research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two alkaline earth (M = Ba and Sr) dimanganese(II) iron(III) tris­­(orthophosphates)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: g_alhakmi@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 April 2017; accepted 23 April 2017; online 28 April 2017)

Two new orthophosphates, BaMn2Fe(PO4)3 [barium dimanganese(II) iron(III) tris­(orthophosphate)] and SrMn2Fe(PO4)3 [strontium dimanganese(II) iron(III) tris­(orthophosphate)], were synthesized by solid-state reactions. They are isotypic and crystallize in the ortho­rhom­bic system with space group type Pbcn. Their crystal structures comprise infinite zigzag chains of edge-sharing FeO6 octa­hedra (point group symmetry .2.) and Mn2O10 double octa­hedra running parallel to [001], linked by two types of PO4 tetra­hedra. The so-formed three-dimensional framework delineates channels running along [001], in which the alkaline earth cations (site symmetry .2.) are located within a neighbourhood of eight O atoms.

1. Chemical context

Considerable attention has been devoted to the preparation of new inorganic materials with open-framework structures (Rao et al., 2001[Rao, C. N. R., Natarajan, S., Choudhury, A., Neeraj, S. & Ayi, A. A. (2001). Acc. Chem. Res. 34, 80-87.]; Bouzidi et al., 2015[Bouzidi, C., Frigui, W. & Zid, M. F. (2015). Acta Cryst. E71, 69-72.]) due to their structural diversity covering a wide range of chemical compositions (Zhou et al., 2002[Zhou, B.-C., Yao, Y.-W. & Wang, R.-J. (2002). Acta Cryst. C58, i109-i110.]). In particular, transition-metal-based open-framework phosphates represent a highly attractive class of materials in industrial processes. In fact, their special framework structures lead to inter­esting properties that depend not only on the inclusion guest in the pores, but also on the chosen transition metal (Durio et al., 2002[Durio, C., Daidouh, A., Chouaibi, N., Pico, C. & Veiga, M. L. (2002). J. Solid State Chem. 168, 208-216.]; López et al., 2004[López, M.-L., Durio, C., Daidouh, A., Pico, C. & Veiga, M.-L. (2004). Chem. Eur. J. 10, 1106-1113.]; Férey et al., 2005[Férey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res. 38, 217-225.]). Typical examples are ion-exchangers (Jignasa et al., 2006[Jignasa, A., Rakesh, T. & Uma, C. (2006). J. Chem. Sci. 118, 185-189.]; Kullberg & Clearfield, 1981[Kullberg, L. & Clearfield, A. (1981). J. Phys. Chem. 85, 1585-1589.]) and compounds with special magnetic (Chouaibi et al., 2001[Chouaibi, N., Daidouh, A., Pico, C., Santrich, A. & Veiga, M. L. (2001). J. Solid State Chem. 159, 46-50.]; Ferdov et al., 2008[Ferdov, S., Reis, M. S., Lin, Z. & Ferreira, R. A. S. (2008). Inorg. Chem. 47, 10062-10066.]) and catal­ytic properties (Weng et al., 2009[Weng, W., Lin, Z., Dummer, N. F., Bartley, J. K., Hutchings, G. J. & Kiely, G. J. (2009). Microsc. Microanal. 15 (Suppl. 2), 1438-1439.]).

In this context, our group focuses on the synthesis and characterization of new transition-metal phosphates crystallizing either in alluaudite- (Moore, 1971[Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.]) or α-CrPO4-type structures (Attfield et al., 1988[Attfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. (1988). J. Appl. Cryst. 21, 452-457.]). In attempts to obtain new compounds belonging to the latter structure type, we have synthesized and structurally characterized several new phosphates, including those with oxidation states of both +II and +III for manganese. These compounds have the general formula MMnIIIMn2II(PO4)3 (M = Pb, Sr, Ba) (Alhakmi et al., 2013a[Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40.],b[Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56.]; Assani et al., 2013[Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60.]) and adopt the α-CrPO4 structure type. Recently, the phosphates Na2Co2Fe(PO4)3 (Bouraima et al., 2015[Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558-560.]) and Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690-692.]) with an alluaudite-like structure were also reported. As a continuation in this regard, we have now extended our investigations to the quaternary system MO/MnO/Fe2O3/P2O5, where M is a divalent cation. The present work deals with the synthesis and the crystal structures of two new isotypic alkaline earth manganese iron phosphates, namely, BaMn2Fe(PO4)3 and SrMn2Fe(PO4)3. Their structures show a similarity with that of AM4(PO4)3 phosphates where A is a monovalent cation and M a divalent cation (Daidouh et al., 1999[Daidouh, A., Pico, C. & Veiga, M. L. (1999). Solid State Ionics, 124, 109-117.]; Assaaoudi et al., 2006[Assaaoudi, H., Fang, Z., Ryan, D. H., Butler, I. S. & Kozinski, J. A. (2006). Can. J. Chem. 84, 124-133.]).

2. Structural commentary

The principal building units in the crystal structures of both phosphates are distorted FeO6 and MnO6 octa­hedra, PO4 tetra­hedra and Ba2+ or Sr2+ cations as shown in Figs. 1[link] and 2[link]. In each structure, two MnO6 octa­hedra are linked together by a common edge to give a Mn2O10 dimer to which FeO6 octa­hedra (point group symmetry .2.) are alternately connected on both sides. In this way, infinite zigzag chains parallel to [001] are formed (Fig. 3[link]). Adjacent chains are linked together by sharing corners with two types of PO4 tetra­hedra, forming a layer-like arrangement parallel to (010) as shown in Fig. 4[link]. Such layers are stacked along [010] to form a three-dimensional framework (Fig. 5[link]) with two types of channels running parallel to [001] in which the alkaline earth cations are located on a twofold rotation axis. They are coordinated by eight oxygen atoms (Figs. 1[link] and 6[link]), with bond lengths ranging from 2.6803 (10) to 2.8722 (11) Å for the BaO8 polyhedron and of 2.6020 (9) to 2.7358 (11) Å for the SrO8 polyhedron.

[Figure 1]
Figure 1
The principal building units in the structure of BaMn2Fe(PO4)3. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + 1, z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + [{3\over 2}], −z + 2; (iii) x, y, z + 1; (iv) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (v) −x + 1, y, −z + [{3\over 2}]; (vi) x, y, z − 1; (vii) −x + 1, y, −z + [{1\over 2}]; (viii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (ix) −x + 1, −y + 1, −z + 1; (x) x, −y + 1, z − [{1\over 2}]; (xi) −x + 2, y, −z + [{3\over 2}]; (xii) −x + 2, −y + 1, −z + 1.]
[Figure 2]
Figure 2
The principal building units in the structure of SrMn2Fe(PO4)3. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + 1, z + [{1\over 2}]; (ii) −x + [{3\over 2}], −y + [{3\over 2}], −z + 2; (iii) x, y, z + 1; (iv) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (v) −x + 1, y, −z + [{3\over 2}]; (vi) x, y, z − 1; (vii) −x + 1, y, −z + [{1\over 2}]; (viii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (ix) −x + 1, −y + 1, −z + 1; (x) x, −y + 1, z − [{1\over 2}]; (xi) −x + 2, y, −z + [{3\over 2}]; (xii) −x + 2, −y + 1, −z + 1.]
[Figure 3]
Figure 3
Edge-sharing [FeO6] octa­hedra and Mn2O10 dimers forming an infinite zigzag chain running parallel to [001]. Data are from BaMn2Fe(PO4)3.
[Figure 4]
Figure 4
A layer perpendicular to (010), resulting from the connection of metal oxide chains through PO4 tetra­hedra. Data are from BaMn2Fe(PO4)3.
[Figure 5]
Figure 5
A view of stacked layers along [010]. Data are from BaMn2Fe(PO4)3.
[Figure 6]
Figure 6
Polyhedral representation of the BaMn2Fe(PO4)3 structure showing Ba2+ cations situated in channels running along [001].

Bond-valence-sum calculations (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) are in good agreement with the expected values for alkaline earth, manganese(II) and iron(III) cations and the phos­phorus(V) atom. BaMn2Fe(PO4)3 (values in valence units): Ba2+ 2.10; Mn2+ 2.00; Fe3+ 3.12; PV 4.94. SrMn2Fe(PO4)3: Sr2+ 1.80; Mn2+ 2.07; Fe3+ 3.18; PV 5.00.

3. Database survey

A comparison between the structures of the title compounds and those of other phosphates such as the AM4(PO4)3 compounds (A = monovalent cation and M = divalent cation) (Im et al., 2014[Im, Y., Kim, P. & Yun, H. (2014). Bull. Korean Chem. Soc. 35, 1225-1228.]), reveals that all these compounds crystallize with ortho­rhom­bic symmetry and nearly the same unit-cell parameters despite the differences between their chemical formulae and space groups. In order to give an illustrative picture of the similarity between these two formula types, we can write the general formula of AM4(PO4)3 compounds as follows: M2+(A+M2+)M22+(PO4)3 and that of the title compounds as M2+Fe3+Mn22+(PO4)3. The principal structures of the title compounds and that of the AM4(PO4)3 compounds are formed by stacking of the same infinite zigzag chains of edge-sharing octa­hedra. Furthermore, these structures are characterized by the presence of two types of channels in which the large cations are located.

4. Synthesis and crystallization

Single crystals of the title compounds were isolated as a result of solid-state reactions. Stoichiometric amounts of alkaline earth (M = Ba, Sr), manganese, iron and phosphate precursors in a molar ratio M:Mn:Fe:P = 1:2:1:3, were dissolved in 40 ml water that was placed into a 100 ml capacity pyrex glass beaker. The mixture was stirred at room temperature for 20 h and was evaporated under stirring at 363 K until dryness. The obtained black powder was ground in an agate mortar and pre-heated at 573 K in a platinum crucible for 24 h to eliminate gaseous materials. Subsequently, the resulting residue was reground and melted for 30 min at 1293 K, followed by slow cooling down to 1093 K at a rate 5K h−1 and a rapid cooling to room temperature by switching off the furnace. In the case of the BaO–MnO–Fe2O3–P2O5 system, the reaction product consisted of two types of crystals, viz. orange crystals of the title compound, BaMn2Fe(PO4)3, and dark-violet crystals that were identified to be another new phase. In the case of the SrO–MnO–Fe2O3–P2O5 system, the reaction product contained dark-brown crystals corresponding to the title compound, SrMn2Fe(PO4)3.

5. Refinement

Crystal data, data collection and structure refinement details for the two compounds are summarized in Table 1[link]. For BaMn2Fe(PO4)3, the maximum and minimum remaining electron densities are located 0.60 and 0.42 Å from atom Ba1. For SrMn2Fe(PO4)3, they are 0.58 and 0.31 Å from Sr1.

Table 1
Experimental details

  (I) (II)
Crystal data
Chemical formula BaMn2Fe(PO4)3 SrMn2Fe(PO4)3
Mr 587.98 538.25
Crystal system, space group Orthorhombic, Pbcn Orthorhombic, Pbcn
Temperature (K) 296 296
a, b, c (Å) 6.5899 (2), 17.6467 (4), 8.5106 (2) 6.4304 (3), 17.8462 (7), 8.4906 (3)
V3) 989.70 (4) 974.37 (7)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 8.41 10.00
Crystal size (mm) 0.32 × 0.25 × 0.22 0.30 × 0.27 × 0.23
 
Data collection
Diffractometer Bruker X8 APEX Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.596, 0.748 0.404, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 29422, 3088, 2731 23889, 2843, 2564
Rint 0.033 0.031
(sin θ/λ)max−1) 0.907 0.887
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.044, 1.05 0.021, 0.048, 1.08
No. of reflections 3088 2843
No. of parameters 89 89
Δρmax, Δρmin (e Å−3) 1.29, −1.11 1.19, −0.81
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006) for (I); ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) for (II). For both compounds, software used to prepare material for publication: publCIF (Westrip, 2010).

(I) Barium dimanganese(II) iron(III) tris(orthophosphate) top
Crystal data top
BaMn2Fe(PO4)3Dx = 3.946 Mg m3
Mr = 587.98Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 3088 reflections
a = 6.5899 (2) Åθ = 3.3–40.1°
b = 17.6467 (4) ŵ = 8.41 mm1
c = 8.5106 (2) ÅT = 296 K
V = 989.70 (4) Å3Block, orange
Z = 40.32 × 0.25 × 0.22 mm
F(000) = 1092
Data collection top
Bruker X8 APEX
diffractometer
3088 independent reflections
Radiation source: fine-focus sealed tube2731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 40.1°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 811
Tmin = 0.596, Tmax = 0.748k = 3132
29422 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0178P)2 + 1.2088P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max = 0.002
wR(F2) = 0.044Δρmax = 1.29 e Å3
S = 1.05Δρmin = 1.11 e Å3
3088 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
89 parametersExtinction coefficient: 0.00278 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.50000.44269 (2)0.75000.01037 (3)
Fe11.00000.31799 (2)0.75000.00461 (4)
Mn10.83899 (3)0.36570 (2)0.39874 (2)0.00647 (4)
P10.83270 (5)0.17935 (2)0.53771 (3)0.00490 (5)
P21.00000.47123 (2)0.75000.00513 (7)
O11.01958 (15)0.12822 (6)0.55338 (13)0.01186 (16)
O20.66250 (15)0.15480 (5)0.64868 (11)0.00865 (14)
O30.76365 (15)0.17592 (5)0.36487 (10)0.00794 (14)
O40.88706 (16)0.26335 (5)0.57277 (11)0.01031 (15)
O50.89269 (15)0.41422 (5)0.63609 (10)0.00656 (13)
O60.83805 (16)0.51729 (5)0.83211 (12)0.00988 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.00562 (5)0.01428 (5)0.01119 (5)0.0000.00082 (3)0.000
Fe10.00537 (9)0.00435 (8)0.00411 (8)0.0000.00015 (7)0.000
Mn10.00598 (7)0.00785 (6)0.00559 (7)0.00021 (5)0.00041 (6)0.00013 (5)
P10.00360 (11)0.00666 (10)0.00443 (10)0.00050 (9)0.00036 (9)0.00071 (8)
P20.00571 (17)0.00355 (13)0.00611 (15)0.0000.00000 (13)0.000
O10.0058 (4)0.0170 (4)0.0128 (4)0.0047 (3)0.0016 (3)0.0004 (3)
O20.0064 (3)0.0126 (3)0.0070 (3)0.0017 (3)0.0007 (3)0.0021 (3)
O30.0066 (4)0.0127 (3)0.0045 (3)0.0002 (3)0.0018 (3)0.0017 (3)
O40.0136 (4)0.0087 (3)0.0086 (3)0.0047 (3)0.0002 (3)0.0028 (3)
O50.0084 (3)0.0058 (3)0.0055 (3)0.0007 (3)0.0009 (3)0.0003 (2)
O60.0091 (4)0.0071 (3)0.0134 (4)0.0017 (3)0.0011 (3)0.0031 (3)
Geometric parameters (Å, º) top
Ba1—O62.6803 (10)Mn1—O6vi2.1413 (9)
Ba1—O6i2.6803 (10)Mn1—O1ii2.1466 (10)
Ba1—O3ii2.7861 (9)Mn1—O2vii2.1587 (9)
Ba1—O3iii2.7861 (9)Mn1—O2v2.1997 (10)
Ba1—O52.8087 (10)Mn1—O52.2223 (9)
Ba1—O5i2.8087 (10)Mn1—O42.3572 (10)
Ba1—O1ii2.8722 (11)P1—O21.5289 (10)
Ba1—O1iii2.8722 (11)P1—O11.5325 (10)
Fe1—O41.9387 (9)P1—O31.5409 (9)
Fe1—O4iv1.9387 (9)P1—O41.5540 (9)
Fe1—O3v1.9965 (9)P2—O61.5126 (10)
Fe1—O3iii1.9965 (9)P2—O6iv1.5126 (10)
Fe1—O5iv2.0792 (9)P2—O51.5659 (9)
Fe1—O52.0793 (9)P2—O5iv1.5660 (9)
O6—Ba1—O6i121.17 (4)O4iv—Fe1—O5iv85.00 (4)
O6—Ba1—O3ii157.68 (3)O3v—Fe1—O5iv83.59 (4)
O6i—Ba1—O3ii79.21 (3)O3iii—Fe1—O5iv91.36 (4)
O6—Ba1—O3iii79.21 (3)O4—Fe1—O585.00 (4)
O6i—Ba1—O3iii157.68 (3)O4iv—Fe1—O5154.09 (4)
O3ii—Ba1—O3iii82.60 (4)O3v—Fe1—O591.36 (4)
O6—Ba1—O553.99 (3)O3iii—Fe1—O583.59 (4)
O6i—Ba1—O5139.79 (3)O5iv—Fe1—O570.50 (5)
O3ii—Ba1—O5105.04 (3)O6vi—Mn1—O1ii89.96 (4)
O3iii—Ba1—O558.11 (3)O6vi—Mn1—O2vii84.29 (4)
O6—Ba1—O5i139.79 (3)O1ii—Mn1—O2vii101.01 (4)
O6i—Ba1—O5i53.99 (3)O6vi—Mn1—O2v96.48 (4)
O3ii—Ba1—O5i58.11 (3)O1ii—Mn1—O2v173.39 (4)
O3iii—Ba1—O5i105.04 (3)O2vii—Mn1—O2v78.23 (4)
O5—Ba1—O5i159.39 (3)O6vi—Mn1—O582.51 (4)
O6—Ba1—O1ii114.27 (3)O1ii—Mn1—O587.96 (4)
O6i—Ba1—O1ii90.97 (3)O2vii—Mn1—O5164.03 (4)
O3ii—Ba1—O1ii51.86 (3)O2v—Mn1—O594.35 (4)
O3iii—Ba1—O1ii87.88 (3)O6vi—Mn1—O4154.91 (4)
O5—Ba1—O1ii64.56 (3)O1ii—Mn1—O492.91 (4)
O5i—Ba1—O1ii105.89 (3)O2vii—Mn1—O4119.45 (3)
O6—Ba1—O1iii90.97 (3)O2v—Mn1—O481.90 (4)
O6i—Ba1—O1iii114.27 (3)O5—Mn1—O472.70 (3)
O3ii—Ba1—O1iii87.88 (3)O2—P1—O1111.65 (6)
O3iii—Ba1—O1iii51.86 (3)O2—P1—O3111.22 (5)
O5—Ba1—O1iii105.89 (3)O1—P1—O3107.29 (6)
O5i—Ba1—O1iii64.55 (3)O2—P1—O4108.71 (5)
O1ii—Ba1—O1iii128.34 (4)O1—P1—O4111.08 (6)
O4—Fe1—O4iv120.35 (6)O3—P1—O4106.79 (5)
O4—Fe1—O3v88.85 (4)O6—P2—O6iv115.00 (8)
O4iv—Fe1—O3v94.22 (4)O6—P2—O5108.22 (5)
O4—Fe1—O3iii94.22 (4)O6iv—P2—O5112.20 (5)
O4iv—Fe1—O3iii88.85 (4)O6—P2—O5iv112.20 (5)
O3v—Fe1—O3iii173.83 (5)O6iv—P2—O5iv108.22 (5)
O4—Fe1—O5iv154.09 (4)O5—P2—O5iv100.05 (7)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x1/2, y+1/2, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+2, y, z+3/2; (v) x+1/2, y+1/2, z+1; (vi) x, y+1, z1/2; (vii) x+3/2, y+1/2, z1/2.
(II) Strontium dimanganese(II) iron(III) tris(orthophosphate) top
Crystal data top
SrMn2Fe(PO4)3Dx = 3.669 Mg m3
Mr = 538.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 2843 reflections
a = 6.4304 (3) Åθ = 3.3–39.1°
b = 17.8462 (7) ŵ = 10.00 mm1
c = 8.4906 (3) ÅT = 296 K
V = 974.37 (7) Å3Block, dark brown
Z = 40.30 × 0.27 × 0.23 mm
F(000) = 1020
Data collection top
Bruker X8 APEX
diffractometer
2843 independent reflections
Radiation source: fine-focus sealed tube2564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 39.1°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1110
Tmin = 0.404, Tmax = 0.748k = 3131
23889 measured reflectionsl = 815
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0183P)2 + 1.2279P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max = 0.001
wR(F2) = 0.048Δρmax = 1.19 e Å3
S = 1.08Δρmin = 0.81 e Å3
2843 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
89 parametersExtinction coefficient: 0.0072 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.50000.43233 (2)0.75000.00986 (4)
Fe11.00000.31546 (2)0.75000.00485 (4)
Mn10.83818 (3)0.37163 (2)0.39547 (2)0.00679 (4)
P10.83555 (5)0.17749 (2)0.53581 (3)0.00571 (5)
P21.00000.46759 (2)0.75000.00485 (7)
O11.02378 (15)0.12570 (6)0.54770 (13)0.01473 (18)
O20.66091 (14)0.15203 (5)0.64550 (11)0.00922 (14)
O30.76936 (14)0.17505 (5)0.36165 (10)0.00794 (14)
O40.89115 (17)0.25971 (6)0.57468 (12)0.01448 (18)
O50.89256 (14)0.41164 (5)0.63388 (10)0.00662 (13)
O60.82775 (15)0.51251 (5)0.82684 (12)0.00991 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00601 (7)0.01296 (7)0.01060 (7)0.0000.00134 (5)0.000
Fe10.00567 (9)0.00423 (8)0.00466 (8)0.0000.00026 (7)0.000
Mn10.00547 (7)0.00927 (7)0.00563 (7)0.00023 (5)0.00064 (5)0.00056 (5)
P10.00382 (10)0.00858 (11)0.00473 (10)0.00077 (9)0.00010 (9)0.00167 (8)
P20.00502 (15)0.00357 (13)0.00597 (15)0.0000.00017 (12)0.000
O10.0066 (4)0.0237 (5)0.0139 (4)0.0062 (3)0.0013 (3)0.0010 (4)
O20.0061 (3)0.0149 (4)0.0067 (3)0.0015 (3)0.0009 (3)0.0025 (3)
O30.0067 (3)0.0125 (3)0.0046 (3)0.0001 (3)0.0012 (3)0.0013 (3)
O40.0174 (4)0.0133 (4)0.0128 (4)0.0084 (3)0.0029 (3)0.0074 (3)
O50.0085 (3)0.0062 (3)0.0052 (3)0.0009 (3)0.0016 (3)0.0006 (2)
O60.0085 (3)0.0073 (3)0.0140 (4)0.0019 (3)0.0015 (3)0.0032 (3)
Geometric parameters (Å, º) top
Sr1—O3i2.6020 (9)Mn1—O1i2.0790 (10)
Sr1—O3ii2.6020 (9)Mn1—O2v2.1462 (9)
Sr1—O6iii2.6296 (9)Mn1—O6vi2.1494 (9)
Sr1—O62.6296 (10)Mn1—O2vii2.1641 (9)
Sr1—O52.7351 (9)Mn1—O52.1748 (9)
Sr1—O5iii2.7351 (9)Mn1—O42.5338 (12)
Sr1—O1i2.7358 (11)P1—O11.5263 (10)
Sr1—O1ii2.7358 (11)P1—O21.5281 (9)
Fe1—O41.9224 (10)P1—O31.5394 (9)
Fe1—O4iv1.9224 (10)P1—O41.5459 (10)
Fe1—O3v1.9818 (9)P2—O61.5149 (9)
Fe1—O3ii1.9818 (9)P2—O6iv1.5149 (9)
Fe1—O52.0966 (9)P2—O5iv1.5641 (9)
Fe1—O5iv2.0966 (9)P2—O51.5641 (9)
O3i—Sr1—O3ii85.14 (4)O4iv—Fe1—O5155.20 (4)
O3i—Sr1—O6iii81.58 (3)O3v—Fe1—O589.60 (4)
O3ii—Sr1—O6iii161.43 (3)O3ii—Fe1—O582.35 (4)
O3i—Sr1—O6161.43 (3)O4—Fe1—O5iv155.20 (4)
O3ii—Sr1—O681.58 (3)O4iv—Fe1—O5iv86.54 (4)
O6iii—Sr1—O6114.07 (4)O3v—Fe1—O5iv82.35 (4)
O3i—Sr1—O5107.18 (3)O3ii—Fe1—O5iv89.60 (4)
O3ii—Sr1—O560.39 (3)O5—Fe1—O5iv70.09 (5)
O6iii—Sr1—O5136.36 (3)O1i—Mn1—O2v169.25 (4)
O6—Sr1—O554.77 (3)O1i—Mn1—O6vi90.60 (4)
O3i—Sr1—O5iii60.39 (3)O2v—Mn1—O6vi100.11 (4)
O3ii—Sr1—O5iii107.18 (3)O1i—Mn1—O2vii103.58 (4)
O6iii—Sr1—O5iii54.77 (3)O2v—Mn1—O2vii78.47 (4)
O6—Sr1—O5iii136.36 (3)O6vi—Mn1—O2vii85.52 (4)
O5—Sr1—O5iii164.49 (4)O1i—Mn1—O586.15 (4)
O3i—Sr1—O1i54.30 (3)O2v—Mn1—O593.44 (4)
O3ii—Sr1—O1i91.49 (3)O6vi—Mn1—O586.65 (4)
O6iii—Sr1—O1i91.23 (3)O2vii—Mn1—O5167.55 (4)
O6—Sr1—O1i112.98 (3)O1i—Mn1—O490.54 (4)
O5—Sr1—O1i64.17 (3)O2v—Mn1—O479.18 (4)
O5iii—Sr1—O1i109.48 (3)O6vi—Mn1—O4157.72 (4)
O3i—Sr1—O1ii91.49 (3)O2vii—Mn1—O4115.78 (3)
O3ii—Sr1—O1ii54.30 (3)O5—Mn1—O471.23 (3)
O6iii—Sr1—O1ii112.98 (3)O1—P1—O2111.25 (6)
O6—Sr1—O1ii91.23 (3)O1—P1—O3105.40 (6)
O5—Sr1—O1ii109.48 (3)O2—P1—O3111.95 (5)
O5iii—Sr1—O1ii64.17 (3)O1—P1—O4112.17 (6)
O1i—Sr1—O1ii135.52 (5)O2—P1—O4108.80 (6)
O4—Fe1—O4iv117.67 (7)O3—P1—O4107.21 (6)
O4—Fe1—O3v89.54 (4)O6—P2—O6iv116.11 (7)
O4iv—Fe1—O3v95.53 (4)O6—P2—O5iv112.91 (5)
O4—Fe1—O3ii95.53 (4)O6iv—P2—O5iv106.63 (5)
O4iv—Fe1—O3ii89.54 (4)O6—P2—O5106.64 (5)
O3v—Fe1—O3ii170.19 (5)O6iv—P2—O5112.91 (5)
O4—Fe1—O586.54 (4)O5iv—P2—O5100.66 (7)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y, z+3/2; (iv) x+2, y, z+3/2; (v) x+1/2, y+1/2, z+1; (vi) x, y+1, z1/2; (vii) x+3/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University in Rabat, Morocco, for financial support.

References

First citationAlhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40.  CrossRef IUCr Journals Google Scholar
First citationAlhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56.  CrossRef IUCr Journals Google Scholar
First citationAssaaoudi, H., Fang, Z., Ryan, D. H., Butler, I. S. & Kozinski, J. A. (2006). Can. J. Chem. 84, 124–133.  CrossRef CAS Google Scholar
First citationAssani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60.  CrossRef IUCr Journals Google Scholar
First citationAttfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. (1988). J. Appl. Cryst. 21, 452–457.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouzidi, C., Frigui, W. & Zid, M. F. (2015). Acta Cryst. E71, 69–72.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChouaibi, N., Daidouh, A., Pico, C., Santrich, A. & Veiga, M. L. (2001). J. Solid State Chem. 159, 46–50.  Web of Science CrossRef CAS Google Scholar
First citationDaidouh, A., Pico, C. & Veiga, M. L. (1999). Solid State Ionics, 124, 109–117.  Web of Science CrossRef CAS Google Scholar
First citationDurio, C., Daidouh, A., Chouaibi, N., Pico, C. & Veiga, M. L. (2002). J. Solid State Chem. 168, 208–216.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerdov, S., Reis, M. S., Lin, Z. & Ferreira, R. A. S. (2008). Inorg. Chem. 47, 10062–10066.  CrossRef PubMed CAS Google Scholar
First citationFérey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res. 38, 217–225.  Web of Science PubMed Google Scholar
First citationIm, Y., Kim, P. & Yun, H. (2014). Bull. Korean Chem. Soc. 35, 1225–1228.  CrossRef CAS Google Scholar
First citationJignasa, A., Rakesh, T. & Uma, C. (2006). J. Chem. Sci. 118, 185–189.  CrossRef Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKullberg, L. & Clearfield, A. (1981). J. Phys. Chem. 85, 1585–1589.  CrossRef CAS Google Scholar
First citationLópez, M.-L., Durio, C., Daidouh, A., Pico, C. & Veiga, M.-L. (2004). Chem. Eur. J. 10, 1106–1113.  PubMed Google Scholar
First citationMoore, P. B. (1971). Am. Mineral. 56, 1955–1975.  CAS Google Scholar
First citationRao, C. N. R., Natarajan, S., Choudhury, A., Neeraj, S. & Ayi, A. A. (2001). Acc. Chem. Res. 34, 80–87.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeng, W., Lin, Z., Dummer, N. F., Bartley, J. K., Hutchings, G. J. & Kiely, G. J. (2009). Microsc. Microanal. 15 (Suppl. 2), 1438–1439.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, B.-C., Yao, Y.-W. & Wang, R.-J. (2002). Acta Cryst. C58, i109–i110.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds