research communications
N-(4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl)-2-(thiophen-3-yl)acetamide
ofaFaculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bFaculty of Chemistry, Ho Chi Minh City University of Education, 280 An Duong Vuong Street, District No. 5, Ho Chi Minh City, Vietnam, cDepartment of Chemistry, Hanoi University of Science, 19 Le Thanh Tong Street, Hoan Kiem District, Hanoi, Vietnam, and dDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be
The title compound, C9H8N2O2S3, crystallizes with two molecules (A and B) in the Both have similar conformations (overlay r.m.s. deviation = 0.209 Å) and are linked by an N—H⋯O hydrogen bond. In both molecules, the thiophene rings show orientational disorder, with occupancy factors of 0.6727 (17) and 0.3273 (17) for molecule A, and 0.7916 (19) and 0.2084 (19) for molecule B. The five-membered rings make an angle of 79.7 (2)° in molecule A and an angle of 66.8 (2)° in molecule B. In the crystal, chains of molecules running along the a-axis direction are linked by N—H⋯O hydrogen bonds. The interaction of adjacent chains through N—H⋯O hydrogen bonds leads to two types of ring structures containing four molecules and described by the graph-set motifs R44(18) and R42(14).
Keywords: crystal structure; thiazolidine; thiophene; rhodanine; polythiophene.
CCDC reference: 1551679
1. Chemical context
Thiophene, C4H4S, belongs to a class of aromatic five-membered heterocycles containing one S heteroatom. Thiophene and its derivatives occur in petroleum or coal (Orr & White, 1990). Thiophene-based compounds have applications in modern drug design (Santagati et al., 1994), electronic and optoelectronic devices (Barbarella et al., 2005), and conductive and electroluminescent polymers (Friend et al., 1999). Also, several reviews of various aspects of thiophene coordination and reactivity in transition-metal complexes have been reported (Barbarella et al., 2005).
Derivatives of rhodanine (or 2-thioxo-1,3-thiazolidin-4-one) have interesting pharmacological properties, such as the drug Epalrestat, which is an aldose reductase inhibitor used to treat diabetic neuropathy (Tomašić & Mašič, 2012). Some other rhodanine derivatives were designed and synthesized for detecting tau pathology in the brains of patients with Alzheimer's disease (Ono et al., 2011).
As a continuation of our research (Nguyen et al., 2016; Vu et al., 2016) on the chemical, physical and biological properties of new polythiophenes, a new thiophene monomer containing rhodanine has been prepared. In the presence of FeCl3, thiophene monomers can be polymerized by C—C bond formation between the 2- and 5-positions of two subsequent thiophene monomers, resulting in an extended π-conjugated system. We present here the synthesis and of N-(4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl)-2-(thiophen-3-yl)acetamide, 3.
2. Structural commentary
Crystals of the title compound belong to the triclinic P with two independent molecules (A and B) per (Fig. 1). In both molecules, the thiophene ring is disordered over two positions by a rotation of approximately 180° around the C5—C3 or C15—C13 bond for molecules A and B, respectively [occupancy factors = 0.6727 (17) and 0.3273 (17) for molecule A, and 0.7916 (19) and 0.2084 (19) for molecule B]. In the current discussion, only the major components will be considered. The 1,3-thiazolidine ring is almost planar (r.m.s. deviation = 0.020 Å for ring S2/N2/C7–C9 and 0.010 Å for ring S12/N12/C17–C19) with the N3-substitiuents N1 [0.141 (1) Å] and N11 [0.100 (1) Å] situated in the same plane (deviations from plane given in parenthesis). Both thiophene rings are also planar as expected (r.m.s. deviation = 0.011 Å for ring S1A/C1A–C4A and 0.002 Å for ring S11A/C11A–C14A), with the substituents C5 [−0.065 (2) Å] and C15 [0.001 (1) Å] coplanar. In molecule A, the heterocyclic rings make an angle of 79.7 (2)°; in molecule B, this angle is 66.8 (2)°. Also, the amide group and the 1,3-thiazolidine ring are oriented almost perpendicular to each other. In molecule A, the plane through the atoms of the amide group (N1/C6/O1) makes an angle of 76.32 (8)° with the best plane through the 1,3-thiazolidine ring; for molecule B, this angle is 83.88 (6)°. Both molecules in the are linked by an N1—H1⋯O11 hydrogen bond (Table 1 and Fig. 1).
3. Supramolecular features
The crystal packing is governed by hydrogen bonding. Chains of molecules are formed along the a-axis direction by alternating N1—H1⋯O11 and N11—H11⋯O1 hydrogen bonds (Table 1 and Fig. 2). The interaction of adjacent chains through N11—H11⋯O2 hydrogen bonds results in two different types of ring structures, each containing four molecules: (i) a ring structure of graph-set motif R44(18) showing also additional C—H⋯O and C—H⋯S interactions (Table 1 and Fig. 3), and (ii) a ring structure with graph-set motif R42(14) (Fig. 4). The packing shows a number of additional C—H⋯O, C—H⋯S and weak C—H⋯π interactions (Table 1). The crystal packing contains no voids.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom et al., 2016) for structures containing an N-substituted 2-thioxo-1,3-thiazolidin-4-one ring gave 26 hits (169 hits when substituents at the 5-position are also allowed). In all cases, the 1,3-thiazolidine ring can be considered to be planar, as the largest deviation from the best plane through the ring atoms was only 0.070 Å [for the complex bis(rhodanine)copper(I) iodide; refcode VICJUM; Moers et al., 1986]. The substituent at the N3 position is situated in the 1,3-thiazolidine plane, with a largest deviation of 0.174 Å for the case with –NH2 as substituent (refcode EDEPUZ01; Jabeen et al., 2007).
Rotational disorder in 3-CH2-thiophene fragments is frequently observed (25 structures of the 67 fragments present in the CSD).
5. Synthesis and crystallization
The reaction scheme to synthesize the title compound, 3, is given in Fig. 5.
5.1. Synthesis of methyl 2-(thiophen-3-yl)acetate, 1
Methyl thiophene-2-acetate, 1 (5 mmol), was added to an excess of hydrazine hydrate (40 mmol) in ethanol (20 ml). The mixture was refluxed for 6 h. The reaction mixture was allowed to cool. The resulting precipitate was filtered and recrystallized from ethanol solution to give 0.57 g (yield 74%) of hydrazide 2 in the form of white crystals (m.p. 343 K). IR (Nicolet Impact 410 FTIR, KBr, cm−1): 3323, 3068 (νNH), 3068, 2957 (νCH), 1641 (νC=O), 1526 (νC=C thiophene). 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, δ (ppm), J (Hz)]: 7.22 (dd, 1H, 4J = 1.0, 5J = 2.0, H2), 7.01 (d, 1H, 5J = 5.0, H4), 7.43 (dd, 1H, 2J = 3.0, 4J = 4.5, H5), 3.32 (s, 2H, H6), 9.14 (s, 1H, H8), 4.19 (s, 2H, H9). 13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, δ (ppm)]: 122.06 (C2), 135.95 (C3),128.62 (C4), 125.59 (C5), 35.10 (C7), 169.17 (C8). Calculation for C6H8O2N2S: M = 172 au.
5.2. Synthesis of 2-(thiophen-3-yl)acetohydrazide, 2
Methyl thiophene-2-acetate, 1 (5 mmol), was added to an excess of hydrazine hydrate (40 mmol) in ethanol (20 ml). The mixture was refluxed for 6 h. The reaction mixture was allowed to cool. The resulting precipitate was filtered and recrystallized from ethanol solution to give 0.57 g (yield 74%) of hydrazide 2 in the form of white crystals (m.p. 343 K). IR (Nicolet Impact 410 FTIR, KBr, cm−1): 3323, 3068 (νNH), 3068, 2957 (νCH), 1641 (νC=O), 1526 (νC=C thiophene). 1H NMR [Bruker XL-500, 500 MHz, d6-DMSO, δ (ppm), J (Hz)]: 7.22 (dd, 1H, 4J = 1.0, 5J = 2.0, H2), 7.01 (d, 1H, 5J = 5.0, H4), 7.43 (dd, 1H, 2J = 3.0, 4J = 4.5, H5), 3.32 (s, 2H, H6), 9.14 (s, 1H, H8), 4.19 (s, 2H, H9). 13C NMR [Bruker XL-500, 125 MHz, d6-DMSO, δ (ppm)]: 122.06 (C2), 135.95 (C3),128.62 (C4), 125.59 (C5), 35.10 (C7), 169.17 (C8). Calculation for C6H8O2N2S: M = 172 au.
5.3. Synthesis of N-(4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl)-2-(thiophen-3-yl)acetamide, 3
A mixture of hydrazide 2 (10 mmol) and thiocarbonylbisthioglycolic acid (10 mmol) in ethanol (5 ml) was refluxed for 8 h. After cooling, the resulting precipitate was filtered off, dried and recrystallized from ethanol solution to give 1.66 g (yield 61%) of 3 as a pale-yellow crystals (m.p. 372 K). IR (Nicolet Impact 410 FTIR, KBr, cm−1): 3442, 3292, 3226 (νNH), 3148, 2965, 2921 (νCH), 1727,1684 (νC=O), 1614, 1532 (νC=C thiophene), 1244, 1177 (νC=S). Calculation for C9H8O2N2S3: M = 272 au.
6. Refinement
Crystal data, data collection and structure . Both thiophene rings are disordered over two positions by a rotation of approximately 180° around the C5—C3 or C15—C13 bond for molecules A and B, respectively. The final occupancy factors are 0.6727 (17) and 0.3273 (17) for molecule A, and 0.7916 (19) and 0.2084 (19) for molecule B. Bond lengths and angles in the disordered thiophene rings were restrained to target values derived from mean values observed in 3-CH2-thiophene fragments in the CSD (Groom et al., 2016). The same anisotropic displacement parameters were used for equivalent atoms in the disordered thiophene rings (e.g. EADP C1A C1B). The H atoms attached to atoms N1 and N11 were found in the difference density Fourier map and refined freely. The other H atoms were placed in idealized positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms, with C—H distances of 0.95 (aromatic) and 0.99 Å (CH2). In the final cycles of four outliers were omitted.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1551679
https://doi.org/10.1107/S2056989017007629/hb7673sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017007629/hb7673Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017007629/hb7673Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT v8.34A (Bruker, 2013); data reduction: SAINT v8.34A (Bruker, 2013); program(s) used to solve structure: SHELXS1997 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).C9H8N2O2S3 | Z = 4 |
Mr = 272.35 | F(000) = 560 |
Triclinic, P1 | Dx = 1.574 Mg m−3 |
a = 9.6205 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.8252 (3) Å | Cell parameters from 9925 reflections |
c = 11.5073 (3) Å | θ = 3.1–30.6° |
α = 97.836 (2)° | µ = 0.63 mm−1 |
β = 102.720 (2)° | T = 100 K |
γ = 95.047 (2)° | Block, colourless |
V = 1149.42 (6) Å3 | 0.22 × 0.07 × 0.04 mm |
Bruker APEX-II CCD diffractometer | 4985 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.042 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 29.0°, θmin = 2.9° |
Tmin = 0.691, Tmax = 0.746 | h = −13→13 |
37647 measured reflections | k = −14→14 |
6098 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0367P)2 + 0.3868P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
6098 reflections | Δρmax = 0.38 e Å−3 |
323 parameters | Δρmin = −0.25 e Å−3 |
40 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1A | 0.7012 (6) | 0.0875 (6) | 0.1304 (5) | 0.0435 (14) | 0.6727 (17) |
H1A | 0.627681 | 0.019090 | 0.098279 | 0.052* | 0.6727 (17) |
C1B | 0.8309 (14) | 0.1396 (12) | 0.0779 (11) | 0.0435 (14) | 0.3273 (17) |
H1B | 0.865405 | 0.109102 | 0.009449 | 0.052* | 0.3273 (17) |
C2A | 0.7136 (6) | 0.1688 (5) | 0.2354 (6) | 0.0292 (11) | 0.6727 (17) |
H2A | 0.648572 | 0.161127 | 0.286104 | 0.035* | 0.6727 (17) |
C2B | 0.8979 (13) | 0.2418 (14) | 0.1659 (11) | 0.0292 (11) | 0.3273 (17) |
H2B | 0.982111 | 0.291811 | 0.161213 | 0.035* | 0.3273 (17) |
C3 | 0.83043 (16) | 0.26481 (14) | 0.26249 (13) | 0.0229 (3) | |
C4A | 0.9131 (5) | 0.2528 (5) | 0.1785 (4) | 0.0196 (7) | 0.6727 (17) |
H4A | 0.998639 | 0.306140 | 0.183286 | 0.024* | 0.6727 (17) |
C4B | 0.7015 (13) | 0.1835 (11) | 0.2382 (11) | 0.0196 (7) | 0.3273 (17) |
H4B | 0.634214 | 0.186979 | 0.287497 | 0.024* | 0.3273 (17) |
C5 | 0.87295 (17) | 0.36183 (14) | 0.37536 (13) | 0.0244 (3) | |
H5A | 0.786386 | 0.394860 | 0.394322 | 0.029* | |
H5B | 0.937159 | 0.432803 | 0.362651 | 0.029* | |
C6 | 0.94939 (15) | 0.30218 (12) | 0.47922 (12) | 0.0195 (3) | |
C7 | 0.99694 (15) | 0.26354 (14) | 0.76650 (13) | 0.0219 (3) | |
C8 | 0.91801 (15) | 0.08293 (13) | 0.61312 (13) | 0.0211 (3) | |
C9 | 0.99968 (17) | 0.02374 (14) | 0.71264 (13) | 0.0255 (3) | |
H9A | 1.082011 | −0.012463 | 0.688482 | 0.031* | |
H9B | 0.936797 | −0.044373 | 0.731533 | 0.031* | |
N1 | 0.87242 (13) | 0.28734 (11) | 0.56472 (11) | 0.0205 (2) | |
H1 | 0.784 (2) | 0.2785 (16) | 0.5452 (15) | 0.023 (4)* | |
N2 | 0.92535 (12) | 0.21256 (11) | 0.64903 (10) | 0.0200 (2) | |
O1 | 1.06854 (11) | 0.26997 (10) | 0.48825 (10) | 0.0263 (2) | |
O2 | 0.85315 (11) | 0.03015 (10) | 0.51434 (10) | 0.0263 (2) | |
S1A | 0.84226 (13) | 0.12988 (10) | 0.06504 (10) | 0.0260 (2) | 0.6727 (17) |
S1B | 0.6811 (3) | 0.0788 (3) | 0.1107 (3) | 0.0260 (2) | 0.3273 (17) |
S2 | 1.06254 (4) | 0.14561 (4) | 0.84299 (3) | 0.02640 (9) | |
S3 | 1.01734 (5) | 0.41087 (4) | 0.82790 (4) | 0.03324 (10) | |
C11A | 0.4107 (4) | 0.3665 (5) | 0.8615 (4) | 0.0348 (9) | 0.7916 (19) |
H11A | 0.353131 | 0.424722 | 0.890676 | 0.042* | 0.7916 (19) |
C12A | 0.3757 (4) | 0.2893 (6) | 0.7510 (5) | 0.0260 (8) | 0.7916 (19) |
H12A | 0.287724 | 0.288656 | 0.693747 | 0.031* | 0.7916 (19) |
C11B | 0.6014 (12) | 0.3318 (14) | 0.9163 (10) | 0.0348 (9) | 0.2084 (19) |
H11B | 0.675966 | 0.365869 | 0.985263 | 0.042* | 0.2084 (19) |
C12B | 0.6096 (19) | 0.238 (3) | 0.819 (2) | 0.0260 (8) | 0.2084 (19) |
H12B | 0.693246 | 0.198134 | 0.815566 | 0.031* | 0.2084 (19) |
C13 | 0.48263 (16) | 0.20962 (13) | 0.72904 (12) | 0.0209 (3) | |
C14A | 0.5992 (5) | 0.2286 (6) | 0.8247 (5) | 0.0279 (11) | 0.7916 (19) |
H14A | 0.680976 | 0.184997 | 0.826702 | 0.033* | 0.7916 (19) |
C14B | 0.3780 (19) | 0.274 (3) | 0.7503 (19) | 0.0279 (11) | 0.2084 (19) |
H14B | 0.285834 | 0.266998 | 0.697131 | 0.033* | 0.2084 (19) |
C15 | 0.46840 (16) | 0.11790 (13) | 0.61472 (12) | 0.0216 (3) | |
H15A | 0.378555 | 0.059746 | 0.598778 | 0.026* | |
H15B | 0.550170 | 0.067657 | 0.623555 | 0.026* | |
C16 | 0.46640 (14) | 0.19004 (12) | 0.51108 (12) | 0.0173 (3) | |
C17 | 0.31832 (14) | 0.24127 (13) | 0.24248 (12) | 0.0192 (3) | |
C18 | 0.33768 (14) | 0.41284 (13) | 0.40333 (13) | 0.0190 (3) | |
C19 | 0.33812 (17) | 0.48314 (13) | 0.29957 (13) | 0.0247 (3) | |
H19A | 0.428495 | 0.540567 | 0.315257 | 0.030* | |
H19B | 0.256618 | 0.533625 | 0.288467 | 0.030* | |
N11 | 0.33329 (13) | 0.20086 (11) | 0.44504 (10) | 0.0173 (2) | |
H11 | 0.261 (2) | 0.1832 (16) | 0.4689 (15) | 0.025 (4)* | |
N12 | 0.32383 (12) | 0.28276 (10) | 0.36245 (10) | 0.0168 (2) | |
O11 | 0.57399 (10) | 0.23773 (10) | 0.48702 (9) | 0.0240 (2) | |
O12 | 0.34760 (11) | 0.45633 (9) | 0.50671 (9) | 0.0247 (2) | |
S11A | 0.58246 (9) | 0.33791 (8) | 0.93937 (6) | 0.0371 (2) | 0.7916 (19) |
S11B | 0.4286 (6) | 0.3711 (5) | 0.8833 (4) | 0.0371 (2) | 0.2084 (19) |
S12 | 0.32221 (5) | 0.36801 (4) | 0.16587 (3) | 0.02777 (9) | |
S13 | 0.30889 (4) | 0.09510 (3) | 0.17993 (3) | 0.02742 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.037 (2) | 0.057 (3) | 0.038 (3) | 0.0079 (19) | 0.0078 (18) | 0.012 (2) |
C1B | 0.037 (2) | 0.057 (3) | 0.038 (3) | 0.0079 (19) | 0.0078 (18) | 0.012 (2) |
C2A | 0.0221 (16) | 0.040 (3) | 0.0266 (15) | 0.0060 (14) | 0.0066 (12) | 0.0074 (15) |
C2B | 0.0221 (16) | 0.040 (3) | 0.0266 (15) | 0.0060 (14) | 0.0066 (12) | 0.0074 (15) |
C3 | 0.0264 (7) | 0.0246 (7) | 0.0184 (7) | 0.0087 (6) | 0.0044 (5) | 0.0041 (5) |
C4A | 0.0234 (17) | 0.0195 (14) | 0.0152 (15) | 0.0055 (11) | 0.0024 (12) | 0.0019 (10) |
C4B | 0.0234 (17) | 0.0195 (14) | 0.0152 (15) | 0.0055 (11) | 0.0024 (12) | 0.0019 (10) |
C5 | 0.0303 (8) | 0.0230 (7) | 0.0212 (7) | 0.0101 (6) | 0.0067 (6) | 0.0028 (5) |
C6 | 0.0185 (7) | 0.0173 (6) | 0.0204 (7) | 0.0017 (5) | 0.0028 (5) | −0.0019 (5) |
C7 | 0.0181 (7) | 0.0271 (7) | 0.0210 (7) | 0.0045 (6) | 0.0049 (5) | 0.0035 (5) |
C8 | 0.0162 (6) | 0.0232 (7) | 0.0246 (7) | 0.0002 (5) | 0.0080 (5) | 0.0026 (5) |
C9 | 0.0300 (8) | 0.0213 (7) | 0.0251 (7) | 0.0012 (6) | 0.0061 (6) | 0.0049 (6) |
N1 | 0.0147 (6) | 0.0262 (6) | 0.0206 (6) | 0.0072 (5) | 0.0024 (5) | 0.0033 (5) |
N2 | 0.0177 (6) | 0.0224 (6) | 0.0195 (6) | 0.0038 (5) | 0.0034 (4) | 0.0027 (4) |
O1 | 0.0170 (5) | 0.0314 (6) | 0.0313 (6) | 0.0057 (4) | 0.0068 (4) | 0.0042 (4) |
O2 | 0.0220 (5) | 0.0260 (5) | 0.0268 (5) | −0.0008 (4) | 0.0025 (4) | −0.0017 (4) |
S1A | 0.0297 (4) | 0.0297 (4) | 0.0182 (3) | 0.0060 (3) | 0.0044 (2) | 0.0029 (2) |
S1B | 0.0297 (4) | 0.0297 (4) | 0.0182 (3) | 0.0060 (3) | 0.0044 (2) | 0.0029 (2) |
S2 | 0.0324 (2) | 0.02659 (19) | 0.02008 (18) | 0.00490 (15) | 0.00387 (14) | 0.00602 (14) |
S3 | 0.0405 (2) | 0.02536 (19) | 0.0278 (2) | 0.01014 (17) | −0.00280 (17) | −0.00329 (15) |
C11A | 0.0280 (16) | 0.0542 (18) | 0.029 (2) | 0.0119 (13) | 0.0103 (14) | 0.0206 (16) |
C12A | 0.0257 (11) | 0.029 (2) | 0.0267 (10) | 0.0055 (10) | 0.0130 (9) | 0.0047 (11) |
C11B | 0.0280 (16) | 0.0542 (18) | 0.029 (2) | 0.0119 (13) | 0.0103 (14) | 0.0206 (16) |
C12B | 0.0257 (11) | 0.029 (2) | 0.0267 (10) | 0.0055 (10) | 0.0130 (9) | 0.0047 (11) |
C13 | 0.0285 (7) | 0.0181 (6) | 0.0170 (6) | 0.0015 (5) | 0.0070 (5) | 0.0039 (5) |
C14A | 0.0390 (17) | 0.0221 (15) | 0.0190 (12) | 0.0073 (14) | −0.0020 (12) | 0.0030 (11) |
C14B | 0.0390 (17) | 0.0221 (15) | 0.0190 (12) | 0.0073 (14) | −0.0020 (12) | 0.0030 (11) |
C15 | 0.0268 (7) | 0.0170 (6) | 0.0185 (7) | 0.0021 (5) | 0.0009 (5) | 0.0018 (5) |
C16 | 0.0194 (6) | 0.0150 (6) | 0.0161 (6) | 0.0041 (5) | 0.0032 (5) | −0.0022 (5) |
C17 | 0.0172 (6) | 0.0217 (7) | 0.0184 (6) | 0.0033 (5) | 0.0042 (5) | 0.0017 (5) |
C18 | 0.0144 (6) | 0.0186 (6) | 0.0237 (7) | 0.0043 (5) | 0.0048 (5) | 0.0004 (5) |
C19 | 0.0307 (8) | 0.0192 (7) | 0.0242 (7) | 0.0064 (6) | 0.0048 (6) | 0.0041 (5) |
N11 | 0.0161 (6) | 0.0194 (6) | 0.0174 (5) | 0.0016 (4) | 0.0053 (4) | 0.0044 (4) |
N12 | 0.0178 (5) | 0.0164 (5) | 0.0162 (5) | 0.0035 (4) | 0.0042 (4) | 0.0016 (4) |
O11 | 0.0159 (5) | 0.0321 (6) | 0.0250 (5) | 0.0045 (4) | 0.0059 (4) | 0.0054 (4) |
O12 | 0.0264 (5) | 0.0228 (5) | 0.0248 (5) | 0.0022 (4) | 0.0098 (4) | −0.0029 (4) |
S11A | 0.0573 (5) | 0.0334 (3) | 0.0176 (3) | 0.0122 (3) | 0.0034 (2) | −0.0020 (2) |
S11B | 0.0573 (5) | 0.0334 (3) | 0.0176 (3) | 0.0122 (3) | 0.0034 (2) | −0.0020 (2) |
S12 | 0.0389 (2) | 0.02616 (19) | 0.01882 (18) | 0.00436 (16) | 0.00618 (15) | 0.00631 (14) |
S13 | 0.0352 (2) | 0.02192 (18) | 0.02263 (18) | 0.00242 (15) | 0.00702 (15) | −0.00483 (13) |
C1A—H1A | 0.9500 | C5—C6 | 1.514 (2) |
C1B—H1B | 0.9500 | C6—N1 | 1.3730 (18) |
C1A—C2A | 1.370 (8) | C6—O1 | 1.2141 (17) |
C2A—H2A | 0.9500 | C7—N2 | 1.3878 (18) |
C1B—C2B | 1.395 (13) | C7—S2 | 1.7339 (15) |
C2B—H2B | 0.9500 | C7—S3 | 1.6303 (15) |
C2B—C3 | 1.410 (11) | C8—C9 | 1.494 (2) |
C2A—C3 | 1.412 (6) | C8—N2 | 1.3988 (18) |
C4A—H4A | 0.9500 | C8—O2 | 1.2065 (17) |
C4B—H4B | 0.9500 | C9—H9A | 0.9900 |
C4A—S1A | 1.707 (4) | C9—H9B | 0.9900 |
C1A—S1A | 1.747 (7) | C9—S2 | 1.8102 (15) |
C4B—S1B | 1.690 (11) | N1—H1 | 0.825 (18) |
C1B—S1B | 1.672 (11) | N1—N2 | 1.3874 (16) |
C11A—H11A | 0.9500 | C13—C14A | 1.366 (4) |
C11A—C12A | 1.378 (6) | C13—C14B | 1.323 (14) |
C12A—H12A | 0.9500 | C13—C15 | 1.5086 (18) |
C11B—H11B | 0.9500 | C15—H15A | 0.9900 |
C11B—C12B | 1.430 (16) | C15—H15B | 0.9900 |
C12B—H12B | 0.9500 | C15—C16 | 1.5096 (19) |
C12A—C13 | 1.442 (4) | C16—N11 | 1.3613 (17) |
C12B—C13 | 1.395 (15) | C16—O11 | 1.2190 (17) |
C14A—H14A | 0.9500 | C17—N12 | 1.3802 (17) |
C14B—H14B | 0.9500 | C17—S12 | 1.7310 (14) |
C11A—S11A | 1.773 (4) | C17—S13 | 1.6326 (14) |
C14A—S11A | 1.694 (4) | C18—C19 | 1.501 (2) |
C14B—S11B | 1.680 (15) | C18—N12 | 1.4073 (17) |
C11B—S11B | 1.726 (12) | C18—O12 | 1.1982 (16) |
C3—C4A | 1.380 (5) | C19—H19A | 0.9900 |
C3—C4B | 1.407 (12) | C19—H19B | 0.9900 |
C3—C5 | 1.509 (2) | C19—S12 | 1.8121 (15) |
C5—H5A | 0.9900 | N11—H11 | 0.819 (18) |
C5—H5B | 0.9900 | N11—N12 | 1.3797 (16) |
C4A—S1A—C1A | 92.8 (2) | C8—C9—H9B | 110.3 |
S1A—C1A—H1A | 125.5 | C8—C9—S2 | 107.29 (10) |
C2A—C1A—H1A | 125.5 | H9A—C9—H9B | 108.5 |
S1B—C1B—H1B | 125.0 | S2—C9—H9A | 110.3 |
C2B—C1B—H1B | 125.0 | S2—C9—H9B | 110.3 |
C1A—C2A—H2A | 122.6 | C6—N1—H1 | 119.8 (12) |
C1B—C2B—H2B | 122.7 | C6—N1—N2 | 116.15 (11) |
C1A—C2A—C3 | 114.8 (4) | N2—N1—H1 | 112.4 (12) |
C1B—C2B—C3 | 114.5 (8) | C7—N2—C8 | 118.28 (12) |
S1A—C4A—H4A | 124.2 | N1—N2—C7 | 121.89 (12) |
C1B—S1B—C4B | 94.1 (5) | N1—N2—C8 | 119.59 (11) |
S1B—C4B—H4B | 124.1 | C7—S2—C9 | 93.85 (7) |
C2A—C1A—S1A | 109.0 (4) | C14B—C13—C15 | 122.9 (6) |
C2B—C1B—S1B | 109.9 (7) | C13—C15—H15A | 109.9 |
C14A—S11A—C11A | 93.1 (2) | C3—C2A—H2A | 122.6 |
C12A—C11A—H11A | 126.1 | C3—C2B—H2B | 122.7 |
S11A—C11A—H11A | 126.1 | C3—C4A—H4A | 124.2 |
C11A—C12A—H12A | 122.6 | C3—C4B—H4B | 124.1 |
C14B—S11B—C11B | 94.8 (6) | C13—C15—H15B | 109.9 |
S11B—C11B—H11B | 127.0 | C3—C4A—S1A | 111.5 (2) |
C12B—C11B—H11B | 127.0 | C3—C4B—S1B | 111.7 (6) |
C11B—C12B—H12B | 123.3 | C13—C15—C16 | 108.99 (11) |
C11A—C12A—C13 | 114.9 (3) | H15A—C15—H15B | 108.3 |
S11A—C14A—H14A | 123.6 | C16—C15—H15A | 109.9 |
S11B—C14B—H14B | 124.3 | C16—C15—H15B | 109.9 |
C12A—C11A—S11A | 107.8 (3) | N11—C16—C15 | 115.08 (12) |
C12B—C11B—S11B | 106.0 (8) | O11—C16—C15 | 123.93 (12) |
C4A—C3—C2A | 111.8 (2) | O11—C16—N11 | 120.98 (12) |
C4B—C3—C2B | 109.4 (6) | N12—C17—S12 | 109.87 (10) |
C4A—C3—C5 | 122.36 (18) | N12—C17—S13 | 125.87 (11) |
C4B—C3—C5 | 120.4 (4) | S13—C17—S12 | 124.26 (8) |
C2A—C3—C5 | 125.5 (2) | N12—C18—C19 | 109.81 (11) |
C2B—C3—C5 | 130.2 (4) | O12—C18—C19 | 127.34 (13) |
C3—C5—H5A | 109.8 | O12—C18—N12 | 122.85 (13) |
C3—C5—H5B | 109.8 | C18—C19—H19A | 110.2 |
C14A—C13—C12A | 111.3 (3) | C18—C19—H19B | 110.2 |
C14B—C13—C12B | 114.2 (8) | C18—C19—S12 | 107.46 (10) |
C14A—C13—C15 | 124.3 (2) | H19A—C19—H19B | 108.5 |
C12B—C13—C15 | 122.8 (6) | S12—C19—H19A | 110.2 |
C12A—C13—C15 | 124.4 (2) | S12—C19—H19B | 110.2 |
C3—C5—C6 | 109.31 (11) | C16—N11—H11 | 121.5 (12) |
H5A—C5—H5B | 108.3 | C16—N11—N12 | 117.50 (11) |
C6—C5—H5A | 109.8 | N12—N11—H11 | 117.0 (12) |
C6—C5—H5B | 109.8 | C17—N12—C18 | 118.85 (11) |
N1—C6—C5 | 114.18 (12) | N11—N12—C17 | 121.30 (11) |
O1—C6—C5 | 123.98 (13) | N11—N12—C18 | 119.39 (11) |
O1—C6—N1 | 121.84 (13) | C17—S12—C19 | 93.94 (7) |
N2—C7—S2 | 109.78 (10) | C13—C12A—H12A | 122.6 |
N2—C7—S3 | 126.68 (11) | C13—C12B—C11B | 113.4 (10) |
S3—C7—S2 | 123.53 (9) | C13—C12B—H12B | 123.3 |
N2—C8—C9 | 110.62 (12) | C13—C14A—H14A | 123.6 |
O2—C8—C9 | 126.72 (14) | C13—C14B—H14B | 124.3 |
O2—C8—N2 | 122.66 (14) | C13—C14A—S11A | 112.9 (3) |
C8—C9—H9A | 110.3 | C13—C14B—S11B | 111.5 (9) |
C2B—C1B—S1B—C4B | 0.0 (13) | N2—C8—C9—S2 | 4.36 (14) |
C12A—C11A—S11A—C14A | 0.2 (6) | O1—C6—N1—N2 | −11.93 (19) |
C2A—C1A—S1A—C4A | 0.2 (5) | O2—C8—C9—S2 | −175.56 (12) |
C12B—C11B—S11B—C14B | −2 (2) | O2—C8—N2—C7 | 176.99 (13) |
S1B—C1B—C2B—C3 | 3.4 (18) | O2—C8—N2—N1 | −8.4 (2) |
S1A—C1A—C2A—C3 | 1.4 (6) | S2—C7—N2—C8 | −0.09 (15) |
S11B—C11B—C12B—C13 | 2 (3) | S2—C7—N2—N1 | −174.54 (10) |
S11A—C11A—C12A—C13 | 0.0 (7) | S3—C7—N2—C8 | −179.36 (11) |
C1B—C2B—C3—C4B | −5.7 (17) | S3—C7—N2—N1 | 6.2 (2) |
C1A—C2A—C3—C4A | −2.9 (7) | S3—C7—S2—C9 | −178.31 (10) |
C1A—C2A—C3—C5 | −176.5 (4) | C12A—C13—C15—C16 | 65.3 (4) |
C1B—C2B—C3—C5 | 177.4 (9) | C12B—C13—C15—C16 | −106.2 (18) |
C2A—C3—C5—C6 | 76.8 (3) | C14A—C13—C15—C16 | −114.1 (4) |
C4B—C3—C5—C6 | 84.8 (6) | C14B—C13—C15—C16 | 70.8 (19) |
C4A—C3—C5—C6 | −96.2 (4) | C13—C14B—S11B—C11B | 2 (2) |
C11B—C12B—C13—C14B | 0 (3) | C13—C14A—S11A—C11A | −0.4 (5) |
C11A—C12A—C13—C14A | −0.3 (6) | C13—C15—C16—N11 | −96.18 (14) |
C11A—C12A—C13—C15 | −179.8 (4) | C13—C15—C16—O11 | 82.80 (16) |
C11B—C12B—C13—C15 | 176.9 (15) | C15—C13—C14B—S11B | −178.4 (10) |
C2A—C3—C4A—S1A | 2.9 (6) | C15—C13—C14A—S11A | 179.9 (2) |
C2B—C3—C4B—S1B | 5.5 (12) | C15—C16—N11—N12 | 169.47 (11) |
C2B—C3—C5—C6 | −98.6 (10) | C16—N11—N12—C17 | 95.69 (15) |
C12A—C13—C14A—S11A | 0.4 (5) | C16—N11—N12—C18 | −76.45 (15) |
C12B—C13—C14B—S11B | −1 (3) | C18—C19—S12—C17 | −0.76 (11) |
C3—C4A—S1A—C1A | −1.8 (4) | C19—C18—N12—C17 | 2.19 (17) |
C3—C4B—S1B—C1B | −3.3 (10) | C19—C18—N12—N11 | 174.53 (11) |
C3—C5—C6—N1 | −110.03 (14) | N12—C17—S12—C19 | 1.91 (11) |
C3—C5—C6—O1 | 70.25 (18) | N12—C18—C19—S12 | −0.57 (14) |
C5—C3—C4B—S1B | −177.2 (4) | O11—C16—N11—N12 | −9.54 (18) |
C5—C3—C4A—S1A | 176.8 (2) | O12—C18—C19—S12 | 179.28 (12) |
C5—C6—N1—N2 | 168.34 (12) | O12—C18—N12—C17 | −177.67 (13) |
C6—N1—N2—C7 | 104.36 (15) | O12—C18—N12—N11 | −5.33 (19) |
C6—N1—N2—C8 | −70.01 (16) | S12—C17—N12—C18 | −2.78 (15) |
C8—C9—S2—C7 | −3.86 (11) | S12—C17—N12—N11 | −174.96 (10) |
C9—C8—N2—C7 | −2.94 (17) | S13—C17—N12—C18 | 177.43 (10) |
C9—C8—N2—N1 | 171.64 (12) | S13—C17—N12—N11 | 5.25 (19) |
N2—C7—S2—C9 | 2.39 (11) | S13—C17—S12—C19 | −178.29 (10) |
Cg1 and Cg2 are the centroids of the S1A/C1A–C4A and S11A/C11A–C14A rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O11 | 0.824 (19) | 1.973 (19) | 2.7923 (16) | 173.1 (18) |
N11—H11···O1i | 0.819 (19) | 2.189 (19) | 2.8436 (16) | 137.1 (16) |
N11—H11···O2ii | 0.819 (19) | 2.519 (18) | 3.0965 (16) | 128.6 (15) |
C5—H5A···O12iii | 0.99 | 2.46 | 3.3901 (19) | 156 |
C9—H9A···O2iv | 0.99 | 2.53 | 3.2443 (19) | 129 |
C9—H9B···S13ii | 0.99 | 2.81 | 3.6570 (17) | 144 |
C15—H15A···O2ii | 0.99 | 2.37 | 3.2862 (19) | 154 |
C9—H9A···Cg1iv | 0.99 | 2.73 | 3.276 (3) | 115 |
C19—H19A···Cg2iii | 0.99 | 2.77 | 3.480 (2) | 129 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y, −z+1. |
Acknowledgements
LVM thanks VLIR–UOS (project ZEIN2014Z182) for financial support.
References
Barbarella, G., Melucci, M. & Sotgiu, G. (2005). Adv. Mater. 17, 1581–1593. Web of Science CrossRef CAS Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. D. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature, 397, 121–128. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jabeen, S., Palmer, R. A., Potter, B. S., Helliwell, M., Dines, T. J. & Chowdhry, B. Z. (2007). J. Chem. Crystallogr. 39, 151–156. CrossRef Google Scholar
Moers, F. G., Smits, J. M. M. & Beurskens, P. T. (1986). J. Crystallogr. Spectrosc. Res. 16, 101–106. CrossRef CAS Google Scholar
Nguyen, N. L., Tran, T. D., Nguyen, T. C., Duong, K. L., Pfleger, J. & Vu, Q. T. (2016). Vietnam. J. Chem. 54, 259–263. Google Scholar
Ono, M., Hayashi, S., Matsumura, K., Kimura, H., Okamoto, Y., Ihara, M., Takahashi, R., Mori, H. & Saji, H. (2011). ACS Chem. Neurosci. 2, 269–275. CrossRef CAS PubMed Google Scholar
Orr, W. L. & White, C. M. (1990). Editors. Geochemistry of Sulfur in fossil fuels. Washington, DC: American Chemical Society. Google Scholar
Santagati, A., Modica, M., Santagati, M., Garuso, A. & Cutuli, V. (1994). Pharmazie, 49, 64–65. CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tomašić, T. & Mašič, L. P. (2012). Expert Opin. Drug Discov. 7, 549–560. PubMed Google Scholar
Vu, Q. T., Nguyen, N. L., Duong, K. L. & Pfleger, J. (2016). Vietnam. J. Chem. 54, 730–735. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.