research communications
Crystal structures of two alkaline earth (M = Ba and Sr) dimanganese(II) iron(III) tris(orthophosphates)
aLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: g_alhakmi@yahoo.fr
Two new orthophosphates, BaMn2Fe(PO4)3 [barium dimanganese(II) iron(III) tris(orthophosphate)] and SrMn2Fe(PO4)3 [strontium dimanganese(II) iron(III) tris(orthophosphate)], were synthesized by solid-state reactions. They are isotypic and crystallize in the orthorhombic system with type Pbcn. Their crystal structures comprise infinite zigzag chains of edge-sharing FeO6 octahedra (point group symmetry .2.) and Mn2O10 double octahedra running parallel to [001], linked by two types of PO4 tetrahedra. The so-formed three-dimensional framework delineates channels running along [001], in which the alkaline earth cations (site symmetry .2.) are located within a neighbourhood of eight O atoms.
1. Chemical context
Considerable attention has been devoted to the preparation of new inorganic materials with open-framework structures (Rao et al., 2001; Bouzidi et al., 2015) due to their structural diversity covering a wide range of chemical compositions (Zhou et al., 2002). In particular, transition-metal-based open-framework phosphates represent a highly attractive class of materials in industrial processes. In fact, their special framework structures lead to interesting properties that depend not only on the inclusion guest in the pores, but also on the chosen transition metal (Durio et al., 2002; López et al., 2004; Férey et al., 2005). Typical examples are ion-exchangers (Jignasa et al., 2006; Kullberg & Clearfield, 1981) and compounds with special magnetic (Chouaibi et al., 2001; Ferdov et al., 2008) and catalytic properties (Weng et al., 2009).
In this context, our group focuses on the synthesis and characterization of new transition-metal phosphates crystallizing either in alluaudite- (Moore, 1971) or α-CrPO4-type structures (Attfield et al., 1988). In attempts to obtain new compounds belonging to the latter structure type, we have synthesized and structurally characterized several new phosphates, including those with oxidation states of both +II and +III for manganese. These compounds have the general formula MMnIIIMn2II(PO4)3 (M = Pb, Sr, Ba) (Alhakmi et al., 2013a,b; Assani et al., 2013) and adopt the α-CrPO4 structure type. Recently, the phosphates Na2Co2Fe(PO4)3 (Bouraima et al., 2015) and Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015) with an alluaudite-like structure were also reported. As a continuation in this regard, we have now extended our investigations to the quaternary system MO/MnO/Fe2O3/P2O5, where M is a divalent cation. The present work deals with the synthesis and the crystal structures of two new isotypic alkaline earth manganese iron phosphates, namely, BaMn2Fe(PO4)3 and SrMn2Fe(PO4)3. Their structures show a similarity with that of AM4(PO4)3 phosphates where A is a monovalent cation and M a divalent cation (Daidouh et al., 1999; Assaaoudi et al., 2006).
2. Structural commentary
The principal building units in the crystal structures of both phosphates are distorted FeO6 and MnO6 octahedra, PO4 tetrahedra and Ba2+ or Sr2+ cations as shown in Figs. 1 and 2. In each structure, two MnO6 octahedra are linked together by a common edge to give a Mn2O10 dimer to which FeO6 octahedra (point group symmetry .2.) are alternately connected on both sides. In this way, infinite zigzag chains parallel to [001] are formed (Fig. 3). Adjacent chains are linked together by sharing corners with two types of PO4 tetrahedra, forming a layer-like arrangement parallel to (010) as shown in Fig. 4. Such layers are stacked along [010] to form a three-dimensional framework (Fig. 5) with two types of channels running parallel to [001] in which the alkaline earth cations are located on a twofold rotation axis. They are coordinated by eight oxygen atoms (Figs. 1 and 6), with bond lengths ranging from 2.6803 (10) to 2.8722 (11) Å for the BaO8 polyhedron and of 2.6020 (9) to 2.7358 (11) Å for the SrO8 polyhedron.
Bond-valence-sum calculations (Brown & Altermatt, 1985) are in good agreement with the expected values for alkaline earth, manganese(II) and iron(III) cations and the phosphorus(V) atom. BaMn2Fe(PO4)3 (values in valence units): Ba2+ 2.10; Mn2+ 2.00; Fe3+ 3.12; PV 4.94. SrMn2Fe(PO4)3: Sr2+ 1.80; Mn2+ 2.07; Fe3+ 3.18; PV 5.00.
3. Database survey
A comparison between the structures of the title compounds and those of other phosphates such as the AM4(PO4)3 compounds (A = monovalent cation and M = divalent cation) (Im et al., 2014), reveals that all these compounds crystallize with orthorhombic symmetry and nearly the same unit-cell parameters despite the differences between their chemical formulae and space groups. In order to give an illustrative picture of the similarity between these two formula types, we can write the general formula of AM4(PO4)3 compounds as follows: M′2+(A+M2+)M22+(PO4)3 and that of the title compounds as M′2+Fe3+Mn22+(PO4)3. The principal structures of the title compounds and that of the AM4(PO4)3 compounds are formed by stacking of the same infinite zigzag chains of edge-sharing octahedra. Furthermore, these structures are characterized by the presence of two types of channels in which the large cations are located.
4. Synthesis and crystallization
Single crystals of the title compounds were isolated as a result of solid-state reactions. Stoichiometric amounts of alkaline earth (M = Ba, Sr), manganese, iron and phosphate precursors in a molar ratio M:Mn:Fe:P = 1:2:1:3, were dissolved in 40 ml water that was placed into a 100 ml capacity pyrex glass beaker. The mixture was stirred at room temperature for 20 h and was evaporated under stirring at 363 K until dryness. The obtained black powder was ground in an agate mortar and pre-heated at 573 K in a platinum crucible for 24 h to eliminate gaseous materials. Subsequently, the resulting residue was reground and melted for 30 min at 1293 K, followed by slow cooling down to 1093 K at a rate 5K h−1 and a rapid cooling to room temperature by switching off the furnace. In the case of the BaO–MnO–Fe2O3–P2O5 system, the reaction product consisted of two types of crystals, viz. orange crystals of the title compound, BaMn2Fe(PO4)3, and dark-violet crystals that were identified to be another new phase. In the case of the SrO–MnO–Fe2O3–P2O5 system, the reaction product contained dark-brown crystals corresponding to the title compound, SrMn2Fe(PO4)3.
5. Refinement
Crystal data, data collection and structure . For BaMn2Fe(PO4)3, the maximum and minimum remaining electron densities are located 0.60 and 0.42 Å from atom Ba1. For SrMn2Fe(PO4)3, they are 0.58 and 0.31 Å from Sr1.
details for the two compounds are summarized in Table 1Supporting information
https://doi.org/10.1107/S2056989017006120/wm5384sup1.cif
contains datablocks I, II, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017006120/wm5384Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017006120/wm5384IIsup3.hkl
For both compounds, data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006) for (I); ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) for (II). For both compounds, software used to prepare material for publication: publCIF (Westrip, 2010).BaMn2Fe(PO4)3 | Dx = 3.946 Mg m−3 |
Mr = 587.98 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 3088 reflections |
a = 6.5899 (2) Å | θ = 3.3–40.1° |
b = 17.6467 (4) Å | µ = 8.41 mm−1 |
c = 8.5106 (2) Å | T = 296 K |
V = 989.70 (4) Å3 | Block, orange |
Z = 4 | 0.32 × 0.25 × 0.22 mm |
F(000) = 1092 |
Bruker X8 APEX diffractometer | 3088 independent reflections |
Radiation source: fine-focus sealed tube | 2731 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
φ and ω scans | θmax = 40.1°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→11 |
Tmin = 0.596, Tmax = 0.748 | k = −31→32 |
29422 measured reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0178P)2 + 1.2088P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.018 | (Δ/σ)max = 0.002 |
wR(F2) = 0.044 | Δρmax = 1.29 e Å−3 |
S = 1.05 | Δρmin = −1.11 e Å−3 |
3088 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
89 parameters | Extinction coefficient: 0.00278 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.5000 | 0.44269 (2) | 0.7500 | 0.01037 (3) | |
Fe1 | 1.0000 | 0.31799 (2) | 0.7500 | 0.00461 (4) | |
Mn1 | 0.83899 (3) | 0.36570 (2) | 0.39874 (2) | 0.00647 (4) | |
P1 | 0.83270 (5) | 0.17935 (2) | 0.53771 (3) | 0.00490 (5) | |
P2 | 1.0000 | 0.47123 (2) | 0.7500 | 0.00513 (7) | |
O1 | 1.01958 (15) | 0.12822 (6) | 0.55338 (13) | 0.01186 (16) | |
O2 | 0.66250 (15) | 0.15480 (5) | 0.64868 (11) | 0.00865 (14) | |
O3 | 0.76365 (15) | 0.17592 (5) | 0.36487 (10) | 0.00794 (14) | |
O4 | 0.88706 (16) | 0.26335 (5) | 0.57277 (11) | 0.01031 (15) | |
O5 | 0.89269 (15) | 0.41422 (5) | 0.63609 (10) | 0.00656 (13) | |
O6 | 0.83805 (16) | 0.51729 (5) | 0.83211 (12) | 0.00988 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.00562 (5) | 0.01428 (5) | 0.01119 (5) | 0.000 | −0.00082 (3) | 0.000 |
Fe1 | 0.00537 (9) | 0.00435 (8) | 0.00411 (8) | 0.000 | 0.00015 (7) | 0.000 |
Mn1 | 0.00598 (7) | 0.00785 (6) | 0.00559 (7) | −0.00021 (5) | 0.00041 (6) | 0.00013 (5) |
P1 | 0.00360 (11) | 0.00666 (10) | 0.00443 (10) | −0.00050 (9) | −0.00036 (9) | −0.00071 (8) |
P2 | 0.00571 (17) | 0.00355 (13) | 0.00611 (15) | 0.000 | 0.00000 (13) | 0.000 |
O1 | 0.0058 (4) | 0.0170 (4) | 0.0128 (4) | 0.0047 (3) | −0.0016 (3) | −0.0004 (3) |
O2 | 0.0064 (3) | 0.0126 (3) | 0.0070 (3) | −0.0017 (3) | 0.0007 (3) | 0.0021 (3) |
O3 | 0.0066 (4) | 0.0127 (3) | 0.0045 (3) | 0.0002 (3) | −0.0018 (3) | −0.0017 (3) |
O4 | 0.0136 (4) | 0.0087 (3) | 0.0086 (3) | −0.0047 (3) | −0.0002 (3) | −0.0028 (3) |
O5 | 0.0084 (3) | 0.0058 (3) | 0.0055 (3) | −0.0007 (3) | −0.0009 (3) | −0.0003 (2) |
O6 | 0.0091 (4) | 0.0071 (3) | 0.0134 (4) | 0.0017 (3) | 0.0011 (3) | −0.0031 (3) |
Ba1—O6 | 2.6803 (10) | Mn1—O6vi | 2.1413 (9) |
Ba1—O6i | 2.6803 (10) | Mn1—O1ii | 2.1466 (10) |
Ba1—O3ii | 2.7861 (9) | Mn1—O2vii | 2.1587 (9) |
Ba1—O3iii | 2.7861 (9) | Mn1—O2v | 2.1997 (10) |
Ba1—O5 | 2.8087 (10) | Mn1—O5 | 2.2223 (9) |
Ba1—O5i | 2.8087 (10) | Mn1—O4 | 2.3572 (10) |
Ba1—O1ii | 2.8722 (11) | P1—O2 | 1.5289 (10) |
Ba1—O1iii | 2.8722 (11) | P1—O1 | 1.5325 (10) |
Fe1—O4 | 1.9387 (9) | P1—O3 | 1.5409 (9) |
Fe1—O4iv | 1.9387 (9) | P1—O4 | 1.5540 (9) |
Fe1—O3v | 1.9965 (9) | P2—O6 | 1.5126 (10) |
Fe1—O3iii | 1.9965 (9) | P2—O6iv | 1.5126 (10) |
Fe1—O5iv | 2.0792 (9) | P2—O5 | 1.5659 (9) |
Fe1—O5 | 2.0793 (9) | P2—O5iv | 1.5660 (9) |
O6—Ba1—O6i | 121.17 (4) | O4iv—Fe1—O5iv | 85.00 (4) |
O6—Ba1—O3ii | 157.68 (3) | O3v—Fe1—O5iv | 83.59 (4) |
O6i—Ba1—O3ii | 79.21 (3) | O3iii—Fe1—O5iv | 91.36 (4) |
O6—Ba1—O3iii | 79.21 (3) | O4—Fe1—O5 | 85.00 (4) |
O6i—Ba1—O3iii | 157.68 (3) | O4iv—Fe1—O5 | 154.09 (4) |
O3ii—Ba1—O3iii | 82.60 (4) | O3v—Fe1—O5 | 91.36 (4) |
O6—Ba1—O5 | 53.99 (3) | O3iii—Fe1—O5 | 83.59 (4) |
O6i—Ba1—O5 | 139.79 (3) | O5iv—Fe1—O5 | 70.50 (5) |
O3ii—Ba1—O5 | 105.04 (3) | O6vi—Mn1—O1ii | 89.96 (4) |
O3iii—Ba1—O5 | 58.11 (3) | O6vi—Mn1—O2vii | 84.29 (4) |
O6—Ba1—O5i | 139.79 (3) | O1ii—Mn1—O2vii | 101.01 (4) |
O6i—Ba1—O5i | 53.99 (3) | O6vi—Mn1—O2v | 96.48 (4) |
O3ii—Ba1—O5i | 58.11 (3) | O1ii—Mn1—O2v | 173.39 (4) |
O3iii—Ba1—O5i | 105.04 (3) | O2vii—Mn1—O2v | 78.23 (4) |
O5—Ba1—O5i | 159.39 (3) | O6vi—Mn1—O5 | 82.51 (4) |
O6—Ba1—O1ii | 114.27 (3) | O1ii—Mn1—O5 | 87.96 (4) |
O6i—Ba1—O1ii | 90.97 (3) | O2vii—Mn1—O5 | 164.03 (4) |
O3ii—Ba1—O1ii | 51.86 (3) | O2v—Mn1—O5 | 94.35 (4) |
O3iii—Ba1—O1ii | 87.88 (3) | O6vi—Mn1—O4 | 154.91 (4) |
O5—Ba1—O1ii | 64.56 (3) | O1ii—Mn1—O4 | 92.91 (4) |
O5i—Ba1—O1ii | 105.89 (3) | O2vii—Mn1—O4 | 119.45 (3) |
O6—Ba1—O1iii | 90.97 (3) | O2v—Mn1—O4 | 81.90 (4) |
O6i—Ba1—O1iii | 114.27 (3) | O5—Mn1—O4 | 72.70 (3) |
O3ii—Ba1—O1iii | 87.88 (3) | O2—P1—O1 | 111.65 (6) |
O3iii—Ba1—O1iii | 51.86 (3) | O2—P1—O3 | 111.22 (5) |
O5—Ba1—O1iii | 105.89 (3) | O1—P1—O3 | 107.29 (6) |
O5i—Ba1—O1iii | 64.55 (3) | O2—P1—O4 | 108.71 (5) |
O1ii—Ba1—O1iii | 128.34 (4) | O1—P1—O4 | 111.08 (6) |
O4—Fe1—O4iv | 120.35 (6) | O3—P1—O4 | 106.79 (5) |
O4—Fe1—O3v | 88.85 (4) | O6—P2—O6iv | 115.00 (8) |
O4iv—Fe1—O3v | 94.22 (4) | O6—P2—O5 | 108.22 (5) |
O4—Fe1—O3iii | 94.22 (4) | O6iv—P2—O5 | 112.20 (5) |
O4iv—Fe1—O3iii | 88.85 (4) | O6—P2—O5iv | 112.20 (5) |
O3v—Fe1—O3iii | 173.83 (5) | O6iv—P2—O5iv | 108.22 (5) |
O4—Fe1—O5iv | 154.09 (4) | O5—P2—O5iv | 100.05 (7) |
Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+3/2, −y+1/2, z+1/2; (iv) −x+2, y, −z+3/2; (v) x+1/2, −y+1/2, −z+1; (vi) x, −y+1, z−1/2; (vii) −x+3/2, −y+1/2, z−1/2. |
SrMn2Fe(PO4)3 | Dx = 3.669 Mg m−3 |
Mr = 538.25 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 2843 reflections |
a = 6.4304 (3) Å | θ = 3.3–39.1° |
b = 17.8462 (7) Å | µ = 10.00 mm−1 |
c = 8.4906 (3) Å | T = 296 K |
V = 974.37 (7) Å3 | Block, dark brown |
Z = 4 | 0.30 × 0.27 × 0.23 mm |
F(000) = 1020 |
Bruker X8 APEX diffractometer | 2843 independent reflections |
Radiation source: fine-focus sealed tube | 2564 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
φ and ω scans | θmax = 39.1°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→10 |
Tmin = 0.404, Tmax = 0.748 | k = −31→31 |
23889 measured reflections | l = −8→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0183P)2 + 1.2279P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.021 | (Δ/σ)max = 0.001 |
wR(F2) = 0.048 | Δρmax = 1.19 e Å−3 |
S = 1.08 | Δρmin = −0.81 e Å−3 |
2843 reflections | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
89 parameters | Extinction coefficient: 0.0072 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.5000 | 0.43233 (2) | 0.7500 | 0.00986 (4) | |
Fe1 | 1.0000 | 0.31546 (2) | 0.7500 | 0.00485 (4) | |
Mn1 | 0.83818 (3) | 0.37163 (2) | 0.39547 (2) | 0.00679 (4) | |
P1 | 0.83555 (5) | 0.17749 (2) | 0.53581 (3) | 0.00571 (5) | |
P2 | 1.0000 | 0.46759 (2) | 0.7500 | 0.00485 (7) | |
O1 | 1.02378 (15) | 0.12570 (6) | 0.54770 (13) | 0.01473 (18) | |
O2 | 0.66091 (14) | 0.15203 (5) | 0.64550 (11) | 0.00922 (14) | |
O3 | 0.76936 (14) | 0.17505 (5) | 0.36165 (10) | 0.00794 (14) | |
O4 | 0.89115 (17) | 0.25971 (6) | 0.57468 (12) | 0.01448 (18) | |
O5 | 0.89256 (14) | 0.41164 (5) | 0.63388 (10) | 0.00662 (13) | |
O6 | 0.82775 (15) | 0.51251 (5) | 0.82684 (12) | 0.00991 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.00601 (7) | 0.01296 (7) | 0.01060 (7) | 0.000 | −0.00134 (5) | 0.000 |
Fe1 | 0.00567 (9) | 0.00423 (8) | 0.00466 (8) | 0.000 | 0.00026 (7) | 0.000 |
Mn1 | 0.00547 (7) | 0.00927 (7) | 0.00563 (7) | −0.00023 (5) | 0.00064 (5) | −0.00056 (5) |
P1 | 0.00382 (10) | 0.00858 (11) | 0.00473 (10) | −0.00077 (9) | −0.00010 (9) | −0.00167 (8) |
P2 | 0.00502 (15) | 0.00357 (13) | 0.00597 (15) | 0.000 | −0.00017 (12) | 0.000 |
O1 | 0.0066 (4) | 0.0237 (5) | 0.0139 (4) | 0.0062 (3) | −0.0013 (3) | 0.0010 (4) |
O2 | 0.0061 (3) | 0.0149 (4) | 0.0067 (3) | −0.0015 (3) | 0.0009 (3) | 0.0025 (3) |
O3 | 0.0067 (3) | 0.0125 (3) | 0.0046 (3) | 0.0001 (3) | −0.0012 (3) | −0.0013 (3) |
O4 | 0.0174 (4) | 0.0133 (4) | 0.0128 (4) | −0.0084 (3) | 0.0029 (3) | −0.0074 (3) |
O5 | 0.0085 (3) | 0.0062 (3) | 0.0052 (3) | −0.0009 (3) | −0.0016 (3) | −0.0006 (2) |
O6 | 0.0085 (3) | 0.0073 (3) | 0.0140 (4) | 0.0019 (3) | 0.0015 (3) | −0.0032 (3) |
Sr1—O3i | 2.6020 (9) | Mn1—O1i | 2.0790 (10) |
Sr1—O3ii | 2.6020 (9) | Mn1—O2v | 2.1462 (9) |
Sr1—O6iii | 2.6296 (9) | Mn1—O6vi | 2.1494 (9) |
Sr1—O6 | 2.6296 (10) | Mn1—O2vii | 2.1641 (9) |
Sr1—O5 | 2.7351 (9) | Mn1—O5 | 2.1748 (9) |
Sr1—O5iii | 2.7351 (9) | Mn1—O4 | 2.5338 (12) |
Sr1—O1i | 2.7358 (11) | P1—O1 | 1.5263 (10) |
Sr1—O1ii | 2.7358 (11) | P1—O2 | 1.5281 (9) |
Fe1—O4 | 1.9224 (10) | P1—O3 | 1.5394 (9) |
Fe1—O4iv | 1.9224 (10) | P1—O4 | 1.5459 (10) |
Fe1—O3v | 1.9818 (9) | P2—O6 | 1.5149 (9) |
Fe1—O3ii | 1.9818 (9) | P2—O6iv | 1.5149 (9) |
Fe1—O5 | 2.0966 (9) | P2—O5iv | 1.5641 (9) |
Fe1—O5iv | 2.0966 (9) | P2—O5 | 1.5641 (9) |
O3i—Sr1—O3ii | 85.14 (4) | O4iv—Fe1—O5 | 155.20 (4) |
O3i—Sr1—O6iii | 81.58 (3) | O3v—Fe1—O5 | 89.60 (4) |
O3ii—Sr1—O6iii | 161.43 (3) | O3ii—Fe1—O5 | 82.35 (4) |
O3i—Sr1—O6 | 161.43 (3) | O4—Fe1—O5iv | 155.20 (4) |
O3ii—Sr1—O6 | 81.58 (3) | O4iv—Fe1—O5iv | 86.54 (4) |
O6iii—Sr1—O6 | 114.07 (4) | O3v—Fe1—O5iv | 82.35 (4) |
O3i—Sr1—O5 | 107.18 (3) | O3ii—Fe1—O5iv | 89.60 (4) |
O3ii—Sr1—O5 | 60.39 (3) | O5—Fe1—O5iv | 70.09 (5) |
O6iii—Sr1—O5 | 136.36 (3) | O1i—Mn1—O2v | 169.25 (4) |
O6—Sr1—O5 | 54.77 (3) | O1i—Mn1—O6vi | 90.60 (4) |
O3i—Sr1—O5iii | 60.39 (3) | O2v—Mn1—O6vi | 100.11 (4) |
O3ii—Sr1—O5iii | 107.18 (3) | O1i—Mn1—O2vii | 103.58 (4) |
O6iii—Sr1—O5iii | 54.77 (3) | O2v—Mn1—O2vii | 78.47 (4) |
O6—Sr1—O5iii | 136.36 (3) | O6vi—Mn1—O2vii | 85.52 (4) |
O5—Sr1—O5iii | 164.49 (4) | O1i—Mn1—O5 | 86.15 (4) |
O3i—Sr1—O1i | 54.30 (3) | O2v—Mn1—O5 | 93.44 (4) |
O3ii—Sr1—O1i | 91.49 (3) | O6vi—Mn1—O5 | 86.65 (4) |
O6iii—Sr1—O1i | 91.23 (3) | O2vii—Mn1—O5 | 167.55 (4) |
O6—Sr1—O1i | 112.98 (3) | O1i—Mn1—O4 | 90.54 (4) |
O5—Sr1—O1i | 64.17 (3) | O2v—Mn1—O4 | 79.18 (4) |
O5iii—Sr1—O1i | 109.48 (3) | O6vi—Mn1—O4 | 157.72 (4) |
O3i—Sr1—O1ii | 91.49 (3) | O2vii—Mn1—O4 | 115.78 (3) |
O3ii—Sr1—O1ii | 54.30 (3) | O5—Mn1—O4 | 71.23 (3) |
O6iii—Sr1—O1ii | 112.98 (3) | O1—P1—O2 | 111.25 (6) |
O6—Sr1—O1ii | 91.23 (3) | O1—P1—O3 | 105.40 (6) |
O5—Sr1—O1ii | 109.48 (3) | O2—P1—O3 | 111.95 (5) |
O5iii—Sr1—O1ii | 64.17 (3) | O1—P1—O4 | 112.17 (6) |
O1i—Sr1—O1ii | 135.52 (5) | O2—P1—O4 | 108.80 (6) |
O4—Fe1—O4iv | 117.67 (7) | O3—P1—O4 | 107.21 (6) |
O4—Fe1—O3v | 89.54 (4) | O6—P2—O6iv | 116.11 (7) |
O4iv—Fe1—O3v | 95.53 (4) | O6—P2—O5iv | 112.91 (5) |
O4—Fe1—O3ii | 95.53 (4) | O6iv—P2—O5iv | 106.63 (5) |
O4iv—Fe1—O3ii | 89.54 (4) | O6—P2—O5 | 106.64 (5) |
O3v—Fe1—O3ii | 170.19 (5) | O6iv—P2—O5 | 112.91 (5) |
O4—Fe1—O5 | 86.54 (4) | O5iv—P2—O5 | 100.66 (7) |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+3/2, −y+1/2, z+1/2; (iii) −x+1, y, −z+3/2; (iv) −x+2, y, −z+3/2; (v) x+1/2, −y+1/2, −z+1; (vi) x, −y+1, z−1/2; (vii) −x+3/2, −y+1/2, z−1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University in Rabat, Morocco, for financial support.
References
Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40. CrossRef IUCr Journals Google Scholar
Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56. CrossRef IUCr Journals Google Scholar
Assaaoudi, H., Fang, Z., Ryan, D. H., Butler, I. S. & Kozinski, J. A. (2006). Can. J. Chem. 84, 124–133. CrossRef CAS Google Scholar
Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60. CrossRef IUCr Journals Google Scholar
Attfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. (1988). J. Appl. Cryst. 21, 452–457. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouzidi, C., Frigui, W. & Zid, M. F. (2015). Acta Cryst. E71, 69–72. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chouaibi, N., Daidouh, A., Pico, C., Santrich, A. & Veiga, M. L. (2001). J. Solid State Chem. 159, 46–50. Web of Science CrossRef CAS Google Scholar
Daidouh, A., Pico, C. & Veiga, M. L. (1999). Solid State Ionics, 124, 109–117. Web of Science CrossRef CAS Google Scholar
Durio, C., Daidouh, A., Chouaibi, N., Pico, C. & Veiga, M. L. (2002). J. Solid State Chem. 168, 208–216. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferdov, S., Reis, M. S., Lin, Z. & Ferreira, R. A. S. (2008). Inorg. Chem. 47, 10062–10066. CrossRef PubMed CAS Google Scholar
Férey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res. 38, 217–225. Web of Science PubMed Google Scholar
Im, Y., Kim, P. & Yun, H. (2014). Bull. Korean Chem. Soc. 35, 1225–1228. CrossRef CAS Google Scholar
Jignasa, A., Rakesh, T. & Uma, C. (2006). J. Chem. Sci. 118, 185–189. CrossRef Google Scholar
Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kullberg, L. & Clearfield, A. (1981). J. Phys. Chem. 85, 1585–1589. CrossRef CAS Google Scholar
López, M.-L., Durio, C., Daidouh, A., Pico, C. & Veiga, M.-L. (2004). Chem. Eur. J. 10, 1106–1113. PubMed Google Scholar
Moore, P. B. (1971). Am. Mineral. 56, 1955–1975. CAS Google Scholar
Rao, C. N. R., Natarajan, S., Choudhury, A., Neeraj, S. & Ayi, A. A. (2001). Acc. Chem. Res. 34, 80–87. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Weng, W., Lin, Z., Dummer, N. F., Bartley, J. K., Hutchings, G. J. & Kiely, G. J. (2009). Microsc. Microanal. 15 (Suppl. 2), 1438–1439. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, B.-C., Yao, Y.-W. & Wang, R.-J. (2002). Acta Cryst. C58, i109–i110. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.