research communications
N,N′-didecylpyromellitic diimide
ofaDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: mychoi@gnu.ac.kr, thkim@gnu.ac.kr
The title compound, C30H44N2O4 [systematic name: 2,6-didecylpyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone], consists of a central pyromellitic diimide moiety with terminal decyl groups at the N-atom positions. The centre of the molecule lies on a crystallographic inversion centre so the contains one half-molecule. The molecule exhibits a rod-shaped conformation, like other similar compounds of this type, the distance between the ends of terminal decyl groups being 32.45 Å. The packing is dominated by a lamellar arrangement of the molecules, which is reinforced by C—H⋯O hydrogen bonds and C—O⋯π interactions, forming a classic herringbone structure. The molecular structure is consistent with the theoretical calculations performed by density functional theory (DFT).
CCDC reference: 1548456
1. Chemical context
Previous studies have proposed that pyromellitic diimide derivatives have potential applications in energy storage materials (Song et al., 2010) and photovoltaic devices (Kanosue & Ando, 2016). Additionally, aromatic diimides can act as organic semiconductors (Shao et al., 2014). Recently, our group reported a copper(I) coordination polymer with a pyromellitic diimide ligand, namely N,N′-bis[2-(cyclohexylthio)ethyl]pyromellitic diimide, and showed that the ligand has two conformations, syn and anti. In addition, a reversible anti to syn transition was achieved by agitating in mixed organic solvents (Kang et al., 2015). In an extension of our studies of pyromellitic diimide derivatives, we have prepared the title compound by the reaction of pyromellitic dianhydride with decylamine and report its herein.
2. Structural commentary
The title compound consists of a central pyromellitic diimide with two terminal decyl groups (Fig. 1). The centre of the molecule lies on a crystallographic inversion centre and the of the title compound is composed of one half-molecule. The decyl chains are inclined at an angle of 67.96° to the plane of the pyromellitic diimide ring. The decyl chains point in opposite directions, forming a rod-shaped conformation with a distance of 32.45 Å between the carbon atoms of the terminal decyl groups.
3. Supramolecular features
In the crystal, C7—H7B⋯O2i [symmetry code: (i) x, −y + , z − ; Table 1] hydrogen bonds (H⋯O = 2.57 Å) link adjacent molecules (yellow dashed lines in Fig. 2). In addition,, adjacent molecules are connected by C4—O2ii⋯Cg1 (Cg1 is the centroid of the N1/C1–C4 ring) interactions [O⋯π = 3.272 (1) Å; symmetry code: (ii) x, −y + , z + ], resulting in the formation of a classic herringbone structure (black dashed lines in Fig. 3). One oxygen atom accepts both hydrogen bonds and C—O⋯π interactions with neighboring molecules, generating a two-dimensional architecture extending parallel to the bc plane (Fig. 4).
4. Theoretical calculations
DFT calculations have been performed to support the experimental values on the basis of the diffraction study using the GAUSSIAN09 software package (Frisch et al., 2009). Full geometry optimizations were performed using B3LYP levels of theory with a 6-311G* basis set. The optimized parameters such as bond lengths and bond angles are in excellent agreement with the experimental crystallographic data (Table 2). In particular, the theoretical value (67.07°) for the angle between the decyl chain and the plane of the pyromellitic diimide ring is almost equal that obtained from the experimental crystallographic data (67.96°).
|
5. Synthesis and crystallization
A mixture of pyromellitic dianhydride (0.55g, 2.5mmol) and decyl amine (0.88 g, 5.3mmol) in toluene (10 ml) and dimethyl sulfoxide (6 ml) was heated at 453 K with stirring for 5 h. Upon cooling to room temperature, an off-white crude solid was filtered and washed with water, methanol and ether. Crystals suitable for X-ray 1H NMR (300 MHz, CDCl3): d = 8.27 (s, 2H, Ar), 3.74 (t, 4H, CH2N), 1.70 (t, 4H, CH2CH2N), 1.32 (m, 28H, CH2), 0.88 (t, 6H, CH3)
were obtained by slow evaporation of a dichloromethane solution of the title compound.6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for aromatic C—H, d(C—H) = 0.99 Å, Uiso(H) = 1.2Ueq(C) for Csp3—H, d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl group.
details are summarized in Table 3Supporting information
CCDC reference: 1548456
https://doi.org/10.1107/S2056989017006867/hb7674sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017006867/hb7674Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017006867/hb7674Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).C30H44N2O4 | F(000) = 540 |
Mr = 496.67 | Dx = 1.204 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 30.6365 (16) Å | Cell parameters from 9966 reflections |
b = 5.0149 (3) Å | θ = 3.3–28.1° |
c = 8.9393 (5) Å | µ = 0.08 mm−1 |
β = 93.980 (3)° | T = 173 K |
V = 1370.11 (13) Å3 | Block, colourless |
Z = 2 | 0.66 × 0.65 × 0.13 mm |
Bruker APEXII CCD diffractometer | 2964 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.026 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 28.3°, θmin = 1.3° |
Tmin = 0.703, Tmax = 0.746 | h = −40→40 |
22193 measured reflections | k = −6→6 |
3364 independent reflections | l = −11→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.113 | w = 1/[σ2(Fo2) + (0.0502P)2 + 0.4968P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
3364 reflections | Δρmax = 0.33 e Å−3 |
164 parameters | Δρmin = −0.20 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C3 | 0.46219 (3) | 0.6062 (2) | 1.04594 (11) | 0.0174 (2) | |
O1 | 0.40031 (3) | 0.12036 (16) | 0.84589 (9) | 0.0248 (2) | |
O2 | 0.40323 (3) | 0.85647 (16) | 1.14895 (9) | 0.02379 (19) | |
N1 | 0.39028 (3) | 0.47982 (19) | 1.00209 (10) | 0.0198 (2) | |
C2 | 0.46141 (3) | 0.3850 (2) | 0.95188 (11) | 0.0175 (2) | |
C4 | 0.41601 (3) | 0.6734 (2) | 1.07673 (11) | 0.0185 (2) | |
C5 | 0.49907 (3) | 0.2709 (2) | 0.90256 (11) | 0.0183 (2) | |
H5 | 0.4984 | 0.1198 | 0.8383 | 0.022* | |
C1 | 0.41477 (3) | 0.3030 (2) | 0.92185 (12) | 0.0189 (2) | |
C6 | 0.34303 (3) | 0.4510 (2) | 1.00787 (13) | 0.0233 (2) | |
H6A | 0.3336 | 0.5442 | 1.0977 | 0.028* | |
H6B | 0.3358 | 0.2597 | 1.0174 | 0.028* | |
C7 | 0.31819 (4) | 0.5643 (3) | 0.86860 (13) | 0.0251 (2) | |
H7A | 0.3175 | 0.7612 | 0.8764 | 0.030* | |
H7B | 0.3340 | 0.5180 | 0.7793 | 0.030* | |
C8 | 0.27152 (4) | 0.4597 (3) | 0.84738 (13) | 0.0257 (3) | |
H8A | 0.2554 | 0.5098 | 0.9355 | 0.031* | |
H8B | 0.2722 | 0.2626 | 0.8417 | 0.031* | |
C9 | 0.24734 (4) | 0.5696 (3) | 0.70588 (14) | 0.0275 (3) | |
H9A | 0.2444 | 0.7651 | 0.7165 | 0.033* | |
H9B | 0.2652 | 0.5359 | 0.6197 | 0.033* | |
C10 | 0.20209 (4) | 0.4500 (3) | 0.67147 (14) | 0.0288 (3) | |
H10A | 0.1840 | 0.4845 | 0.7570 | 0.035* | |
H10B | 0.2049 | 0.2544 | 0.6607 | 0.035* | |
C12 | 0.13370 (4) | 0.4426 (3) | 0.49163 (14) | 0.0305 (3) | |
H12A | 0.1152 | 0.4744 | 0.5765 | 0.037* | |
H12B | 0.1367 | 0.2474 | 0.4797 | 0.037* | |
C11 | 0.17877 (4) | 0.5626 (3) | 0.52925 (14) | 0.0292 (3) | |
H11A | 0.1757 | 0.7579 | 0.5408 | 0.035* | |
H11B | 0.1972 | 0.5307 | 0.4442 | 0.035* | |
C13 | 0.11075 (4) | 0.5574 (3) | 0.34923 (14) | 0.0312 (3) | |
H13A | 0.1079 | 0.7527 | 0.3611 | 0.037* | |
H13B | 0.1292 | 0.5249 | 0.2644 | 0.037* | |
C14 | 0.06564 (4) | 0.4394 (3) | 0.31123 (16) | 0.0378 (3) | |
H14A | 0.0469 | 0.4755 | 0.3948 | 0.045* | |
H14B | 0.0683 | 0.2436 | 0.3012 | 0.045* | |
C15 | 0.04360 (5) | 0.5520 (4) | 0.16677 (17) | 0.0469 (4) | |
H15A | 0.0394 | 0.7445 | 0.1778 | 0.070* | |
H15B | 0.0151 | 0.4656 | 0.1460 | 0.070* | |
H15C | 0.0621 | 0.5182 | 0.0836 | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C3 | 0.0191 (5) | 0.0168 (5) | 0.0161 (5) | 0.0019 (4) | 0.0005 (4) | 0.0016 (4) |
O1 | 0.0268 (4) | 0.0240 (4) | 0.0230 (4) | −0.0051 (3) | −0.0021 (3) | −0.0033 (3) |
O2 | 0.0258 (4) | 0.0219 (4) | 0.0241 (4) | 0.0038 (3) | 0.0050 (3) | −0.0017 (3) |
N1 | 0.0168 (4) | 0.0238 (5) | 0.0186 (4) | −0.0001 (3) | −0.0004 (3) | 0.0000 (4) |
C2 | 0.0200 (5) | 0.0165 (5) | 0.0157 (5) | −0.0005 (4) | −0.0013 (4) | 0.0016 (4) |
C4 | 0.0201 (5) | 0.0193 (5) | 0.0162 (5) | 0.0011 (4) | 0.0006 (4) | 0.0035 (4) |
C5 | 0.0218 (5) | 0.0159 (5) | 0.0170 (5) | 0.0008 (4) | −0.0002 (4) | −0.0010 (4) |
C1 | 0.0208 (5) | 0.0191 (5) | 0.0164 (5) | 0.0000 (4) | −0.0009 (4) | 0.0031 (4) |
C6 | 0.0156 (5) | 0.0321 (6) | 0.0222 (5) | −0.0020 (4) | 0.0008 (4) | 0.0023 (4) |
C7 | 0.0184 (5) | 0.0313 (6) | 0.0252 (6) | −0.0014 (4) | −0.0017 (4) | 0.0041 (5) |
C8 | 0.0186 (5) | 0.0324 (6) | 0.0257 (6) | −0.0017 (4) | −0.0012 (4) | 0.0019 (5) |
C9 | 0.0201 (5) | 0.0341 (6) | 0.0279 (6) | −0.0006 (5) | −0.0026 (4) | 0.0019 (5) |
C10 | 0.0215 (6) | 0.0345 (7) | 0.0296 (6) | −0.0016 (5) | −0.0040 (5) | 0.0014 (5) |
C12 | 0.0229 (6) | 0.0371 (7) | 0.0305 (6) | −0.0020 (5) | −0.0055 (5) | 0.0009 (5) |
C11 | 0.0218 (5) | 0.0355 (7) | 0.0296 (6) | −0.0009 (5) | −0.0043 (5) | 0.0017 (5) |
C13 | 0.0241 (6) | 0.0388 (7) | 0.0298 (6) | −0.0005 (5) | −0.0049 (5) | 0.0011 (5) |
C14 | 0.0253 (6) | 0.0519 (9) | 0.0349 (7) | −0.0032 (6) | −0.0074 (5) | 0.0005 (6) |
C15 | 0.0311 (7) | 0.0702 (11) | 0.0374 (8) | 0.0019 (7) | −0.0111 (6) | 0.0015 (7) |
C3—C5i | 1.3873 (14) | C9—C10 | 1.5221 (15) |
C3—C2 | 1.3911 (15) | C9—H9A | 0.9900 |
C3—C4 | 1.4984 (14) | C9—H9B | 0.9900 |
O1—C1 | 1.2059 (13) | C10—C11 | 1.5230 (16) |
O2—C4 | 1.2034 (13) | C10—H10A | 0.9900 |
N1—C4 | 1.3915 (14) | C10—H10B | 0.9900 |
N1—C1 | 1.3924 (14) | C12—C11 | 1.5223 (16) |
N1—C6 | 1.4590 (13) | C12—C13 | 1.5235 (17) |
C2—C5 | 1.3869 (14) | C12—H12A | 0.9900 |
C2—C1 | 1.4933 (14) | C12—H12B | 0.9900 |
C5—C3i | 1.3872 (14) | C11—H11A | 0.9900 |
C5—H5 | 0.9500 | C11—H11B | 0.9900 |
C6—C7 | 1.5235 (15) | C13—C14 | 1.5200 (17) |
C6—H6A | 0.9900 | C13—H13A | 0.9900 |
C6—H6B | 0.9900 | C13—H13B | 0.9900 |
C7—C8 | 1.5225 (15) | C14—C15 | 1.5236 (19) |
C7—H7A | 0.9900 | C14—H14A | 0.9900 |
C7—H7B | 0.9900 | C14—H14B | 0.9900 |
C8—C9 | 1.5238 (16) | C15—H15A | 0.9800 |
C8—H8A | 0.9900 | C15—H15B | 0.9800 |
C8—H8B | 0.9900 | C15—H15C | 0.9800 |
C5i—C3—C2 | 122.23 (10) | C10—C9—H9B | 108.7 |
C5i—C3—C4 | 129.49 (10) | C8—C9—H9B | 108.7 |
C2—C3—C4 | 108.27 (9) | H9A—C9—H9B | 107.6 |
C4—N1—C1 | 112.56 (9) | C9—C10—C11 | 113.00 (11) |
C4—N1—C6 | 125.64 (9) | C9—C10—H10A | 109.0 |
C1—N1—C6 | 121.77 (9) | C11—C10—H10A | 109.0 |
C5—C2—C3 | 122.78 (10) | C9—C10—H10B | 109.0 |
C5—C2—C1 | 129.49 (10) | C11—C10—H10B | 109.0 |
C3—C2—C1 | 107.72 (9) | H10A—C10—H10B | 107.8 |
O2—C4—N1 | 126.50 (10) | C11—C12—C13 | 113.21 (11) |
O2—C4—C3 | 128.08 (10) | C11—C12—H12A | 108.9 |
N1—C4—C3 | 105.42 (9) | C13—C12—H12A | 108.9 |
C2—C5—C3i | 114.99 (10) | C11—C12—H12B | 108.9 |
C2—C5—H5 | 122.5 | C13—C12—H12B | 108.9 |
C3i—C5—H5 | 122.5 | H12A—C12—H12B | 107.7 |
O1—C1—N1 | 125.71 (10) | C12—C11—C10 | 113.81 (11) |
O1—C1—C2 | 128.31 (10) | C12—C11—H11A | 108.8 |
N1—C1—C2 | 105.97 (9) | C10—C11—H11A | 108.8 |
N1—C6—C7 | 112.01 (9) | C12—C11—H11B | 108.8 |
N1—C6—H6A | 109.2 | C10—C11—H11B | 108.8 |
C7—C6—H6A | 109.2 | H11A—C11—H11B | 107.7 |
N1—C6—H6B | 109.2 | C14—C13—C12 | 113.54 (11) |
C7—C6—H6B | 109.2 | C14—C13—H13A | 108.9 |
H6A—C6—H6B | 107.9 | C12—C13—H13A | 108.9 |
C8—C7—C6 | 112.63 (10) | C14—C13—H13B | 108.9 |
C8—C7—H7A | 109.1 | C12—C13—H13B | 108.9 |
C6—C7—H7A | 109.1 | H13A—C13—H13B | 107.7 |
C8—C7—H7B | 109.1 | C13—C14—C15 | 112.82 (13) |
C6—C7—H7B | 109.1 | C13—C14—H14A | 109.0 |
H7A—C7—H7B | 107.8 | C15—C14—H14A | 109.0 |
C7—C8—C9 | 112.15 (10) | C13—C14—H14B | 109.0 |
C7—C8—H8A | 109.2 | C15—C14—H14B | 109.0 |
C9—C8—H8A | 109.2 | H14A—C14—H14B | 107.8 |
C7—C8—H8B | 109.2 | C14—C15—H15A | 109.5 |
C9—C8—H8B | 109.2 | C14—C15—H15B | 109.5 |
H8A—C8—H8B | 107.9 | H15A—C15—H15B | 109.5 |
C10—C9—C8 | 114.13 (10) | C14—C15—H15C | 109.5 |
C10—C9—H9A | 108.7 | H15A—C15—H15C | 109.5 |
C8—C9—H9A | 108.7 | H15B—C15—H15C | 109.5 |
C5i—C3—C2—C5 | 0.00 (18) | C4—N1—C1—C2 | 2.09 (12) |
C4—C3—C2—C5 | −179.64 (9) | C6—N1—C1—C2 | −175.94 (9) |
C5i—C3—C2—C1 | 178.88 (9) | C5—C2—C1—O1 | −1.11 (19) |
C4—C3—C2—C1 | −0.76 (11) | C3—C2—C1—O1 | −179.89 (11) |
C1—N1—C4—O2 | 176.76 (10) | C5—C2—C1—N1 | 178.05 (10) |
C6—N1—C4—O2 | −5.30 (17) | C3—C2—C1—N1 | −0.73 (11) |
C1—N1—C4—C3 | −2.53 (11) | C4—N1—C6—C7 | 101.29 (12) |
C6—N1—C4—C3 | 175.41 (9) | C1—N1—C6—C7 | −80.95 (13) |
C5i—C3—C4—O2 | 3.09 (18) | N1—C6—C7—C8 | 161.36 (10) |
C2—C3—C4—O2 | −177.30 (11) | C6—C7—C8—C9 | −178.71 (10) |
C5i—C3—C4—N1 | −177.63 (10) | C7—C8—C9—C10 | 174.31 (11) |
C2—C3—C4—N1 | 1.98 (11) | C8—C9—C10—C11 | −179.78 (11) |
C3—C2—C5—C3i | 0.00 (17) | C13—C12—C11—C10 | 179.93 (11) |
C1—C2—C5—C3i | −178.62 (10) | C9—C10—C11—C12 | 179.16 (11) |
C4—N1—C1—O1 | −178.71 (10) | C11—C12—C13—C14 | −179.76 (12) |
C6—N1—C1—O1 | 3.26 (17) | C12—C13—C14—C15 | −178.76 (13) |
Symmetry code: (i) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7B···O2ii | 0.99 | 2.57 | 3.3929 (14) | 141 |
Symmetry code: (ii) x, −y+3/2, z−1/2. |
Bond | X-ray | B3LYP (6-311G*) |
O1—C1 | 1.2059 (13) | 1.2069 |
O2—C4 | 1.2034 (13) | 1.2069 |
N1—C1 | 1.3924 (14) | 1.4019 |
N1—C4 | 1.3915 (14) | 1.4011 |
N1—C6 | 1.4590 (13) | 1.4607 |
C1—C2 | 1.4933 (14) | 1.4972 |
C2—C3 | 1.3911 (15) | 1.3968 |
C3—C4 | 1.4984 (14) | 1.4971 |
C2—C5 | 1.3869 (14) | 1.3896 |
C6—C7 | 1.5235 (15) | 1.5318 |
C7—C8 | 1.5225 (15) | 1.5317 |
C8—C9 | 1.5238 (16) | 1.5323 |
C9—C10 | 1.5221 (15) | 1.5322 |
C10—C11 | 1.5230 (16) | 1.5322 |
C11—C12 | 1.5223 (16) | 1.5323 |
C12—C13 | 1.5235 (17) | 1.5321 |
C13—C14 | 1.5200 (17) | 1.5324 |
C14—C15 | 1.5236 (19) | 1.5303 |
Acknowledgements
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Nos. 2015R1D1A3A01020410 and 2016R1D1A1B03934376), with the main calculations carried out by the Supercomputing Center/Korea Institute of Science and Technology Information (KISTI): (KSC-2017-C1-0002).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, Connecticut, USA. Google Scholar
Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187. Web of Science CSD CrossRef CAS Google Scholar
Kanosue, K. & Ando, S. (2016). ACS Macro Lett. 5, 1301–1305. Web of Science CrossRef CAS Google Scholar
Shao, J., Chang, J., Dai, G. & Chi, C. (2014). J. Polym. Sci. Part A Polym. Chem. 52, 2454–2464. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Song, Z., Zhan, H. & Zhou, Y. (2010). Angew. Chem. Int. Ed. 49, 8444–8448. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.