research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the mixed-metal tris­­ulfide BaCu1/3Ta2/3S3

CROSSMARK_Color_square_no_text.svg

aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China, bSchool of Materials Science and Engineering, Shanghai University, Shangda Road, No. 99, Shanghai 200444, People's Republic of China, and cDepartment of Chemistry and Biochemistry, Northern Illinois University, USA
*Correspondence e-mail: czheng@niu.edu, huangfq@mail.sic.ac.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 January 2017; accepted 6 April 2017; online 18 April 2017)

The mixed-metal title compound, BaCu1/3Ta2/3S3 [barium copper(II) tantalum(V) tris­ulfide], was prepared through solid-state reactions. The crystal structure adopts the BaTaS3 structure type and consists of face-sharing [MS6] (M = Ta,Cu) octa­hedra (point-group symmetry -3m.) that are condensed into infinite chains along [001]. Adjacent chains are linked through the barium cations (site symmetry -6m2), which exhibit a coordination number of twelve. The M site is occupied by 2/3 of TaV and 1/3 of CuII, whereby the average M—S distances are slightly longer than those of ordered BaTaS3. The classical charge balance of the title compound can be represented by [Ba2+] [(Ta/Cu)4+] [S2−]3.

1. Chemical context

Barium vanadium tris­ulfide, BaVS3 (Takano et al., 1977[Takano, M., Kosugi, H., Nakanishi, N., Shimada, M., Wada, T. & Koizumi, M. (1977). J. Phys. Soc. Jpn, 43, 1101-1102.]), with which BaTaS3 (Gardner et al., 1969[Gardner, R. A., Vlasse, M. & Wold, A. (1969). Inorg. Chem. 8, 2784-2787.]) crystallizes isotypically in space group P63/mmc, has a chain structure. The observed conductivity was attributed to the formation of conduction bands via vanadium⋯vanadium d-orbital overlap. It shows three phase transitions and exhibits a number of intriguing physical properties (Nakamura et al., 1994[Nakamura, M., Sekiyama, A., Namatame, H., Fujimori, A., Yoshihara, H., Ohtani, T., Misu, A. & Takano, M. (1994). Phys. Rev. B, 49, 16191-16201.]). While both BaVS3 and BaTaS3 are composed of the same type of linear chains, BaTaS3 shows metallic conductivity and a Curie–Weiss behaviour of the magnetic susceptibility (Gardner et al., 1969[Gardner, R. A., Vlasse, M. & Wold, A. (1969). Inorg. Chem. 8, 2784-2787.]). To explore the physical properties of BaTaS3 and related compounds, we have introduced copper and studied mixed-metal phases Ba(Ta/Cu)S3. Here we report on the synthesis and structural characterization of the mixed-metal tris­ulfide with composition BaCu1/3Ta2/3S3.

2. Structural commentary

BaCu1/3Ta2/3S3 adopts the BaTaS3 structure type in space group P63/mmc. A detailed description of this structure type has been given previously (Gardner et al., 1969[Gardner, R. A., Vlasse, M. & Wold, A. (1969). Inorg. Chem. 8, 2784-2787.]). The asymmetric unit of BaCu1/3Ta2/3S3 contains one Ba site (Wyckoff position 2c), one mixed-occupied (Cu/Ta) site (2a) and one S site (6h). The structure contains face-sharing octa­hedral [MS6] (M = Cu, Ta) units, which construct infinite chains along [001] (Fig. 1[link]). In the crystal structure, these chains are linked through Ba cations (coordination number 12) to adjacent chains (Fig. 2[link]).

[Figure 1]
Figure 1
Face-sharing of MS6 (M = Cu, Ta) octa­hedra in the structure of BaCu1/3Ta2/3S3. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal structure of BaCu1/3Ta2/3S3, viewed down [001].

The M site is occupationally disordered and contains 1/3 Cu and 2/3 Ta. It is surrounded by six S atoms with an M—S bond length of 2.475 (4) Å, which is slightly longer than that of ordered BaTaS3 (2.461 Å; Gardner et al., 1969[Gardner, R. A., Vlasse, M. & Wold, A. (1969). Inorg. Chem. 8, 2784-2787.]). This trend is in agreement with the different ionic radii of Ta (0.64 Å for TaV with coordination number of six) and CuII (0.73 Å) using the data provided by Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

The (Cu,Ta)⋯(Cu,Ta) distance within a chain is 2.9159 (3) Å, which is much shorter than the inter­chain (Cu,Ta)⋯(Cu,Ta) distance of 6.8437 (18) Å. The Ba—S inter­actions between adjacent metal sulfide chains are reflected by one shorter [3.422 (6) Å] and one longer distance [3.523 (3) Å], in good agreement with those found in other barium tantalum sulfides (Onoda & Saeki, 1989[Onoda, M. & Saeki, M. (1989). Mater. Res. Bull. 24, 625-631.]).

The classical charge balance of the title compound can be represented by the formula [Ba2+] [(Ta/Cu)4+] [S2−]3.

3. Synthesis and crystallization

The title compound was prepared using solid-state reactions between the elements Cu, Ta, S and BaS. Ta powder (99.999%, Alfa Aesar Puratronic), Cu powder (99.999%, Alfa Aesar Puratronic), S powder (99.999%, Alfa Aesar Puratronic), and BaS powder (99.999%, Alfa Aesar Puratronic) were mixed in a fused-silica tube in an Ta:Cu:S:BaS molar ratio of 0.67:0.33:2:1. The tube was evacuated to 0.1 Pa, sealed and heated gradually (60 K h−1) to 973 K, where it was kept for 2 d. The tube was then cooled to 673 K at a rate of 3 K h−1 and then quenched to room temperature. The crystals are stable in air and alcohol.

Scanning electron microscopy (SEM) images of selected crystals were taken on a Hitachi S-4800 microscope equipped with an electron microprobe analyzer for a semiqu­anti­tative elemental analysis in the energy dispersive X-ray spectroscopy (EDX) mode. The presence of both copper and tantalum was confirmed (Fig. 3[link]).

[Figure 3]
Figure 3
SEM image and EDX spectrum of BaCu1/3Ta2/3S3.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The refinement of the model with occupational disorder on the M site resulted in a significant decrease of the reliability factors in comparison with a fully occupied Ta site (R1 = 0.73, wR = 0.197). No evidence, e.g. in the form of superstructure reflections, was found for an ordering of this site and thus a statistically disordered model was considered. In the final model, atoms of the disordered site were restrained to have the same displacement parameters, with a fixed Cu:Ta ratio of 1/3:2/3 required for charge neutrality and in good agreement with the EDX measurement. The remaining maximum and minimum electron densities are located 1.06 Å from the (Cu,Ta)1 site and 1.96 Å from the S1, respectively.

