research communications
of 1,4,8,11-tetraazoniacyclotetradecane bis(dichromate) monohydrate from synchrotron data
aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr
The 10H28N4)[Cr2O7]2·H2O [C10H28N4 = H4(cyclam) = 1,4,8,11-tetraazoniacyclotetradecane], contains two half-cations (both completed by crystallographic inversion symmetry), two dichromate anions and one water molecule. The two [CrO7]2− anions exhibit a nearly with bridging angles of 133.37 (11) and 136.28 (12)°. The distortions of the dichromate anions are due to their participation in hydrogen-bonding interactions with the water molecule and the cations. Intermolecular hydrogen bonds involving the cyclam N—H groups and water O—H groups as donor groups, and the O atoms of the dichromate anions as acceptor groups give rise to a three-dimensional network.
of the hydrated title salt, (CKeywords: crystal structure; 1,4,8,11-tetraazoniacyclotetradecane; dichromate anion; hydrogen bonding; synchrotron radiation.
CCDC reference: 1534082
1. Chemical context
Chromium(VI) compounds are highly cytotoxic and potential carcinogens (Cohen et al., 1993). A number of treatment methods for the removal of such toxic heavy metal ions in water have been described (Kalidhasan et al., 2016), and 1,4,8,11-tetraazacyclotetradecane (cyclam) is possibly one of the most useful candidates for this purpose since it has a strong ability to act as an effective metal-ion binding molecule. The azamacrocycle is a strong basic amine to form a dication, (C10H26N4)2+, or a tetracation, (C10H28N4)4+, in both of which all of the N—H bonds are generally active in hydrogen-bond formation. These di- or tetraammonium cations may also be suitable candidates for the removal of toxic metal ions. Previously, the syntheses and crystal structures of [H2(cyclam)](ClO4)2 (Nave & Truter, 1974), [H2(cyclam)]Cl2·0.5H2O (Kim et al., 2009), [H4(cyclam)](NO3)4·2H2O (Harrowfield et al., 1996), [H2(cyclam)](maleate)2 (Mireille Ninon et al., 2013), [H4(cyclam)](HSO4)4 (Said et al., 2013), [H4(cyclam)]Cl4, [H4(cyclam)]Cl4·4H2O, [H4(cyclam)]Br4·4H2O, [H4(cyclam)](ClO4)4·2H2O (Robinson et al., 1989) and [H4(cyclam)](SO4)2·6H2O (Subramanian & Zaworotko, 1995) have been reported. The of neutral cyclam has also been determined (Robinson et al., 1989), but a combination of the 1,4,8,11-tetraazoniacyclotetradecane cation with the [CrO7]2− anion has not been reported. We give here details of the preparation of the title compound, a new hydrated organic dichromate(VI) salt, [H4(cyclam)][Cr2O7]2·H2O, (I), and its structural characterization by synchrotron single-crystal X-ray diffraction.
2. Structural commentary
An ellipsoid plot of the molecular components of (I) along with the atom-numbering scheme is shown in Fig. 1. The comprises of two half-cations (both completed by crystallographic inversion symmetry), two dichromate anions and one water molecule. Within the centrosymmetric tetra-protonated amine unit, (C10H28N4)4+, the C—C and N—C bond lengths range from 1.491 (3) to 1.520 (3) Å and from 1.489 (3) to 1.524 (3) Å, respectively. The range of N—C—C and C—N—C angles is 109.84 (19) to 116.69 (18)° and 110.15 (18) to 111.5 (2)°, respectively. Bond lengths and angles within the tetraammonium cations are comparable to the corresponding values determined for the cyclam ligand in trans-[Cr(nic-O)2(cyclam)]ClO4 (nic-O = O-coordinating nicotinate; Choi, 2009), cis-[Cr(ONO)2(cyclam)]NO2 (Choi et al., 2004a), [Cr(ox)(cyclam)]ClO4 (ox = oxalate; Choi et al., 2004b), [Cr(acac)(cyclam)](ClO4)2·0.5H2O (acac = acetylacetonate; Subhan et al., 2011), cis-[Cr(NCS)2(cyclam)]NCS (Moon et al., 2013) or [CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 (Moon & Choi, 2016).
It is of interest to compare the conformation of the [CrO7]2− anion with those found in other ionic crystals. In (I), the two [CrO7]2− anions exhibit a nearly whereas an eclipsed conformation is observed for (C3H5N2)(NH4)[Cr2O7] or (C9H14N)2[Cr2O7] (Zhu, 2012; Trabelsi et al., 2015). The conformation of dichromate anions appears to show a dependence on the size of the associated counter-cation (Moon et al., 2015, 2017). The Cr1A—O1A—Cr2A and Cr1B—O1B—Cr2B bridging angles in the anions in (I) are 133.37 (11) and 136.28 (12)°, respectively, slightly larger than 130.26 (10)° in [Cr(urea)6][Cr2O7]Br·H2O (Moon et al., 2015). The smaller Cr1A—O1A—Cr2A bridging angle is probably due to the non-involvement of the terminal oxygen atoms of Cr2A in any hydrogen bond. Cr—Ob (Ob = bridging O atom) bonds range from 1.7711 (19) to 1.799 (2) Å while the Cr—Ot bond lengths to the terminal O atoms vary from 1.590 (2) to 1.6417 (19) Å, with a mean terminal Cr—O bond length of 1.615 Å. The Cr—O bond lengths for atoms involved in hydrogen-bonding interactions are slightly longer than the other Cr—O bonds. This trend is similar to that observed for comparable anions in the structures of [Cr(urea)6][Cr2O7]Br·H2O (Moon et al., 2015), [Cr(NCS)2(cyclam)]2[Cr2O7]·H2O (Moon et al., 2017) or [Cr(ox)(cyclam)]2[Cr2O7]·8H2O (Moon & Choi, 2017).
3. Supramolecular features
Extensive N—H⋯O and O—H⋯O hydrogen-bonding interactions occur in the ). Two O—H⋯O hydrogen bonds link the water molecule to two neighboring [CrO7]2− anions while N—H⋯O hydrogen bonds interconnect the (C10H28N4)4+ cations with both anions (Figs. 1 and 2). An extensive array of these contacts generates a three-dimensional network (Fig. 2) and, apart from Coulombic interactions, these hydrogen-bonding interactions help to stabilize the crystal structure.
(Table 14. Database survey
A search of the Cambridge Structural Database (Version 5.38, Feb 2017 with two updates; Groom et al. 2016) revealed a total of 24 hits for compounds containing 1,4,8,11-tetraazoniacyclotetradecane (C10H28N4)4+ or 4,11-diaza-1,8-diazoniacyclotetradecane (C10H26N4)2+ cations, but a combination with dichromate anions has not been reported.
5. Synthesis and crystallization
Cyclam (98%) was purchased from Sigma–Aldrich and used without further purification. All other chemicals were reagent-grade materials, and were used as received. 0.102 g of chromium trioxide (1 mmol, Sigma–Aldrich) was dissolved in 20 ml of water and 0.012 g of cyclam (0.06 mmol, Sigma–Aldrich) was added at room temperature. The mixture was stirred for 30 minutes and the resulting solution was filtered. The neat filtrate was allowed to stand for one week to give block-like yellow crystals of (I) suitable for X-ray structural analysis.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99 Å and N—H = 0.91 Å, respectively, and with Uiso(H) values of 1.2Ueq of the parent atoms. The hydrogen atoms of the solvent water molecule were assigned based on a difference-Fourier map, and were refined with distance restraints of 0.84 (2) Å (using DFIX and DANG commands), and with Uiso(H) values of 1.5Ueq of the parent atom. The remaining maximum and minimum electron densities in the final Fourier map are located 0.85 and 0.54 Å, respectively, from the Cr1B site. Six reflections with a poor agreement between measured and calculated intensities were omitted from the final cycles.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1534082
https://doi.org/10.1107/S2056989017005771/wm5385sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017005771/wm5385Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017005771/wm5385Isup3.cml
Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).(C10H28N4)[Cr2O7]2·H2O | F(000) = 1336 |
Mr = 654.38 | Dx = 1.934 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.610 Å |
a = 10.428 (2) Å | Cell parameters from 70448 reflections |
b = 13.961 (2) Å | θ = 0.4–33.7° |
c = 15.490 (2) Å | µ = 1.28 mm−1 |
β = 94.671 (3)° | T = 200 K |
V = 2247.6 (6) Å3 | Block, yellow |
Z = 4 | 0.11 × 0.10 × 0.09 mm |
ADSC Q210 CCD area detector diffractometer | 5804 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.016 |
ω scan | θmax = 25.5°, θmin = 1.7° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski & Minor, 1997) | h = −14→14 |
Tmin = 0.942, Tmax = 1.000 | k = −19→19 |
12953 measured reflections | l = −21→21 |
6614 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0712P)2 + 4.2149P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.124 | (Δ/σ)max = 0.001 |
S = 1.09 | Δρmax = 2.21 e Å−3 |
6614 reflections | Δρmin = −1.04 e Å−3 |
307 parameters | Extinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
3 restraints | Extinction coefficient: 0.0096 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cr1A | 0.94583 (4) | 0.25171 (3) | 0.36481 (2) | 0.00893 (10) | |
Cr2A | 0.97052 (4) | 0.12932 (3) | 0.18519 (2) | 0.01054 (10) | |
O1A | 0.94853 (19) | 0.23337 (12) | 0.25072 (11) | 0.0152 (3) | |
O2A | 0.9464 (2) | 0.16272 (14) | 0.08541 (12) | 0.0215 (4) | |
O3A | 0.8720 (2) | 0.04430 (14) | 0.20636 (13) | 0.0198 (4) | |
O4A | 1.1160 (2) | 0.09255 (16) | 0.20477 (14) | 0.0239 (4) | |
O5A | 1.05842 (18) | 0.18684 (14) | 0.41408 (13) | 0.0198 (4) | |
O6A | 0.80867 (18) | 0.22499 (15) | 0.39940 (13) | 0.0207 (4) | |
O7A | 0.9714 (2) | 0.36520 (13) | 0.37925 (12) | 0.0189 (4) | |
Cr1B | 0.49741 (4) | 0.58036 (3) | 0.18882 (2) | 0.01299 (10) | |
Cr2B | 0.45749 (4) | 0.72591 (3) | 0.35345 (2) | 0.01274 (10) | |
O1B | 0.5392 (2) | 0.66545 (16) | 0.27369 (13) | 0.0226 (4) | |
O2B | 0.3859 (2) | 0.51137 (17) | 0.21811 (15) | 0.0283 (5) | |
O3B | 0.6245 (2) | 0.51689 (16) | 0.17659 (13) | 0.0244 (4) | |
O4B | 0.4512 (2) | 0.63565 (15) | 0.09915 (13) | 0.0225 (4) | |
O5B | 0.5562 (3) | 0.8034 (2) | 0.39672 (19) | 0.0485 (8) | |
O6B | 0.4180 (2) | 0.65172 (15) | 0.42912 (13) | 0.0222 (4) | |
O7B | 0.3338 (3) | 0.7803 (2) | 0.31136 (17) | 0.0442 (7) | |
N1C | 1.1608 (2) | 0.48518 (17) | 0.07746 (16) | 0.0207 (4) | |
H1NC | 1.192696 | 0.527486 | 0.118455 | 0.025* | |
H2NC | 1.084404 | 0.508441 | 0.053719 | 0.025* | |
N2C | 0.8491 (2) | 0.38005 (16) | 0.07391 (15) | 0.0179 (4) | |
H3NC | 0.905802 | 0.373982 | 0.032598 | 0.021* | |
H4NC | 0.829751 | 0.320363 | 0.092561 | 0.021* | |
C1C | 1.2545 (2) | 0.47649 (17) | 0.00725 (15) | 0.0133 (4) | |
H1C1 | 1.338852 | 0.453735 | 0.033274 | 0.016* | |
H1C2 | 1.221515 | 0.428903 | −0.036475 | 0.016* | |
C2C | 1.1387 (2) | 0.38925 (17) | 0.11984 (15) | 0.0129 (4) | |
H2C1 | 1.110865 | 0.341470 | 0.074936 | 0.016* | |
H2C2 | 1.219961 | 0.366488 | 0.150578 | 0.016* | |
C3C | 1.0374 (2) | 0.39918 (15) | 0.18280 (12) | 0.0071 (3) | |
H3C1 | 1.022978 | 0.335164 | 0.207745 | 0.008* | |
H3C2 | 1.072279 | 0.440867 | 0.230818 | 0.008* | |
C4C | 0.9100 (2) | 0.43839 (17) | 0.14937 (15) | 0.0125 (4) | |
H4C1 | 0.920930 | 0.505402 | 0.130394 | 0.015* | |
H4C2 | 0.851635 | 0.438789 | 0.196698 | 0.015* | |
C5C | 0.72907 (19) | 0.42821 (15) | 0.03596 (13) | 0.0068 (3) | |
H5C1 | 0.671037 | 0.437307 | 0.082792 | 0.008* | |
H5C2 | 0.685296 | 0.384273 | −0.007113 | 0.008* | |
N1D | 0.74042 (19) | 0.43291 (15) | 0.45783 (13) | 0.0124 (4) | |
H1ND | 0.797863 | 0.387321 | 0.444322 | 0.015* | |
H2ND | 0.694753 | 0.408892 | 0.500537 | 0.015* | |
N2D | 0.6336 (2) | 0.57400 (17) | 0.58080 (16) | 0.0213 (5) | |
H3ND | 0.589300 | 0.521117 | 0.561168 | 0.026* | |
H4ND | 0.676852 | 0.559214 | 0.632478 | 0.026* | |
C1D | 0.5652 (2) | 0.36748 (17) | 0.35112 (15) | 0.0139 (4) | |
H1D1 | 0.527317 | 0.380206 | 0.291539 | 0.017* | |
H1D2 | 0.619964 | 0.309743 | 0.348804 | 0.017* | |
C2D | 0.6505 (2) | 0.45172 (18) | 0.38007 (15) | 0.0131 (4) | |
H2D1 | 0.701386 | 0.470585 | 0.331598 | 0.016* | |
H2D2 | 0.594811 | 0.506624 | 0.392587 | 0.016* | |
C3D | 0.8139 (2) | 0.52031 (18) | 0.49225 (16) | 0.0144 (4) | |
H3D1 | 0.870329 | 0.542564 | 0.447912 | 0.017* | |
H3D2 | 0.869859 | 0.501556 | 0.544205 | 0.017* | |
C4D | 0.7290 (2) | 0.60301 (18) | 0.51601 (16) | 0.0142 (4) | |
H4D1 | 0.680965 | 0.627588 | 0.462816 | 0.017* | |
H4D2 | 0.783948 | 0.655524 | 0.541016 | 0.017* | |
C5D | 0.5418 (2) | 0.65411 (15) | 0.59291 (14) | 0.0084 (4) | |
H5D1 | 0.503368 | 0.674117 | 0.535164 | 0.010* | |
H5D2 | 0.591171 | 0.709254 | 0.618333 | 0.010* | |
O1W | 0.7376 (2) | 0.75592 (18) | 0.19670 (18) | 0.0313 (5) | |
H1O1 | 0.749 (13) | 0.723 (5) | 0.152 (4) | 0.30 (8)* | |
H2O1 | 0.708 (5) | 0.718 (3) | 0.232 (3) | 0.066 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1A | 0.01239 (17) | 0.00745 (17) | 0.00736 (17) | 0.00232 (12) | 0.00323 (12) | 0.00134 (12) |
Cr2A | 0.01754 (19) | 0.00764 (17) | 0.00646 (17) | 0.00091 (13) | 0.00113 (12) | −0.00038 (12) |
O1A | 0.0271 (9) | 0.0096 (7) | 0.0094 (7) | 0.0002 (7) | 0.0048 (6) | −0.0016 (6) |
O2A | 0.0375 (11) | 0.0171 (9) | 0.0098 (8) | 0.0022 (8) | 0.0012 (7) | 0.0016 (7) |
O3A | 0.0267 (10) | 0.0128 (8) | 0.0197 (9) | −0.0043 (7) | −0.0002 (7) | 0.0030 (7) |
O4A | 0.0219 (9) | 0.0260 (10) | 0.0238 (10) | 0.0072 (8) | 0.0012 (8) | −0.0015 (8) |
O5A | 0.0186 (9) | 0.0214 (9) | 0.0194 (9) | 0.0085 (7) | 0.0013 (7) | 0.0053 (7) |
O6A | 0.0161 (8) | 0.0260 (10) | 0.0209 (9) | 0.0013 (7) | 0.0059 (7) | 0.0078 (8) |
O7A | 0.0306 (10) | 0.0104 (8) | 0.0159 (8) | 0.0000 (7) | 0.0036 (7) | −0.0028 (6) |
Cr1B | 0.01447 (19) | 0.01425 (19) | 0.01028 (18) | 0.00271 (13) | 0.00115 (13) | −0.00104 (13) |
Cr2B | 0.0189 (2) | 0.01113 (18) | 0.00895 (17) | 0.00155 (13) | 0.00592 (13) | 0.00160 (13) |
O1B | 0.0241 (9) | 0.0264 (10) | 0.0181 (9) | −0.0004 (8) | 0.0067 (7) | −0.0098 (8) |
O2B | 0.0254 (10) | 0.0306 (11) | 0.0292 (11) | −0.0093 (9) | 0.0038 (8) | 0.0042 (9) |
O3B | 0.0250 (10) | 0.0290 (11) | 0.0194 (9) | 0.0134 (8) | 0.0023 (7) | −0.0046 (8) |
O4B | 0.0276 (10) | 0.0218 (10) | 0.0171 (9) | 0.0010 (8) | −0.0051 (7) | 0.0036 (7) |
O5B | 0.0656 (19) | 0.0379 (14) | 0.0446 (15) | −0.0317 (14) | 0.0206 (14) | −0.0224 (12) |
O6B | 0.0291 (10) | 0.0231 (10) | 0.0149 (8) | −0.0037 (8) | 0.0040 (7) | 0.0079 (7) |
O7B | 0.0396 (14) | 0.0612 (18) | 0.0347 (13) | 0.0314 (13) | 0.0199 (11) | 0.0275 (13) |
N1C | 0.0239 (11) | 0.0177 (10) | 0.0207 (10) | 0.0008 (9) | 0.0035 (8) | 0.0042 (9) |
N2C | 0.0230 (11) | 0.0143 (10) | 0.0165 (10) | −0.0009 (8) | 0.0028 (8) | −0.0007 (8) |
C1C | 0.0150 (10) | 0.0110 (10) | 0.0140 (10) | 0.0001 (8) | 0.0020 (8) | 0.0013 (8) |
C2C | 0.0151 (10) | 0.0113 (10) | 0.0125 (9) | 0.0006 (8) | 0.0011 (8) | 0.0028 (8) |
C3C | 0.0131 (9) | 0.0052 (8) | 0.0028 (8) | −0.0017 (7) | 0.0005 (7) | 0.0022 (6) |
C4C | 0.0161 (10) | 0.0119 (10) | 0.0098 (9) | 0.0001 (8) | 0.0019 (8) | −0.0017 (8) |
C5C | 0.0083 (8) | 0.0076 (8) | 0.0046 (8) | −0.0029 (7) | 0.0020 (6) | 0.0005 (7) |
N1D | 0.0140 (9) | 0.0138 (9) | 0.0096 (8) | 0.0049 (7) | 0.0021 (7) | 0.0015 (7) |
N2D | 0.0226 (11) | 0.0189 (11) | 0.0228 (11) | 0.0038 (9) | 0.0039 (9) | 0.0000 (9) |
C1D | 0.0164 (10) | 0.0149 (10) | 0.0106 (10) | 0.0037 (8) | 0.0017 (8) | −0.0030 (8) |
C2D | 0.0136 (10) | 0.0159 (10) | 0.0098 (9) | 0.0021 (8) | 0.0000 (7) | 0.0024 (8) |
C3D | 0.0108 (9) | 0.0183 (11) | 0.0141 (10) | 0.0000 (8) | 0.0021 (8) | 0.0024 (9) |
C4D | 0.0148 (10) | 0.0128 (10) | 0.0152 (10) | −0.0017 (8) | 0.0019 (8) | −0.0002 (8) |
C5D | 0.0107 (9) | 0.0054 (8) | 0.0093 (9) | 0.0017 (7) | 0.0018 (7) | −0.0019 (7) |
O1W | 0.0229 (10) | 0.0311 (12) | 0.0405 (13) | 0.0049 (9) | 0.0053 (9) | 0.0165 (10) |
Cr1A—O6A | 1.6114 (19) | C3C—C4C | 1.491 (3) |
Cr1A—O7A | 1.6192 (19) | C3C—H3C1 | 0.9900 |
Cr1A—O5A | 1.6233 (19) | C3C—H3C2 | 0.9900 |
Cr1A—O1A | 1.7882 (18) | C4C—H4C1 | 0.9900 |
Cr2A—O4A | 1.607 (2) | C4C—H4C2 | 0.9900 |
Cr2A—O2A | 1.6143 (19) | C5C—H5C1 | 0.9900 |
Cr2A—O3A | 1.6209 (19) | C5C—H5C2 | 0.9900 |
Cr2A—O1A | 1.7975 (18) | N1D—C2D | 1.489 (3) |
Cr1B—O2B | 1.603 (2) | N1D—C3D | 1.515 (3) |
Cr1B—O3B | 1.618 (2) | N1D—H1ND | 0.9100 |
Cr1B—O4B | 1.627 (2) | N1D—H2ND | 0.9100 |
Cr1B—O1B | 1.799 (2) | N2D—C5D | 1.494 (3) |
Cr2B—O7B | 1.590 (2) | N2D—C4D | 1.524 (3) |
Cr2B—O5B | 1.602 (3) | N2D—H3ND | 0.9100 |
Cr2B—O6B | 1.6417 (19) | N2D—H4ND | 0.9100 |
Cr2B—O1B | 1.7711 (19) | C1D—C5Dii | 1.498 (3) |
N1C—C2C | 1.517 (3) | C1D—C2D | 1.520 (3) |
N1C—C1C | 1.524 (3) | C1D—H1D1 | 0.9900 |
N1C—H1NC | 0.9100 | C1D—H1D2 | 0.9900 |
N1C—H2NC | 0.9100 | C2D—H2D1 | 0.9900 |
N2C—C5C | 1.498 (3) | C2D—H2D2 | 0.9900 |
N2C—C4C | 1.521 (3) | C3D—C4D | 1.519 (3) |
N2C—H3NC | 0.9100 | C3D—H3D1 | 0.9900 |
N2C—H4NC | 0.9100 | C3D—H3D2 | 0.9900 |
C1C—C5Ci | 1.506 (3) | C4D—H4D1 | 0.9900 |
C1C—H1C1 | 0.9900 | C4D—H4D2 | 0.9900 |
C1C—H1C2 | 0.9900 | C5D—H5D1 | 0.9900 |
C2C—C3C | 1.501 (3) | C5D—H5D2 | 0.9900 |
C2C—H2C1 | 0.9900 | O1W—H1O1 | 0.844 (10) |
C2C—H2C2 | 0.9900 | O1W—H2O1 | 0.844 (10) |
O6A—Cr1A—O7A | 108.74 (11) | C3C—C4C—N2C | 112.02 (19) |
O6A—Cr1A—O5A | 110.00 (10) | C3C—C4C—H4C1 | 109.2 |
O7A—Cr1A—O5A | 112.10 (11) | N2C—C4C—H4C1 | 109.2 |
O6A—Cr1A—O1A | 112.41 (10) | C3C—C4C—H4C2 | 109.2 |
O7A—Cr1A—O1A | 105.13 (9) | N2C—C4C—H4C2 | 109.2 |
O5A—Cr1A—O1A | 108.41 (9) | H4C1—C4C—H4C2 | 107.9 |
O4A—Cr2A—O2A | 110.11 (11) | N2C—C5C—C1Ci | 116.69 (18) |
O4A—Cr2A—O3A | 109.41 (11) | N2C—C5C—H5C1 | 108.1 |
O2A—Cr2A—O3A | 110.70 (11) | C1Ci—C5C—H5C1 | 108.1 |
O4A—Cr2A—O1A | 108.27 (10) | N2C—C5C—H5C2 | 108.1 |
O2A—Cr2A—O1A | 106.87 (9) | C1Ci—C5C—H5C2 | 108.1 |
O3A—Cr2A—O1A | 111.43 (10) | H5C1—C5C—H5C2 | 107.3 |
Cr1A—O1A—Cr2A | 133.37 (11) | C2D—N1D—C3D | 114.21 (19) |
O2B—Cr1B—O3B | 108.89 (13) | C2D—N1D—H1ND | 108.7 |
O2B—Cr1B—O4B | 110.81 (11) | C3D—N1D—H1ND | 108.7 |
O3B—Cr1B—O4B | 110.38 (11) | C2D—N1D—H2ND | 108.7 |
O2B—Cr1B—O1B | 109.15 (11) | C3D—N1D—H2ND | 108.7 |
O3B—Cr1B—O1B | 107.16 (10) | H1ND—N1D—H2ND | 107.6 |
O4B—Cr1B—O1B | 110.35 (11) | C5D—N2D—C4D | 110.1 (2) |
O7B—Cr2B—O5B | 108.74 (19) | C5D—N2D—H3ND | 109.6 |
O7B—Cr2B—O6B | 110.59 (12) | C4D—N2D—H3ND | 109.6 |
O5B—Cr2B—O6B | 108.50 (14) | C5D—N2D—H4ND | 109.6 |
O7B—Cr2B—O1B | 111.22 (12) | C4D—N2D—H4ND | 109.6 |
O5B—Cr2B—O1B | 106.51 (13) | H3ND—N2D—H4ND | 108.2 |
O6B—Cr2B—O1B | 111.12 (11) | C5Dii—C1D—C2D | 115.47 (19) |
Cr2B—O1B—Cr1B | 136.28 (12) | C5Dii—C1D—H1D1 | 108.4 |
C2C—N1C—C1C | 111.5 (2) | C2D—C1D—H1D1 | 108.4 |
C2C—N1C—H1NC | 109.3 | C5Dii—C1D—H1D2 | 108.4 |
C1C—N1C—H1NC | 109.3 | C2D—C1D—H1D2 | 108.4 |
C2C—N1C—H2NC | 109.3 | H1D1—C1D—H1D2 | 107.5 |
C1C—N1C—H2NC | 109.3 | N1D—C2D—C1D | 114.7 (2) |
H1NC—N1C—H2NC | 108.0 | N1D—C2D—H2D1 | 108.6 |
C5C—N2C—C4C | 110.15 (18) | C1D—C2D—H2D1 | 108.6 |
C5C—N2C—H3NC | 109.6 | N1D—C2D—H2D2 | 108.6 |
C4C—N2C—H3NC | 109.6 | C1D—C2D—H2D2 | 108.6 |
C5C—N2C—H4NC | 109.6 | H2D1—C2D—H2D2 | 107.6 |
C4C—N2C—H4NC | 109.6 | N1D—C3D—C4D | 114.17 (19) |
H3NC—N2C—H4NC | 108.1 | N1D—C3D—H3D1 | 108.7 |
C5Ci—C1C—N1C | 110.47 (19) | C4D—C3D—H3D1 | 108.7 |
C5Ci—C1C—H1C1 | 109.6 | N1D—C3D—H3D2 | 108.7 |
N1C—C1C—H1C1 | 109.6 | C4D—C3D—H3D2 | 108.7 |
C5Ci—C1C—H1C2 | 109.6 | H3D1—C3D—H3D2 | 107.6 |
N1C—C1C—H1C2 | 109.6 | C3D—C4D—N2D | 112.5 (2) |
H1C1—C1C—H1C2 | 108.1 | C3D—C4D—H4D1 | 109.1 |
C3C—C2C—N1C | 109.84 (19) | N2D—C4D—H4D1 | 109.1 |
C3C—C2C—H2C1 | 109.7 | C3D—C4D—H4D2 | 109.1 |
N1C—C2C—H2C1 | 109.7 | N2D—C4D—H4D2 | 109.1 |
C3C—C2C—H2C2 | 109.7 | H4D1—C4D—H4D2 | 107.8 |
N1C—C2C—H2C2 | 109.7 | N2D—C5D—C1Dii | 115.92 (19) |
H2C1—C2C—H2C2 | 108.2 | N2D—C5D—H5D1 | 108.3 |
C4C—C3C—C2C | 117.56 (18) | C1Dii—C5D—H5D1 | 108.3 |
C4C—C3C—H3C1 | 107.9 | N2D—C5D—H5D2 | 108.3 |
C2C—C3C—H3C1 | 107.9 | C1Dii—C5D—H5D2 | 108.3 |
C4C—C3C—H3C2 | 107.9 | H5D1—C5D—H5D2 | 107.4 |
C2C—C3C—H3C2 | 107.9 | H1O1—O1W—H2O1 | 106 (3) |
H3C1—C3C—H3C2 | 107.2 | ||
O6A—Cr1A—O1A—Cr2A | −81.13 (17) | C2C—N1C—C1C—C5Ci | 177.91 (19) |
O7A—Cr1A—O1A—Cr2A | 160.74 (15) | C1C—N1C—C2C—C3C | −175.00 (19) |
O5A—Cr1A—O1A—Cr2A | 40.70 (18) | N1C—C2C—C3C—C4C | 55.8 (3) |
O4A—Cr2A—O1A—Cr1A | −67.38 (18) | C2C—C3C—C4C—N2C | 56.8 (3) |
O2A—Cr2A—O1A—Cr1A | 174.04 (15) | C5C—N2C—C4C—C3C | −173.51 (18) |
O3A—Cr2A—O1A—Cr1A | 52.99 (18) | C4C—N2C—C5C—C1Ci | 65.9 (2) |
O7B—Cr2B—O1B—Cr1B | −53.2 (2) | C3D—N1D—C2D—C1D | −173.36 (19) |
O5B—Cr2B—O1B—Cr1B | −171.5 (2) | C5Dii—C1D—C2D—N1D | 73.5 (3) |
O6B—Cr2B—O1B—Cr1B | 70.5 (2) | C2D—N1D—C3D—C4D | 57.5 (3) |
O2B—Cr1B—O1B—Cr2B | −32.7 (2) | N1D—C3D—C4D—N2D | 55.5 (3) |
O3B—Cr1B—O1B—Cr2B | −150.48 (18) | C5D—N2D—C4D—C3D | −172.66 (19) |
O4B—Cr1B—O1B—Cr2B | 89.3 (2) | C4D—N2D—C5D—C1Dii | 174.65 (19) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1C—H1NC···O2Biii | 0.91 | 2.45 | 3.091 (3) | 128 |
N1D—H1ND···O6A | 0.91 | 2.38 | 3.140 (3) | 142 |
N1D—H1ND···O7A | 0.91 | 2.16 | 2.942 (3) | 143 |
N1D—H2ND···O6Bii | 0.91 | 1.87 | 2.768 (3) | 169 |
N2C—H3NC···O6Aiv | 0.91 | 2.62 | 3.074 (3) | 112 |
N2C—H4NC···O7Bv | 0.91 | 2.42 | 3.047 (3) | 126 |
N2C—H4NC···O2A | 0.91 | 2.52 | 3.200 (3) | 132 |
N2D—H3ND···O6Bii | 0.91 | 2.42 | 3.198 (3) | 144 |
N2D—H4ND···O2Bii | 0.91 | 2.65 | 3.357 (3) | 136 |
O1W—H1O1···O5Avi | 0.84 (1) | 2.38 (10) | 2.999 (3) | 130 (11) |
O1W—H2O1···O1B | 0.84 (1) | 2.05 (4) | 2.774 (3) | 143 (5) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) x, −y+1/2, z−1/2; (v) −x+1, y−1/2, −z+1/2; (vi) −x+2, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.
References
Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44. Web of Science CSD CrossRef CAS Google Scholar
Cohen, M. D., Kargacin, B., Klein, C. B. & Costa, M. (1993). Crit. Rev. Toxicol. 23, 255–281. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Harrowfield, J. M., Miyamae, H., Shand, T. M., Skelton, B., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1051–1066. CrossRef CAS Google Scholar
Kalidhasan, S., Kumar, A. S. K., Rajesh, V. & Rajesh, N. (2016). Coord. Chem. Rev. 317, 157–166. CrossRef CAS Google Scholar
Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, o2128. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mireille Ninon, M. O., Fahim, M., Lachkar, M., Marco Contelles, J. L., Perles, J. & El Bali, B. (2013). Acta Cryst. E69, o1574–o1575. CrossRef IUCr Journals Google Scholar
Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 1417–1420. CrossRef IUCr Journals Google Scholar
Moon, D. & Choi, J.-H. (2017). Acta Cryst. E73, 403–406. CrossRef IUCr Journals Google Scholar
Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. CSD CrossRef IUCr Journals Google Scholar
Moon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72–75. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336–1339. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nave, C. & Truter, M. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2351–2354. CSD CrossRef Web of Science Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press. Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Robinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287–294. CrossRef CAS Web of Science Google Scholar
Said, S., Mhadhbi, N., Hajlaoui, F., Bataille, T. & Naïli, H. (2013). Acta Cryst. E69, o1278. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197. Web of Science CSD CrossRef CAS Google Scholar
Subramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem. 73, 414–424. CSD CrossRef CAS Web of Science Google Scholar
Trabelsi, S., Roisnel, T. & Marouani, H. (2015). J. Advan. Chem, 11, 3394–3403. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, R.-Q. (2012). Acta Cryst. E68, m389. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.