research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,4,8,11-tetra­azonia­cyclo­tetra­decane bis­­(dichromate) monohydrate from synchrotron data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 April 2017; accepted 17 April 2017; online 28 April 2017)

The asymmetric unit of the hydrated title salt, (C10H28N4)[Cr2O7]2·H2O [C10H28N4 = H4(cyclam) = 1,4,8,11-tetra­azonia­cyclo­tetra­deca­ne], contains two half-cations (both completed by crystallographic inversion symmetry), two dichromate anions and one water mol­ecule. The two [CrO7]2− anions exhibit a nearly staggered conformation, with bridging angles of 133.37 (11) and 136.28 (12)°. The distortions of the dichromate anions are due to their participation in hydrogen-bonding inter­actions with the water mol­ecule and the cations. Inter­molecular hydrogen bonds involving the cyclam N—H groups and water O—H groups as donor groups, and the O atoms of the dichromate anions as acceptor groups give rise to a three-dimensional network.

1. Chemical context

Chromium(VI) compounds are highly cytotoxic and potential carcinogens (Cohen et al., 1993[Cohen, M. D., Kargacin, B., Klein, C. B. & Costa, M. (1993). Crit. Rev. Toxicol. 23, 255-281.]). A number of treatment methods for the removal of such toxic heavy metal ions in water have been described (Kalidhasan et al., 2016[Kalidhasan, S., Kumar, A. S. K., Rajesh, V. & Rajesh, N. (2016). Coord. Chem. Rev. 317, 157-166.]), and 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) is possibly one of the most useful candidates for this purpose since it has a strong ability to act as an effective metal-ion binding mol­ecule. The aza­macrocycle is a strong basic amine to form a dication, (C10H26N4)2+, or a tetra­cation, (C10H28N4)4+, in both of which all of the N—H bonds are generally active in hydrogen-bond formation. These di- or tetra­ammonium cations may also be suitable candidates for the removal of toxic metal ions. Previously, the syntheses and crystal structures of [H2(cyclam)](ClO4)2 (Nave & Truter, 1974[Nave, C. & Truter, M. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2351-2354.]), [H2(cyclam)]Cl2·0.5H2O (Kim et al., 2009[Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, o2128.]), [H4(cyclam)](NO3)4·2H2O (Harrowfield et al., 1996[Harrowfield, J. M., Miyamae, H., Shand, T. M., Skelton, B., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1051-1066.]), [H2(cyclam)](maleate)2 (Mireille Ninon et al., 2013[Mireille Ninon, M. O., Fahim, M., Lachkar, M., Marco Contelles, J. L., Perles, J. & El Bali, B. (2013). Acta Cryst. E69, o1574-o1575.]), [H4(cyclam)](HSO4)4 (Said et al., 2013[Said, S., Mhadhbi, N., Hajlaoui, F., Bataille, T. & Naïli, H. (2013). Acta Cryst. E69, o1278.]), [H4(cyclam)]Cl4, [H4(cyclam)]Cl4·4H2O, [H4(cyclam)]Br4·4H2O, [H4(cyclam)](ClO4)4·2H2O (Robinson et al., 1989[Robinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287-294.]) and [H4(cyclam)](SO4)2·6H2O (Subramanian & Zaworotko, 1995[Subramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem. 73, 414-424.]) have been reported. The crystal structure of neutral cyclam has also been determined (Robinson et al., 1989[Robinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287-294.]), but a combination of the 1,4,8,11-tetra­azonia­cyclo­tetra­decane cation with the [CrO7]2− anion has not been reported. We give here details of the preparation of the title compound, a new hydrated organic dichromate(VI) salt, [H4(cyclam)][Cr2O7]2·H2O, (I)[link], and its structural characterization by synchrotron single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

An ellipsoid plot of the mol­ecular components of (I)[link] along with the atom-numbering scheme is shown in Fig. 1[link]. The asymmetric unit comprises of two half-cations (both completed by crystallographic inversion symmetry), two dichromate anions and one water mol­ecule. Within the centrosymmetric tetra-protonated amine unit, (C10H28N4)4+, the C—C and N—C bond lengths range from 1.491 (3) to 1.520 (3) Å and from 1.489 (3) to 1.524 (3) Å, respectively. The range of N—C—C and C—N—C angles is 109.84 (19) to 116.69 (18)° and 110.15 (18) to 111.5 (2)°, respectively. Bond lengths and angles within the tetra­ammonium cations are comparable to the corresponding values determined for the cyclam ligand in trans-[Cr(nic-O)2(cyclam)]ClO4 (nic-O = O-coordinating nicotinate; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]), cis-[Cr(ONO)2(cyclam)]NO2 (Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238-m240.]), [Cr(ox)(cyclam)]ClO4 (ox = oxalate; Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]), [Cr(acac)(cyclam)](ClO4)2·0.5H2O (acac = acetyl­acetonate; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]), cis-[Cr(NCS)2(cyclam)]NCS (Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]) or [CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 (Moon & Choi, 2016[Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 1417-1420.]).