Table 1
Experimental details

Crystal data
Chemical formula BaCu1/3Ta2/3S3
Mr 375.14
Crystal system, space group Hexagonal, P63/mmc
Temperature (K) 297
a, c (Å) 6.8350 (6), 5.8318 (5)
V3) 235.94 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 26.34
Crystal size (mm) 0.04 × 0.03 × 0.01
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.44, 0.86
No. of measured, independent and observed [I > 2σ(I)] reflections 4312, 125, 106
Rint 0.042
(sin θ/λ)max−1) 0.645
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.25
No. of reflections 125
No. of parameters 11
No. of restraints 2
Δρmax, Δρmin (e Å−3) 1.50, −1.50
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Barium copper(II) tantalum(V) trisulfide top
Crystal data top
BaCu0.33Ta0.67S3Dx = 5.280 Mg m3
Mr = 375.14Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 1738 reflections
a = 6.8350 (6) Åθ = 3.4–25.9°
c = 5.8318 (5) ŵ = 26.34 mm1
V = 235.94 (5) Å3T = 297 K
Z = 2Plate, black
F(000) = 3250.04 × 0.03 × 0.01 mm
Data collection top
Bruker D8 QUEST
diffractometer
106 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.042
phi and ω scansθmax = 27.3°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 88
Tmin = 0.44, Tmax = 0.86k = 88
4312 measured reflectionsl = 76
125 independent reflections
Refinement top
Refinement on F211 parameters
Least-squares matrix: full2 restraints
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0503P)2 + 4.8137P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 1.25Δρmax = 1.50 e Å3
125 reflectionsΔρmin = 1.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba0.66670.33330.750.0341 (7)
Ta000.50.0707 (12)0.6666 (8)
Cu000.50.0707 (12)0.3334 (18)
S0.1689 (4)0.3378 (8)0.750.0449 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.0246 (7)0.0246 (7)0.0529 (13)0.0123 (4)00
Ta0.0306 (8)0.0306 (8)0.151 (3)0.0153 (4)00
Cu0.0306 (8)0.0306 (8)0.151 (3)0.0153 (4)00
S0.0217 (18)0.015 (2)0.096 (4)0.0074 (10)00
Geometric parameters (Å, º) top
Ba—Si3.4176 (3)Ta—S2.475 (4)
Ba—Sii3.4176 (3)Ta—Sxiii2.475 (4)
Ba—Siii3.4176 (3)Ta—Svii2.475 (4)
Ba—Siv3.4176 (3)Ta—Sxiv2.475 (4)
Ba—S3.4176 (3)Ta—Taxv2.9159 (3)
Ba—Sv3.4176 (3)Ta—Cuxvi2.9159 (3)
Ba—Svi3.506 (3)Ta—Cuxv2.9159 (3)
Ba—Svii3.506 (3)Ta—Taxvi2.9159 (3)
Ba—Sviii3.506 (3)S—Cuxv2.475 (4)
Ba—Six3.506 (3)S—Taxv2.475 (4)
Ba—Sx3.506 (3)S—Baxvii3.4176 (3)
Ba—Sxi3.506 (3)S—Bavi3.506 (3)
Ta—Sxii2.475 (4)S—Baix3.506 (3)
Ta—Siii2.475 (4)
Si—Ba—Sii60.89 (16)Sxii—Ta—Siii180.0
Si—Ba—Siii120.0010 (10)Sxii—Ta—S91.18 (10)
Sii—Ba—Siii59.11 (17)Siii—Ta—S88.82 (10)
Si—Ba—Siv59.11 (17)Sxii—Ta—Sxiii88.82 (10)
Sii—Ba—Siv120.0010 (10)Siii—Ta—Sxiii91.18 (10)
Siii—Ba—Siv179.11 (16)S—Ta—Sxiii180.0
Si—Ba—S179.11 (17)Sxii—Ta—Svii88.82 (10)
Sii—Ba—S120.0000 (10)Siii—Ta—Svii91.18 (10)
Siii—Ba—S60.89 (17)S—Ta—Svii91.18 (10)
Siv—Ba—S119.9990 (10)Sxiii—Ta—Svii88.82 (10)
Si—Ba—Sv120.0000 (10)Sxii—Ta—Sxiv91.18 (10)
Sii—Ba—Sv179.11 (17)Siii—Ta—Sxiv88.82 (10)
Siii—Ba—Sv119.9990 (10)S—Ta—Sxiv88.82 (10)
Siv—Ba—Sv60.89 (17)Sxiii—Ta—Sxiv91.18 (10)
S—Ba—Sv59.11 (17)Svii—Ta—Sxiv180.0
Si—Ba—Svi89.75 (5)Sxii—Ta—Taxv126.10 (7)
Sii—Ba—Svi118.88 (3)Siii—Ta—Taxv53.90 (7)
Siii—Ba—Svi118.88 (3)S—Ta—Taxv53.90 (7)
Siv—Ba—Svi61.40 (8)Sxiii—Ta—Taxv126.10 (7)
S—Ba—Svi89.75 (5)Svii—Ta—Taxv126.10 (7)
Sv—Ba—Svi61.40 (8)Sxiv—Ta—Taxv53.90 (7)
Si—Ba—Svii118.88 (3)Sxii—Ta—Cuxvi53.90 (7)
Sii—Ba—Svii89.75 (5)Siii—Ta—Cuxvi126.10 (7)
Siii—Ba—Svii61.40 (8)S—Ta—Cuxvi126.10 (7)
Siv—Ba—Svii118.88 (3)Sxiii—Ta—Cuxvi53.90 (7)
S—Ba—Svii61.40 (8)Svii—Ta—Cuxvi53.90 (7)
Sv—Ba—Svii89.75 (5)Sxiv—Ta—Cuxvi126.10 (7)
Svi—Ba—Svii147.76 (6)Taxv—Ta—Cuxvi180.0
Si—Ba—Sviii118.88 (3)Sxii—Ta—Cuxv126.10 (7)
Sii—Ba—Sviii89.75 (5)Siii—Ta—Cuxv53.90 (7)
Siii—Ba—Sviii61.40 (8)S—Ta—Cuxv53.90 (7)
Siv—Ba—Sviii118.88 (3)Sxiii—Ta—Cuxv126.10 (7)
S—Ba—Sviii61.40 (8)Svii—Ta—Cuxv126.10 (7)
Sv—Ba—Sviii89.75 (5)Sxiv—Ta—Cuxv53.90 (7)
Svi—Ba—Sviii57.48 (11)Taxv—Ta—Cuxv0
Svii—Ba—Sviii112.55 (14)Cuxvi—Ta—Cuxv180.0
Si—Ba—Six89.75 (5)Sxii—Ta—Taxvi53.90 (7)
Sii—Ba—Six118.88 (3)Siii—Ta—Taxvi126.10 (7)
Siii—Ba—Six118.88 (3)S—Ta—Taxvi126.10 (7)
Siv—Ba—Six61.40 (8)Sxiii—Ta—Taxvi53.90 (7)
S—Ba—Six89.75 (5)Svii—Ta—Taxvi53.90 (7)
Sv—Ba—Six61.40 (8)Sxiv—Ta—Taxvi126.10 (7)
Svi—Ba—Six112.55 (14)Taxv—Ta—Taxvi180.0
Svii—Ba—Six57.48 (11)Cuxvi—Ta—Taxvi0
Sviii—Ba—Six147.76 (6)Cuxv—Ta—Taxvi180.0
Si—Ba—Sx61.40 (8)Ta—S—Cuxv72.2
Sii—Ba—Sx61.40 (8)Ta—S—Taxv72.19 (13)
Siii—Ba—Sx89.75 (5)Cuxv—S—Taxv0
Siv—Ba—Sx89.75 (5)Ta—S—Ba89.64 (7)
S—Ba—Sx118.88 (3)Cuxv—S—Ba89.64 (7)
Sv—Ba—Sx118.88 (3)Taxv—S—Ba89.64 (7)
Svi—Ba—Sx57.48 (11)Ta—S—Baxvii89.64 (7)
Svii—Ba—Sx147.76 (6)Cuxv—S—Baxvii89.64 (7)
Sviii—Ba—Sx57.48 (11)Taxv—S—Baxvii89.64 (7)
Six—Ba—Sx147.76 (6)Ba—S—Baxvii179.11 (16)
Si—Ba—Sxi61.40 (8)Ta—S—Bavi159.82 (13)
Sii—Ba—Sxi61.40 (8)Cuxv—S—Bavi87.629 (7)
Siii—Ba—Sxi89.75 (5)Taxv—S—Bavi87.629 (7)
Siv—Ba—Sxi89.75 (5)Ba—S—Bavi90.25 (5)
S—Ba—Sxi118.88 (3)Baxvii—S—Bavi90.25 (5)
Sv—Ba—Sxi118.88 (3)Ta—S—Baix87.629 (7)
Svi—Ba—Sxi147.76 (6)Cuxv—S—Baix159.82 (13)
Svii—Ba—Sxi57.48 (11)Taxv—S—Baix159.82 (13)
Sviii—Ba—Sxi147.76 (6)Ba—S—Baix90.25 (5)
Six—Ba—Sxi57.48 (11)Baxvii—S—Baix90.25 (5)
Sx—Ba—Sxi112.55 (13)Bavi—S—Baix112.55 (13)
Symmetry codes: (i) x+1, y, z; (ii) y+1, xy, z; (iii) x+y, x, z; (iv) x+y+1, x+1, z; (v) y+1, xy+1, z; (vi) x+1, y+1, z+2; (vii) y, x+y, z+1; (viii) y, x+y, z+2; (ix) x+1, y+1, z+1; (x) xy+1, x, z+2; (xi) xy+1, x, z+1; (xii) xy, x, z+1; (xiii) x, y, z+1; (xiv) y, xy, z; (xv) x, y, z+1/2; (xvi) x, y, z1/2; (xvii) x1, y, z.
 

Funding information

Funding for this research was provided by: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China. (award No. XDB04040200); CAS Center for Excellence in Superconducting Electronics, National key research and development program (award No. 2016YFB0901600); NSF of China (award Nos. 11404358, 51402341); Science and Technology Commission of Shanghai (award Nos. 13JC1405700, 14520722000).

References

First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGardner, R. A., Vlasse, M. & Wold, A. (1969). Inorg. Chem. 8, 2784–2787.  CrossRef CAS Google Scholar
First citationNakamura, M., Sekiyama, A., Namatame, H., Fujimori, A., Yoshihara, H., Ohtani, T., Misu, A. & Takano, M. (1994). Phys. Rev. B, 49, 16191–16201.  CrossRef CAS Google Scholar
First citationOnoda, M. & Saeki, M. (1989). Mater. Res. Bull. 24, 625–631.  CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakano, M., Kosugi, H., Nakanishi, N., Shimada, M., Wada, T. & Koizumi, M. (1977). J. Phys. Soc. Jpn, 43, 1101–1102.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds