enantiomer, consisting of an (S)-sec-butyl ammonium cation, the L-tartrate anion, and one molecule of water in the The [–2.7 (8)] was not of use in determining the of the sec-butylamine in the crystal. The of the (S)-sec-butyl ammonium cation is therefore based on the known of the L-tartaric acid used during compound preparation. The final structure is disordered, with the sec-butyl ammonium moiety taking on two different rotamers about the C2–C3 axis [refined occupancy ratio is 0.68 (1):0.32 (1)]. The major component takes on a conformation where the C4 methyl group and N9 ammonium are in a gauche relationship (Fig. 1a), while the minor component places the C4A methyl group antiperiplanar to the N9A ammonium (Fig. 1b). The C—C bond lengths in the amine and tartrate units average 1.523 (11) Å [1.516 (22) Å for the minor component of the disorder] and 1.532 (5) Å, respectively. The C—N bonds of the two components of the disorder average 1.498 (17) Å. The tartrate C—OH bonds average 1.411 (4) Å, while the C—O bonds of the carboxyl moieties average 1.257 (4) Å for the one involved in hydrogen bonding with the amine, and 1.258 (4) Å for the other. An intramolecular hydrogen bond [2.00 (3) Å] occurs with O12 acting as a hydrogen-bond donor to O11.
3. Supramolecular features
The supramolecular structure of the crystal consists of a network of intermolecular O—H⋯O and N—H⋯O hydrogen bonds (Table 1, Fig. 2). Within the the N9—H9A atom of the sec-butyl ammonium cation acts as a hydrogen-bond donor to O11 of the tartrate anion [1.89 (2) Å], and the tartrate O13 donates a hydrogen bond to O16 of water [1.83 (3) Å]. The water in turn acts as a hydrogen-bond donor to O10 [2.01 (3) Å] and O15 [1.93 (4) Å] of two adjacent symmetry-related molecules. Three additional hydrogen bonds are formed from N9, with N9—H9B donating to O12 of an adjacent molecule [1.97 (3) Å], and N9—H9C donating to both O13 [2.16 (4) Å] and O15 [2.20 (4) Å] of a second adjacent molecule. Finally, O14 donates a hydrogen bond to O10 of an additional symmetry-related molecule [1.58 (5) Å]. A view of the crystal packing reveals the amine, tartrate, and water molecules form columns when viewed down the c axis (Fig. 2).
4. Database survey
The Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016) does not contain any other examples of simple secondary alkyl ammonium tartrate compounds. Two primary alkyl have been reported: methylammonium L-tartrate (XOJMOA; Callear et al., 2008a) and n-butyl ammonium tartrate monohydrate (XOJDIL; Callear et al., 2008b). Multiple of the phenylethylammonium tartrate salt have also been reported, viz. BUSHED (Mei et al., 2010), JADTUD (Molins et al., 1989), QAMYIN (Turkington et al., 2005), along with the related napthylethyl ammonium tartrate (QAPTEG; Gül & Nelson, 1999).
5. Synthesis and crystallization
The title compound was prepared via a modification to a previously published procedure (Helmkamp & Johnson, 1983). Racemic sec-butylamine (23.7 g, 17.2 ml, 324.0 mmol) was added to 40 ml of water and stirred to ensure While stirring, L-tartaric acid (50.0 g, 333.1 mmol) was slowly added. The solution was covered and allowed to stand at ambient temperature. After 24 h, crystal formation was evident. The crystallization process was allowed to continue undisturbed for one week, at which point a crystal for was selected directly from the reaction mixture without further purification or isolation. The crystals can be isolated by vacuum filtration to yield a white crystalline solid (33.5 g, 42%).
6. Refinement
Crystal data, data collection, and structure . The H atoms on the N and O atoms were located in a difference-Fourier map and freely refined. The alkyl H atoms were included at geometrically idealized positions (C—H = 0.98–1.00 Å) and treated as riding with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The sec-butyl ammonium moiety displays a twofold disorder arising from two different rotamers being present that is best described as a 0.68 (1):0.32 (1) ratio of the two possible conformations. In the final cycles of SAME restraints were applied to the two components of the disordered sec-butyl ammonium moiety and DFIX restraints were applied to the N—H bonds [N—H = 0.91 (2) Å] and the ammonium H⋯H distances [H⋯H = 1.50 (2) Å], to improve the and geometry.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1543331
https://doi.org/10.1107/S2056989017005448/su5364sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017005448/su5364Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017005448/su5364Isup3.cml
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Crystal Impact, 2014); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C4H12N+·C4H5O6−·H2O | Dx = 1.346 Mg m−3 |
Mr = 241.24 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P21212 | Cell parameters from 5745 reflections |
a = 11.0921 (10) Å | θ = 2.3–28.6° |
b = 14.8876 (14) Å | µ = 0.12 mm−1 |
c = 7.2070 (7) Å | T = 125 K |
V = 1190.13 (19) Å3 | Needle, clear light colourless |
Z = 4 | 0.21 × 0.09 × 0.04 mm |
F(000) = 520 |
Bruker APEXII CCD diffractometer | 2613 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.067 |
φ and ω scans | θmax = 28.9°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −14→14 |
Tmin = 0.567, Tmax = 0.746 | k = −19→20 |
9652 measured reflections | l = −9→9 |
2925 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: mixed |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0447P)2 + 0.1359P] where P = (Fo2 + 2Fc2)/3 |
2925 reflections | (Δ/σ)max < 0.001 |
236 parameters | Δρmax = 0.30 e Å−3 |
20 restraints | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O10 | 0.78822 (15) | 0.45123 (9) | 0.6188 (2) | 0.0219 (3) | |
O11 | 0.72627 (15) | 0.30780 (10) | 0.6134 (2) | 0.0250 (4) | |
O12 | 0.72284 (14) | 0.29621 (10) | 0.2532 (2) | 0.0225 (3) | |
H12 | 0.702 (3) | 0.264 (2) | 0.353 (4) | 0.047 (9)* | |
O13 | 0.97215 (14) | 0.34543 (11) | 0.3063 (2) | 0.0232 (4) | |
H13 | 1.001 (3) | 0.358 (2) | 0.412 (4) | 0.041 (9)* | |
O14 | 0.78763 (14) | 0.44450 (10) | −0.0347 (2) | 0.0212 (3) | |
H14 | 0.792 (4) | 0.442 (3) | −0.163 (6) | 0.092 (15)* | |
O15 | 0.96848 (16) | 0.37910 (14) | −0.0496 (3) | 0.0382 (5) | |
C5 | 0.75823 (18) | 0.37845 (14) | 0.5374 (3) | 0.0177 (4) | |
C6 | 0.75836 (18) | 0.38090 (14) | 0.3251 (3) | 0.0181 (4) | |
H6 | 0.698877 | 0.427117 | 0.283210 | 0.022* | |
C7 | 0.88300 (18) | 0.40657 (13) | 0.2505 (3) | 0.0184 (4) | |
H7 | 0.904588 | 0.467567 | 0.298169 | 0.022* | |
C8 | 0.88361 (19) | 0.40887 (13) | 0.0376 (3) | 0.0189 (4) | |
O16 | 1.09484 (15) | 0.38045 (11) | 0.6154 (2) | 0.0239 (4) | |
H16A | 1.048 (3) | 0.383 (3) | 0.713 (6) | 0.057 (11)* | |
H16B | 1.139 (3) | 0.425 (2) | 0.614 (5) | 0.049 (10)* | |
C1 | 0.4453 (5) | 0.3844 (4) | 0.7178 (9) | 0.0343 (12) | 0.683 (8) |
H1A | 0.409648 | 0.328062 | 0.673732 | 0.052* | 0.683 (8) |
H1B | 0.513909 | 0.400409 | 0.638753 | 0.052* | 0.683 (8) |
H1C | 0.384759 | 0.432249 | 0.712719 | 0.052* | 0.683 (8) |
C2 | 0.4888 (4) | 0.3725 (4) | 0.9196 (8) | 0.0251 (11) | 0.683 (8) |
H2 | 0.532125 | 0.428349 | 0.957990 | 0.030* | 0.683 (8) |
C3 | 0.3852 (3) | 0.3571 (3) | 1.0525 (6) | 0.0325 (11) | 0.683 (8) |
H3A | 0.323796 | 0.404227 | 1.031552 | 0.039* | 0.683 (8) |
H3B | 0.347576 | 0.298478 | 1.023235 | 0.039* | 0.683 (8) |
C4 | 0.4201 (4) | 0.3577 (3) | 1.2555 (6) | 0.0386 (12) | 0.683 (8) |
H4A | 0.469675 | 0.304846 | 1.282853 | 0.058* | 0.683 (8) |
H4B | 0.347090 | 0.356292 | 1.332028 | 0.058* | 0.683 (8) |
H4C | 0.466033 | 0.412306 | 1.282961 | 0.058* | 0.683 (8) |
N9 | 0.5762 (8) | 0.2958 (8) | 0.9253 (15) | 0.0176 (14) | 0.683 (8) |
H9C | 0.544 (7) | 0.240 (3) | 0.909 (7) | 0.07 (2)* | 0.683 (8) |
H9A | 0.634 (3) | 0.305 (3) | 0.834 (5) | 0.015 (11)* | 0.683 (8) |
H9B | 0.615 (4) | 0.300 (3) | 1.037 (4) | 0.030 (12)* | 0.683 (8) |
C1A | 0.4346 (13) | 0.3806 (9) | 0.8007 (19) | 0.040 (3) | 0.317 (8) |
H1AA | 0.387949 | 0.331055 | 0.747348 | 0.060* | 0.317 (8) |
H1AB | 0.494591 | 0.401206 | 0.710339 | 0.060* | 0.317 (8) |
H1AC | 0.380246 | 0.430337 | 0.831645 | 0.060* | 0.317 (8) |
C2A | 0.4980 (13) | 0.3487 (9) | 0.9750 (18) | 0.034 (3) | 0.317 (8) |
H2A | 0.544271 | 0.400926 | 1.025413 | 0.041* | 0.317 (8) |
C3A | 0.4163 (8) | 0.3153 (6) | 1.1293 (12) | 0.033 (2) | 0.317 (8) |
H3AA | 0.365209 | 0.266424 | 1.079528 | 0.039* | 0.317 (8) |
H3AB | 0.467213 | 0.289296 | 1.228555 | 0.039* | 0.317 (8) |
C4A | 0.3352 (11) | 0.3859 (7) | 1.2147 (17) | 0.058 (4) | 0.317 (8) |
H4AA | 0.281880 | 0.410607 | 1.118991 | 0.088* | 0.317 (8) |
H4AB | 0.384600 | 0.434191 | 1.267114 | 0.088* | 0.317 (8) |
H4AC | 0.286538 | 0.358557 | 1.313144 | 0.088* | 0.317 (8) |
N9A | 0.588 (2) | 0.2777 (18) | 0.925 (4) | 0.022 (4) | 0.317 (8) |
H9AA | 0.645 (7) | 0.290 (8) | 0.837 (10) | 0.027* | 0.317 (8) |
H9AB | 0.535 (8) | 0.236 (6) | 0.885 (12) | 0.027* | 0.317 (8) |
H9AC | 0.623 (7) | 0.263 (6) | 1.034 (7) | 0.027* | 0.317 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O10 | 0.0275 (8) | 0.0241 (7) | 0.0140 (7) | 0.0008 (6) | 0.0003 (6) | −0.0008 (6) |
O11 | 0.0334 (9) | 0.0258 (7) | 0.0157 (7) | −0.0013 (7) | 0.0032 (7) | 0.0015 (6) |
O12 | 0.0247 (8) | 0.0274 (7) | 0.0153 (7) | −0.0058 (6) | −0.0008 (6) | −0.0013 (6) |
O13 | 0.0196 (8) | 0.0349 (9) | 0.0150 (7) | 0.0060 (6) | −0.0035 (6) | −0.0035 (6) |
O14 | 0.0217 (8) | 0.0293 (7) | 0.0127 (7) | 0.0025 (6) | 0.0002 (6) | 0.0004 (6) |
O15 | 0.0310 (9) | 0.0638 (12) | 0.0197 (8) | 0.0206 (9) | 0.0083 (8) | 0.0092 (8) |
C5 | 0.0153 (9) | 0.0247 (9) | 0.0132 (9) | 0.0035 (7) | 0.0017 (7) | −0.0002 (8) |
C6 | 0.0175 (10) | 0.0236 (9) | 0.0133 (9) | 0.0003 (8) | −0.0001 (7) | −0.0009 (7) |
C7 | 0.0171 (10) | 0.0232 (9) | 0.0151 (10) | 0.0000 (8) | −0.0009 (8) | −0.0001 (8) |
C8 | 0.0199 (10) | 0.0215 (9) | 0.0153 (9) | −0.0010 (8) | 0.0015 (8) | 0.0008 (8) |
O16 | 0.0232 (8) | 0.0309 (8) | 0.0178 (8) | −0.0013 (7) | 0.0002 (7) | −0.0037 (7) |
C1 | 0.026 (2) | 0.037 (2) | 0.039 (3) | 0.0030 (17) | −0.009 (2) | 0.004 (3) |
C2 | 0.0195 (19) | 0.023 (3) | 0.033 (3) | 0.0017 (17) | 0.000 (2) | 0.000 (2) |
C3 | 0.0249 (18) | 0.029 (2) | 0.044 (2) | 0.0039 (15) | 0.0006 (17) | −0.0014 (18) |
C4 | 0.031 (2) | 0.041 (2) | 0.044 (2) | −0.0027 (17) | 0.0089 (18) | −0.0054 (19) |
N9 | 0.015 (3) | 0.021 (4) | 0.017 (2) | −0.0038 (19) | −0.0024 (18) | −0.001 (2) |
C1A | 0.050 (7) | 0.030 (5) | 0.040 (7) | 0.001 (4) | −0.007 (8) | 0.002 (6) |
C2A | 0.043 (6) | 0.033 (7) | 0.025 (6) | 0.005 (5) | 0.001 (5) | 0.010 (4) |
C3A | 0.030 (4) | 0.038 (5) | 0.030 (5) | 0.007 (4) | 0.010 (4) | 0.000 (4) |
C4A | 0.065 (8) | 0.048 (6) | 0.063 (7) | 0.027 (5) | 0.029 (6) | 0.015 (5) |
N9A | 0.024 (6) | 0.021 (9) | 0.021 (5) | 0.010 (4) | 0.003 (4) | −0.003 (5) |
O10—C5 | 1.276 (3) | C3—H3B | 0.9900 |
O11—C5 | 1.238 (3) | C3—C4 | 1.513 (6) |
O12—H12 | 0.90 (3) | C4—H4A | 0.9800 |
O12—C6 | 1.419 (2) | C4—H4B | 0.9800 |
O13—H13 | 0.85 (3) | C4—H4C | 0.9800 |
O13—C7 | 1.403 (3) | N9—H9C | 0.92 (2) |
O14—H14 | 0.93 (4) | N9—H9A | 0.93 (2) |
O14—C8 | 1.299 (3) | N9—H9B | 0.91 (2) |
O15—C8 | 1.216 (3) | C1A—H1AA | 0.9800 |
C5—C6 | 1.530 (3) | C1A—H1AB | 0.9800 |
C6—H6 | 1.0000 | C1A—H1AC | 0.9800 |
C6—C7 | 1.532 (3) | C1A—C2A | 1.517 (14) |
C7—H7 | 1.0000 | C2A—H2A | 1.0000 |
C7—C8 | 1.535 (3) | C2A—C3A | 1.518 (12) |
O16—H16A | 0.87 (4) | C2A—N9A | 1.497 (15) |
O16—H16B | 0.83 (4) | C3A—H3AA | 0.9900 |
C1—H1A | 0.9800 | C3A—H3AB | 0.9900 |
C1—H1B | 0.9800 | C3A—C4A | 1.514 (12) |
C1—H1C | 0.9800 | C4A—H4AA | 0.9800 |
C1—C2 | 1.542 (7) | C4A—H4AB | 0.9800 |
C2—H2 | 1.0000 | C4A—H4AC | 0.9800 |
C2—C3 | 1.513 (6) | N9A—H9AA | 0.91 (3) |
C2—N9 | 1.498 (8) | N9A—H9AB | 0.90 (3) |
C3—H3A | 0.9900 | N9A—H9AC | 0.91 (3) |
C6—O12—H12 | 105 (2) | C3—C4—H4B | 109.5 |
C7—O13—H13 | 112 (2) | C3—C4—H4C | 109.5 |
C8—O14—H14 | 110 (3) | H4A—C4—H4B | 109.5 |
O10—C5—C6 | 116.04 (18) | H4A—C4—H4C | 109.5 |
O11—C5—O10 | 126.33 (19) | H4B—C4—H4C | 109.5 |
O11—C5—C6 | 117.59 (18) | C2—N9—H9C | 116 (5) |
O12—C6—C5 | 110.11 (17) | C2—N9—H9A | 108 (3) |
O12—C6—H6 | 108.5 | C2—N9—H9B | 106 (3) |
O12—C6—C7 | 110.12 (16) | H9C—N9—H9A | 108 (3) |
C5—C6—H6 | 108.5 | H9C—N9—H9B | 111 (4) |
C5—C6—C7 | 110.96 (17) | H9A—N9—H9B | 107 (3) |
C7—C6—H6 | 108.5 | H1AA—C1A—H1AB | 109.5 |
O13—C7—C6 | 111.94 (17) | H1AA—C1A—H1AC | 109.5 |
O13—C7—H7 | 108.8 | H1AB—C1A—H1AC | 109.5 |
O13—C7—C8 | 107.33 (16) | C2A—C1A—H1AA | 109.5 |
C6—C7—H7 | 108.8 | C2A—C1A—H1AB | 109.5 |
C6—C7—C8 | 111.13 (17) | C2A—C1A—H1AC | 109.5 |
C8—C7—H7 | 108.8 | C1A—C2A—H2A | 107.1 |
O14—C8—C7 | 114.02 (18) | C1A—C2A—C3A | 115.6 (11) |
O15—C8—O14 | 125.2 (2) | C3A—C2A—H2A | 107.1 |
O15—C8—C7 | 120.83 (19) | N9A—C2A—C1A | 109.4 (13) |
H16A—O16—H16B | 109 (3) | N9A—C2A—H2A | 107.1 |
H1A—C1—H1B | 109.5 | N9A—C2A—C3A | 110.0 (12) |
H1A—C1—H1C | 109.5 | C2A—C3A—H3AA | 108.5 |
H1B—C1—H1C | 109.5 | C2A—C3A—H3AB | 108.5 |
C2—C1—H1A | 109.5 | H3AA—C3A—H3AB | 107.5 |
C2—C1—H1B | 109.5 | C4A—C3A—C2A | 115.2 (8) |
C2—C1—H1C | 109.5 | C4A—C3A—H3AA | 108.5 |
C1—C2—H2 | 108.4 | C4A—C3A—H3AB | 108.5 |
C3—C2—C1 | 112.1 (4) | C3A—C4A—H4AA | 109.5 |
C3—C2—H2 | 108.4 | C3A—C4A—H4AB | 109.5 |
N9—C2—C1 | 108.4 (5) | C3A—C4A—H4AC | 109.5 |
N9—C2—H2 | 108.4 | H4AA—C4A—H4AB | 109.5 |
N9—C2—C3 | 111.0 (5) | H4AA—C4A—H4AC | 109.5 |
C2—C3—H3A | 108.6 | H4AB—C4A—H4AC | 109.5 |
C2—C3—H3B | 108.6 | C2A—N9A—H9AA | 119 (8) |
H3A—C3—H3B | 107.6 | C2A—N9A—H9AB | 98 (8) |
C4—C3—C2 | 114.7 (4) | C2A—N9A—H9AC | 104 (6) |
C4—C3—H3A | 108.6 | H9AA—N9A—H9AB | 111 (4) |
C4—C3—H3B | 108.6 | H9AA—N9A—H9AC | 111 (4) |
C3—C4—H4A | 109.5 | H9AB—N9A—H9AC | 112 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H12···O11 | 0.90 (3) | 2.00 (3) | 2.602 (2) | 123 (3) |
O13—H13···O16 | 0.85 (3) | 1.83 (3) | 2.662 (2) | 167 (3) |
O14—H14···O10i | 0.93 (4) | 1.58 (5) | 2.499 (2) | 171 (5) |
O16—H16A···O15ii | 0.87 (4) | 1.93 (4) | 2.791 (2) | 169 (4) |
O16—H16B···O10iii | 0.83 (4) | 2.01 (3) | 2.822 (2) | 167 (3) |
N9—H9A···O11 | 0.93 (2) | 1.89 (2) | 2.803 (9) | 167 (4) |
N9—H9B···O12ii | 0.91 (2) | 1.97 (3) | 2.869 (11) | 169 (4) |
N9—H9C···O13iv | 0.92 (2) | 2.16 (4) | 2.922 (13) | 140 (5) |
N9—H9C···O15iv | 0.92 (2) | 2.20 (4) | 3.001 (12) | 145 (5) |
N9A—H9AA···O11 | 0.91 (3) | 1.87 (4) | 2.76 (2) | 164 (8) |
N9A—H9AB···O13iv | 0.90 (3) | 1.96 (6) | 2.79 (3) | 151 (9) |
N9A—H9AB···O15iv | 0.90 (3) | 2.21 (8) | 2.83 (3) | 126 (6) |
N9A—H9AC···O12ii | 0.91 (3) | 1.99 (5) | 2.81 (3) | 150 (7) |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1; (iii) −x+2, −y+1, z; (iv) x−1/2, −y+1/2, −z+1. |
Acknowledgements
Financial support from the Canada Foundation for Innovation (CFI), the Faculties of Science and Graduate Studies and Research of Saint Mary's University, and the SMUworks program (SMUworks Summer 2016 Grant) is gratefully acknowledged. The authors thank Dr Katherine N. Robertson for many helpful discussions during the preparation of this manuscript.
Funding information
Funding for this research was provided by: Canada Foundation for Innovationhttps://doi.org/10.13039/501100000196; Saint Mary's University SMUworks Program; Saint Mary's University Faculty of Science; Saint Mary's University Faculty of Graduate Studies and Research.
References
Ault, A. (1965). J. Chem. Educ. 42, 269. CrossRef Google Scholar
Berkeš, D., Lopuch, J., Proksa, B. & Považanec, F. (2003). Chem. Pap. 57, 350–354. Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Callear, S. K., Hursthouse, M. B. & Threllfall, T. L. (2008a). University of Southampton, Crystal Structure Report Archive, 577. Google Scholar
Callear, S. K., Hursthouse, M. B. & Threllfall, T. L. (2008b). University of Southampton, Crystal Structure Report Archive, 582. Google Scholar
Campiani, G., Butini, S., Gemma, S., Nacci, V., Fattorusso, C., Catalanotti, B., Giorgi, G., Cagnotto, A., Goegan, M., Mennini, T., Minetti, P., Di Cesare, M. A., Mastroianni, D., Scafetta, N., Galletti, B., Stasi, M. A., Castorina, M., Pacifici, L., Ghirardi, O., Tinti, O. & Carminati, P. (2002). J. Med. Chem. 45, 344–359. CSD CrossRef PubMed CAS Google Scholar
Crystal Impact (2014). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fogassy, E., Nógrádi, M., Kozma, D., Egri, G., Pálovics, E. & Kiss, V. (2006). Org. Biomol. Chem. 4, 3011–3030. CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gül, N. & Nelson, J. H. (1999). J. Mol. Struct. 475, 121–130. Google Scholar
Helmkamp, G. K. & Johnson, H. W. Jr (1983). Selected Experiments in Organic Chemistry, 3rd ed. New York: W. H. Freeman and Company. Google Scholar
Kmecz, I., Simándi, B., Székely, E. & Fogassy, E. (2004). Tetrahedron Asymmetry, 15, 1841–1845. CrossRef CAS Google Scholar
Kokila, L., Cai, S. & Chen, K. (2002). Chin. J. Chem. Eng. 10, 244–248. CAS Google Scholar
Mei, L., Jie, S. & Ying, J. (2010). Res. Chem. Intermed. 36, 227–236. CSD CrossRef CAS Google Scholar
Molins, E., Miravitlles, C., López-Calahorra, F., Castells, J. & Raventós, J. (1989). Acta Cryst. C45, 104–106. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Periasamy, M., Anwar, S. & Reddy, M. N. (2009). Indian J. Chem. Sect. B, 48, 1261–1273. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turkington, D. E., MacLean, E. J., Lough, A. J., Ferguson, G. & Glidewell, C. (2005). Acta Cryst. B61, 103–114. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Yatcherla, S. R., Islam, A., Nageshwar, D. & Hari Babu, B. (2015). Heteroletters, 5, 241–244. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.