[Figure 1]
Figure 1
The structures of the mol­ecular components in (I)[link], drawn with displacement ellipsoids at the 60% probability level. Dashed lines represent hydrogen-bonding inter­actions.

It is of inter­est to compare the conformation of the [CrO7]2− anion with those found in other ionic crystals. In (I)[link], the two [CrO7]2− anions exhibit a nearly staggered conformation whereas an eclipsed conformation is observed for (C3H5N2)(NH4)[Cr2O7] or (C9H14N)2[Cr2O7] (Zhu, 2012[Zhu, R.-Q. (2012). Acta Cryst. E68, m389.]; Trabelsi et al., 2015[Trabelsi, S., Roisnel, T. & Marouani, H. (2015). J. Advan. Chem, 11, 3394-3403.]). The conformation of dichromate anions appears to show a dependence on the size of the associated counter-cation (Moon et al., 2015[Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336-1339.], 2017[Moon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72-75.]). The Cr1A—O1A—Cr2A and Cr1B—O1B—Cr2B bridging angles in the anions in (I)[link] are 133.37 (11) and 136.28 (12)°, respectively, slightly larger than 130.26 (10)° in [Cr(urea)6][Cr2O7]Br·H2O (Moon et al., 2015[Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336-1339.]). The smaller Cr1A—O1A—Cr2A bridging angle is probably due to the non-involvement of the terminal oxygen atoms of Cr2A in any hydrogen bond. Cr—Ob (Ob = bridging O atom) bonds range from 1.7711 (19) to 1.799 (2) Å while the Cr—Ot bond lengths to the terminal O atoms vary from 1.590 (2) to 1.6417 (19) Å, with a mean terminal Cr—O bond length of 1.615 Å. The Cr—O bond lengths for atoms involved in hydrogen-bonding inter­actions are slightly longer than the other Cr—O bonds. This trend is similar to that observed for comparable anions in the structures of [Cr(urea)6][Cr2O7]Br·H2O (Moon et al., 2015[Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336-1339.]), [Cr(NCS)2(cyclam)]2[Cr2O7]·H2O (Moon et al., 2017[Moon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72-75.]) or [Cr(ox)(cyclam)]2[Cr2O7]·8H2O (Moon & Choi, 2017[Moon, D. & Choi, J.-H. (2017). Acta Cryst. E73, 403-406.]).

3. Supra­molecular features

Extensive N—H⋯O and O—H⋯O hydrogen-bonding inter­actions occur in the crystal structure (Table 1[link]). Two O—H⋯O hydrogen bonds link the water mol­ecule to two neighboring [CrO7]2− anions while N—H⋯O hydrogen bonds inter­connect the (C10H28N4)4+ cations with both anions (Figs. 1[link] and 2[link]). An extensive array of these contacts generates a three-dimensional network (Fig. 2[link]) and, apart from Coulombic inter­actions, these hydrogen-bonding inter­actions help to stabilize the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1C—H1NC⋯O2Bi 0.91 2.45 3.091 (3) 128
N1D—H1ND⋯O6A 0.91 2.38 3.140 (3) 142
N1D—H1ND⋯O7A 0.91 2.16 2.942 (3) 143
N1D—H2ND⋯O6Bii 0.91 1.87 2.768 (3) 169
N2C—H3NC⋯O6Aiii 0.91 2.62 3.074 (3) 112
N2C—H4NC⋯O7Biv 0.91 2.42 3.047 (3) 126
N2C—H4NC⋯O2A 0.91 2.52 3.200 (3) 132
N2D—H3ND⋯O6Bii 0.91 2.42 3.198 (3) 144
N2D—H4ND⋯O2Bii 0.91 2.65 3.357 (3) 136
O1W—H1O1⋯O5Av 0.84 (1) 2.38 (10) 2.999 (3) 130 (11)
O1W—H2O1⋯O1B 0.84 (1) 2.05 (4) 2.774 (3) 143 (5)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing in compound (I)[link], viewed perpendicular to the bc plane. Dashed lines represent N—H⋯O (pink) and O—H⋯O (cyan) hydrogen-bonding inter­actions, respectively. H atoms bound to C atoms have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, Feb 2017 with two updates; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed a total of 24 hits for compounds containing 1,4,8,11-tetra­azonia­cyclo­tetra­decane (C10H28N4)4+ or 4,11-di­aza-1,8-diazo­nia­cyclo­tetra­decane (C10H26N4)2+ cations, but a combination with dichromate anions has not been reported.

5. Synthesis and crystallization

Cyclam (98%) was purchased from Sigma–Aldrich and used without further purification. All other chemicals were reagent-grade materials, and were used as received. 0.102 g of chromium trioxide (1 mmol, Sigma–Aldrich) was dissolved in 20 ml of water and 0.012 g of cyclam (0.06 mmol, Sigma–Aldrich) was added at room temperature. The mixture was stirred for 30 minutes and the resulting solution was filtered. The neat filtrate was allowed to stand for one week to give block-like yellow crystals of (I)[link] suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99 Å and N—H = 0.91 Å, respectively, and with Uiso(H) values of 1.2Ueq of the parent atoms. The hydrogen atoms of the solvent water mol­ecule were assigned based on a difference-Fourier map, and were refined with distance restraints of 0.84 (2) Å (using DFIX and DANG commands), and with Uiso(H) values of 1.5Ueq of the parent atom. The remaining maximum and minimum electron densities in the final Fourier map are located 0.85 and 0.54 Å, respectively, from the Cr1B site. Six reflections with a poor agreement between measured and calculated intensities were omitted from the final refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula (C10H28N4)[Cr2O7]2·H2O
Mr 654.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 10.428 (2), 13.961 (2), 15.490 (2)
β (°) 94.671 (3)
V3) 2247.6 (6)
Z 4
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 1.28
Crystal size (mm) 0.11 × 0.10 × 0.09
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.])
Tmin, Tmax 0.942, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12953, 6614, 5804
Rint 0.016
(sin θ/λ)max−1) 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.124, 1.09
No. of reflections 6614
No. of parameters 307
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.21, −1.04
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307-326. New York: Academic Press.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

1,4,8,11-Tetraazoniacyclotetradecane bis(dichromate) monohydrate top
Crystal data top
(C10H28N4)[Cr2O7]2·H2OF(000) = 1336
Mr = 654.38Dx = 1.934 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.610 Å
a = 10.428 (2) ÅCell parameters from 70448 reflections
b = 13.961 (2) Åθ = 0.4–33.7°
c = 15.490 (2) ŵ = 1.28 mm1
β = 94.671 (3)°T = 200 K
V = 2247.6 (6) Å3Block, yellow
Z = 40.11 × 0.10 × 0.09 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
5804 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.016
ω scanθmax = 25.5°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.942, Tmax = 1.000k = 1919
12953 measured reflectionsl = 2121
6614 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0712P)2 + 4.2149P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max = 0.001
S = 1.09Δρmax = 2.21 e Å3
6614 reflectionsΔρmin = 1.04 e Å3
307 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0096 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr1A0.94583 (4)0.25171 (3)0.36481 (2)0.00893 (10)
Cr2A0.97052 (4)0.12932 (3)0.18519 (2)0.01054 (10)
O1A0.94853 (19)0.23337 (12)0.25072 (11)0.0152 (3)
O2A0.9464 (2)0.16272 (14)0.08541 (12)0.0215 (4)
O3A0.8720 (2)0.04430 (14)0.20636 (13)0.0198 (4)
O4A1.1160 (2)0.09255 (16)0.20477 (14)0.0239 (4)
O5A1.05842 (18)0.18684 (14)0.41408 (13)0.0198 (4)
O6A0.80867 (18)0.22499 (15)0.39940 (13)0.0207 (4)
O7A0.9714 (2)0.36520 (13)0.37925 (12)0.0189 (4)
Cr1B0.49741 (4)0.58036 (3)0.18882 (2)0.01299 (10)
Cr2B0.45749 (4)0.72591 (3)0.35345 (2)0.01274 (10)
O1B0.5392 (2)0.66545 (16)0.27369 (13)0.0226 (4)
O2B0.3859 (2)0.51137 (17)0.21811 (15)0.0283 (5)
O3B0.6245 (2)0.51689 (16)0.17659 (13)0.0244 (4)
O4B0.4512 (2)0.63565 (15)0.09915 (13)0.0225 (4)
O5B0.5562 (3)0.8034 (2)0.39672 (19)0.0485 (8)
O6B0.4180 (2)0.65172 (15)0.42912 (13)0.0222 (4)
O7B0.3338 (3)0.7803 (2)0.31136 (17)0.0442 (7)
N1C1.1608 (2)0.48518 (17)0.07746 (16)0.0207 (4)
H1NC1.1926960.5274860.1184550.025*
H2NC1.0844040.5084410.0537190.025*
N2C0.8491 (2)0.38005 (16)0.07391 (15)0.0179 (4)
H3NC0.9058020.3739820.0325980.021*
H4NC0.8297510.3203630.0925610.021*
C1C1.2545 (2)0.47649 (17)0.00725 (15)0.0133 (4)
H1C11.3388520.4537350.0332740.016*
H1C21.2215150.4289030.0364750.016*
C2C1.1387 (2)0.38925 (17)0.11984 (15)0.0129 (4)
H2C11.1108650.3414700.0749360.016*
H2C21.2199610.3664880.1505780.016*
C3C1.0374 (2)0.39918 (15)0.18280 (12)0.0071 (3)
H3C11.0229780.3351640.2077450.008*
H3C21.0722790.4408670.2308180.008*
C4C0.9100 (2)0.43839 (17)0.14937 (15)0.0125 (4)
H4C10.9209300.5054020.1303940.015*
H4C20.8516350.4387890.1966980.015*
C5C0.72907 (19)0.42821 (15)0.03596 (13)0.0068 (3)
H5C10.6710370.4373070.0827920.008*
H5C20.6852960.3842730.0071130.008*
N1D0.74042 (19)0.43291 (15)0.45783 (13)0.0124 (4)
H1ND0.7978630.3873210.4443220.015*
H2ND0.6947530.4088920.5005370.015*
N2D0.6336 (2)0.57400 (17)0.58080 (16)0.0213 (5)
H3ND0.5893000.5211170.5611680.026*
H4ND0.6768520.5592140.6324780.026*
C1D0.5652 (2)0.36748 (17)0.35112 (15)0.0139 (4)
H1D10.5273170.3802060.2915390.017*
H1D20.6199640.3097430.3488040.017*
C2D0.6505 (2)0.45172 (18)0.38007 (15)0.0131 (4)
H2D10.7013860.4705850.3315980.016*
H2D20.5948110.5066240.3925870.016*
C3D0.8139 (2)0.52031 (18)0.49225 (16)0.0144 (4)
H3D10.8703290.5425640.4479120.017*
H3D20.8698590.5015560.5442050.017*
C4D0.7290 (2)0.60301 (18)0.51601 (16)0.0142 (4)
H4D10.6809650.6275880.4628160.017*
H4D20.7839480.6555240.5410160.017*
C5D0.5418 (2)0.65411 (15)0.59291 (14)0.0084 (4)
H5D10.5033680.6741170.5351640.010*
H5D20.5911710.7092540.6183330.010*
O1W0.7376 (2)0.75592 (18)0.19670 (18)0.0313 (5)
H1O10.749 (13)0.723 (5)0.152 (4)0.30 (8)*
H2O10.708 (5)0.718 (3)0.232 (3)0.066 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.01239 (17)0.00745 (17)0.00736 (17)0.00232 (12)0.00323 (12)0.00134 (12)
Cr2A0.01754 (19)0.00764 (17)0.00646 (17)0.00091 (13)0.00113 (12)0.00038 (12)
O1A0.0271 (9)0.0096 (7)0.0094 (7)0.0002 (7)0.0048 (6)0.0016 (6)
O2A0.0375 (11)0.0171 (9)0.0098 (8)0.0022 (8)0.0012 (7)0.0016 (7)
O3A0.0267 (10)0.0128 (8)0.0197 (9)0.0043 (7)0.0002 (7)0.0030 (7)
O4A0.0219 (9)0.0260 (10)0.0238 (10)0.0072 (8)0.0012 (8)0.0015 (8)
O5A0.0186 (9)0.0214 (9)0.0194 (9)0.0085 (7)0.0013 (7)0.0053 (7)
O6A0.0161 (8)0.0260 (10)0.0209 (9)0.0013 (7)0.0059 (7)0.0078 (8)
O7A0.0306 (10)0.0104 (8)0.0159 (8)0.0000 (7)0.0036 (7)0.0028 (6)
Cr1B0.01447 (19)0.01425 (19)0.01028 (18)0.00271 (13)0.00115 (13)0.00104 (13)
Cr2B0.0189 (2)0.01113 (18)0.00895 (17)0.00155 (13)0.00592 (13)0.00160 (13)
O1B0.0241 (9)0.0264 (10)0.0181 (9)0.0004 (8)0.0067 (7)0.0098 (8)
O2B0.0254 (10)0.0306 (11)0.0292 (11)0.0093 (9)0.0038 (8)0.0042 (9)
O3B0.0250 (10)0.0290 (11)0.0194 (9)0.0134 (8)0.0023 (7)0.0046 (8)
O4B0.0276 (10)0.0218 (10)0.0171 (9)0.0010 (8)0.0051 (7)0.0036 (7)
O5B0.0656 (19)0.0379 (14)0.0446 (15)0.0317 (14)0.0206 (14)0.0224 (12)
O6B0.0291 (10)0.0231 (10)0.0149 (8)0.0037 (8)0.0040 (7)0.0079 (7)
O7B0.0396 (14)0.0612 (18)0.0347 (13)0.0314 (13)0.0199 (11)0.0275 (13)
N1C0.0239 (11)0.0177 (10)0.0207 (10)0.0008 (9)0.0035 (8)0.0042 (9)
N2C0.0230 (11)0.0143 (10)0.0165 (10)0.0009 (8)0.0028 (8)0.0007 (8)
C1C0.0150 (10)0.0110 (10)0.0140 (10)0.0001 (8)0.0020 (8)0.0013 (8)
C2C0.0151 (10)0.0113 (10)0.0125 (9)0.0006 (8)0.0011 (8)0.0028 (8)
C3C0.0131 (9)0.0052 (8)0.0028 (8)0.0017 (7)0.0005 (7)0.0022 (6)
C4C0.0161 (10)0.0119 (10)0.0098 (9)0.0001 (8)0.0019 (8)0.0017 (8)
C5C0.0083 (8)0.0076 (8)0.0046 (8)0.0029 (7)0.0020 (6)0.0005 (7)
N1D0.0140 (9)0.0138 (9)0.0096 (8)0.0049 (7)0.0021 (7)0.0015 (7)
N2D0.0226 (11)0.0189 (11)0.0228 (11)0.0038 (9)0.0039 (9)0.0000 (9)
C1D0.0164 (10)0.0149 (10)0.0106 (10)0.0037 (8)0.0017 (8)0.0030 (8)
C2D0.0136 (10)0.0159 (10)0.0098 (9)0.0021 (8)0.0000 (7)0.0024 (8)
C3D0.0108 (9)0.0183 (11)0.0141 (10)0.0000 (8)0.0021 (8)0.0024 (9)
C4D0.0148 (10)0.0128 (10)0.0152 (10)0.0017 (8)0.0019 (8)0.0002 (8)
C5D0.0107 (9)0.0054 (8)0.0093 (9)0.0017 (7)0.0018 (7)0.0019 (7)
O1W0.0229 (10)0.0311 (12)0.0405 (13)0.0049 (9)0.0053 (9)0.0165 (10)
Geometric parameters (Å, º) top
Cr1A—O6A1.6114 (19)C3C—C4C1.491 (3)
Cr1A—O7A1.6192 (19)C3C—H3C10.9900
Cr1A—O5A1.6233 (19)C3C—H3C20.9900
Cr1A—O1A1.7882 (18)C4C—H4C10.9900
Cr2A—O4A1.607 (2)C4C—H4C20.9900
Cr2A—O2A1.6143 (19)C5C—H5C10.9900
Cr2A—O3A1.6209 (19)C5C—H5C20.9900
Cr2A—O1A1.7975 (18)N1D—C2D1.489 (3)
Cr1B—O2B1.603 (2)N1D—C3D1.515 (3)
Cr1B—O3B1.618 (2)N1D—H1ND0.9100
Cr1B—O4B1.627 (2)N1D—H2ND0.9100
Cr1B—O1B1.799 (2)N2D—C5D1.494 (3)
Cr2B—O7B1.590 (2)N2D—C4D1.524 (3)
Cr2B—O5B1.602 (3)N2D—H3ND0.9100
Cr2B—O6B1.6417 (19)N2D—H4ND0.9100
Cr2B—O1B1.7711 (19)C1D—C5Dii1.498 (3)
N1C—C2C1.517 (3)C1D—C2D1.520 (3)
N1C—C1C1.524 (3)C1D—H1D10.9900
N1C—H1NC0.9100C1D—H1D20.9900
N1C—H2NC0.9100C2D—H2D10.9900
N2C—C5C1.498 (3)C2D—H2D20.9900
N2C—C4C1.521 (3)C3D—C4D1.519 (3)
N2C—H3NC0.9100C3D—H3D10.9900
N2C—H4NC0.9100C3D—H3D20.9900
C1C—C5Ci1.506 (3)C4D—H4D10.9900
C1C—H1C10.9900C4D—H4D20.9900
C1C—H1C20.9900C5D—H5D10.9900
C2C—C3C1.501 (3)C5D—H5D20.9900
C2C—H2C10.9900O1W—H1O10.844 (10)
C2C—H2C20.9900O1W—H2O10.844 (10)
O6A—Cr1A—O7A108.74 (11)C3C—C4C—N2C112.02 (19)
O6A—Cr1A—O5A110.00 (10)C3C—C4C—H4C1109.2
O7A—Cr1A—O5A112.10 (11)N2C—C4C—H4C1109.2
O6A—Cr1A—O1A112.41 (10)C3C—C4C—H4C2109.2
O7A—Cr1A—O1A105.13 (9)N2C—C4C—H4C2109.2
O5A—Cr1A—O1A108.41 (9)H4C1—C4C—H4C2107.9
O4A—Cr2A—O2A110.11 (11)N2C—C5C—C1Ci116.69 (18)
O4A—Cr2A—O3A109.41 (11)N2C—C5C—H5C1108.1
O2A—Cr2A—O3A110.70 (11)C1Ci—C5C—H5C1108.1
O4A—Cr2A—O1A108.27 (10)N2C—C5C—H5C2108.1
O2A—Cr2A—O1A106.87 (9)C1Ci—C5C—H5C2108.1
O3A—Cr2A—O1A111.43 (10)H5C1—C5C—H5C2107.3
Cr1A—O1A—Cr2A133.37 (11)C2D—N1D—C3D114.21 (19)
O2B—Cr1B—O3B108.89 (13)C2D—N1D—H1ND108.7
O2B—Cr1B—O4B110.81 (11)C3D—N1D—H1ND108.7
O3B—Cr1B—O4B110.38 (11)C2D—N1D—H2ND108.7
O2B—Cr1B—O1B109.15 (11)C3D—N1D—H2ND108.7
O3B—Cr1B—O1B107.16 (10)H1ND—N1D—H2ND107.6
O4B—Cr1B—O1B110.35 (11)C5D—N2D—C4D110.1 (2)
O7B—Cr2B—O5B108.74 (19)C5D—N2D—H3ND109.6
O7B—Cr2B—O6B110.59 (12)C4D—N2D—H3ND109.6
O5B—Cr2B—O6B108.50 (14)C5D—N2D—H4ND109.6
O7B—Cr2B—O1B111.22 (12)C4D—N2D—H4ND109.6
O5B—Cr2B—O1B106.51 (13)H3ND—N2D—H4ND108.2
O6B—Cr2B—O1B111.12 (11)C5Dii—C1D—C2D115.47 (19)
Cr2B—O1B—Cr1B136.28 (12)C5Dii—C1D—H1D1108.4
C2C—N1C—C1C111.5 (2)C2D—C1D—H1D1108.4
C2C—N1C—H1NC109.3C5Dii—C1D—H1D2108.4
C1C—N1C—H1NC109.3C2D—C1D—H1D2108.4
C2C—N1C—H2NC109.3H1D1—C1D—H1D2107.5
C1C—N1C—H2NC109.3N1D—C2D—C1D114.7 (2)
H1NC—N1C—H2NC108.0N1D—C2D—H2D1108.6
C5C—N2C—C4C110.15 (18)C1D—C2D—H2D1108.6
C5C—N2C—H3NC109.6N1D—C2D—H2D2108.6
C4C—N2C—H3NC109.6C1D—C2D—H2D2108.6
C5C—N2C—H4NC109.6H2D1—C2D—H2D2107.6
C4C—N2C—H4NC109.6N1D—C3D—C4D114.17 (19)
H3NC—N2C—H4NC108.1N1D—C3D—H3D1108.7
C5Ci—C1C—N1C110.47 (19)C4D—C3D—H3D1108.7
C5Ci—C1C—H1C1109.6N1D—C3D—H3D2108.7
N1C—C1C—H1C1109.6C4D—C3D—H3D2108.7
C5Ci—C1C—H1C2109.6H3D1—C3D—H3D2107.6
N1C—C1C—H1C2109.6C3D—C4D—N2D112.5 (2)
H1C1—C1C—H1C2108.1C3D—C4D—H4D1109.1
C3C—C2C—N1C109.84 (19)N2D—C4D—H4D1109.1
C3C—C2C—H2C1109.7C3D—C4D—H4D2109.1
N1C—C2C—H2C1109.7N2D—C4D—H4D2109.1
C3C—C2C—H2C2109.7H4D1—C4D—H4D2107.8
N1C—C2C—H2C2109.7N2D—C5D—C1Dii115.92 (19)
H2C1—C2C—H2C2108.2N2D—C5D—H5D1108.3
C4C—C3C—C2C117.56 (18)C1Dii—C5D—H5D1108.3
C4C—C3C—H3C1107.9N2D—C5D—H5D2108.3
C2C—C3C—H3C1107.9C1Dii—C5D—H5D2108.3
C4C—C3C—H3C2107.9H5D1—C5D—H5D2107.4
C2C—C3C—H3C2107.9H1O1—O1W—H2O1106 (3)
H3C1—C3C—H3C2107.2
O6A—Cr1A—O1A—Cr2A81.13 (17)C2C—N1C—C1C—C5Ci177.91 (19)
O7A—Cr1A—O1A—Cr2A160.74 (15)C1C—N1C—C2C—C3C175.00 (19)
O5A—Cr1A—O1A—Cr2A40.70 (18)N1C—C2C—C3C—C4C55.8 (3)
O4A—Cr2A—O1A—Cr1A67.38 (18)C2C—C3C—C4C—N2C56.8 (3)
O2A—Cr2A—O1A—Cr1A174.04 (15)C5C—N2C—C4C—C3C173.51 (18)
O3A—Cr2A—O1A—Cr1A52.99 (18)C4C—N2C—C5C—C1Ci65.9 (2)
O7B—Cr2B—O1B—Cr1B53.2 (2)C3D—N1D—C2D—C1D173.36 (19)
O5B—Cr2B—O1B—Cr1B171.5 (2)C5Dii—C1D—C2D—N1D73.5 (3)
O6B—Cr2B—O1B—Cr1B70.5 (2)C2D—N1D—C3D—C4D57.5 (3)
O2B—Cr1B—O1B—Cr2B32.7 (2)N1D—C3D—C4D—N2D55.5 (3)
O3B—Cr1B—O1B—Cr2B150.48 (18)C5D—N2D—C4D—C3D172.66 (19)
O4B—Cr1B—O1B—Cr2B89.3 (2)C4D—N2D—C5D—C1Dii174.65 (19)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1C—H1NC···O2Biii0.912.453.091 (3)128
N1D—H1ND···O6A0.912.383.140 (3)142
N1D—H1ND···O7A0.912.162.942 (3)143
N1D—H2ND···O6Bii0.911.872.768 (3)169
N2C—H3NC···O6Aiv0.912.623.074 (3)112
N2C—H4NC···O7Bv0.912.423.047 (3)126
N2C—H4NC···O2A0.912.523.200 (3)132
N2D—H3ND···O6Bii0.912.423.198 (3)144
N2D—H4ND···O2Bii0.912.653.357 (3)136
O1W—H1O1···O5Avi0.84 (1)2.38 (10)2.999 (3)130 (11)
O1W—H2O1···O1B0.84 (1)2.05 (4)2.774 (3)143 (5)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x, y+1/2, z1/2; (v) x+1, y1/2, z+1/2; (vi) x+2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a Research Grant of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationCohen, M. D., Kargacin, B., Klein, C. B. & Costa, M. (1993). Crit. Rev. Toxicol. 23, 255–281.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrowfield, J. M., Miyamae, H., Shand, T. M., Skelton, B., Soudi, A. A. & White, A. H. (1996). Aust. J. Chem. 49, 1051–1066.  CrossRef CAS Google Scholar
First citationKalidhasan, S., Kumar, A. S. K., Rajesh, V. & Rajesh, N. (2016). Coord. Chem. Rev. 317, 157–166.  CrossRef CAS Google Scholar
First citationKim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, o2128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMireille Ninon, M. O., Fahim, M., Lachkar, M., Marco Contelles, J. L., Perles, J. & El Bali, B. (2013). Acta Cryst. E69, o1574–o1575.  CrossRef IUCr Journals Google Scholar
First citationMoon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 1417–1420.  CrossRef IUCr Journals Google Scholar
First citationMoon, D. & Choi, J.-H. (2017). Acta Cryst. E73, 403–406.  CrossRef IUCr Journals Google Scholar
First citationMoon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72–75.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015). Acta Cryst. E71, 1336–1339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNave, C. & Truter, M. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2351–2354.  CSD CrossRef Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRobinson, G. H., Sangokoya, S. A., Pennington, W. T., Self, M. F. & Rogers, R. D. (1989). J. Coord. Chem. 19, 287–294.  CrossRef CAS Web of Science Google Scholar
First citationSaid, S., Mhadhbi, N., Hajlaoui, F., Bataille, T. & Naïli, H. (2013). Acta Cryst. E69, o1278.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.  Web of Science CSD CrossRef CAS Google Scholar
First citationSubramanian, S. & Zaworotko, M. J. (1995). Can. J. Chem. 73, 414–424.  CSD CrossRef CAS Web of Science Google Scholar
First citationTrabelsi, S., Roisnel, T. & Marouani, H. (2015). J. Advan. Chem, 11, 3394–3403.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, R.-Q. (2012). Acta Cryst. E68, m389.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds