research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′-di­decyl­pyromellitic di­imide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: mychoi@gnu.ac.kr, thkim@gnu.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 April 2017; accepted 8 May 2017; online 12 May 2017)

The title compound, C30H44N2O4 [systematic name: 2,6-di­decyl­pyrrolo­[3,4-f]iso­indole-1,3,5,7(2H,6H)-tetra­one], consists of a central pyromellitic di­imide moiety with terminal decyl groups at the N-atom positions. The centre of the mol­ecule lies on a crystallographic inversion centre so the asymmetric unit contains one half-mol­ecule. The mol­ecule exhibits a rod-shaped conformation, like other similar compounds of this type, the distance between the ends of terminal decyl groups being 32.45 Å. The packing is dominated by a lamellar arrangement of the mol­ecules, which is reinforced by C—H⋯O hydrogen bonds and C—O⋯π inter­actions, forming a classic herringbone structure. The mol­ecular structure is consistent with the theoretical calculations performed by density functional theory (DFT).

1. Chemical context

Previous studies have proposed that pyromellitic di­imide derivatives have potential applications in energy storage materials (Song et al., 2010[Song, Z., Zhan, H. & Zhou, Y. (2010). Angew. Chem. Int. Ed. 49, 8444-8448.]) and photovoltaic devices (Kanosue & Ando, 2016[Kanosue, K. & Ando, S. (2016). ACS Macro Lett. 5, 1301-1305.]). Additionally, aromatic di­imides can act as organic semiconductors (Shao et al., 2014[Shao, J., Chang, J., Dai, G. & Chi, C. (2014). J. Polym. Sci. Part A Polym. Chem. 52, 2454-2464.]). Recently, our group reported a copper(I) coordination polymer with a pyromellitic di­imide ligand, namely N,N′-bis­[2-(cyclo­hexyl­thio)­eth­yl]pyromellitic di­imide, and showed that the ligand has two conformations, syn and anti. In addition, a reversible anti to syn transition was achieved by agitating in mixed organic solvents (Kang et al., 2015[Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183-5187.]). In an extension of our studies of pyromellitic di­imide derivatives, we have prepared the title compound by the reaction of pyromellitic dianhydride with decyl­amine and report its crystal structure herein.

[Scheme 1]

2. Structural commentary

The title compound consists of a central pyromellitic di­imide with two terminal decyl groups (Fig. 1[link]). The centre of the mol­ecule lies on a crystallographic inversion centre and the asymmetric unit of the title compound is composed of one half-mol­ecule. The decyl chains are inclined at an angle of 67.96° to the plane of the pyromellitic di­imide ring. The decyl chains point in opposite directions, forming a rod-shaped conformation with a distance of 32.45 Å between the carbon atoms of the terminal decyl groups.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. Unlabelled atoms are generated by the symmetry operation (1 − x, 1 − y, 2 − z).

3. Supra­molecular features

In the crystal, C7—H7B⋯O2i [symmetry code: (i) x, −y + [{3\over 2}], z − [{1\over 2}]; Table 1[link]] hydrogen bonds (H⋯O = 2.57 Å) link adjacent mol­ecules (yellow dashed lines in Fig. 2[link]). In addition,, adjacent mol­ecules are connected by C4—O2iiCg1 (Cg1 is the centroid of the N1/C1–C4 ring) inter­actions [O⋯π = 3.272 (1) Å; symmetry code: (ii) x, −y + [{3\over 2}], z + [{1\over 2}]], resulting in the formation of a classic herringbone structure (black dashed lines in Fig. 3[link]). One oxygen atom accepts both hydrogen bonds and C—O⋯π inter­actions with neighboring mol­ecules, generating a two-dimensional architecture extending parallel to the bc plane (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O2i 0.99 2.57 3.3929 (14) 141
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Inter­molecular C—H⋯O hydrogen bonds (yellow dashed lines) [symmetry code: (i) x, −y + [{3\over 2}], z − [{1\over 2}]] in the crystal of (I)[link]. H atoms and terminal decyl chains not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
The packing diagram for (I)[link], showing the classic herringbone structure formed by C—O⋯π inter­actions (black dashed lines). H atoms and terminal decyl chains not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 4]
Figure 4
The packing for (I)[link] showing inter­molecular hydrogen bonds (yellow dashed lines) and C—O⋯π inter­actions (black dashed lines) accepted by the same O atom.

4. Theoretical calculations

DFT calculations have been performed to support the experimental values on the basis of the diffraction study using the GAUSSIAN09 software package (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, Connecticut, USA.]). Full geometry optimizations were performed using B3LYP levels of theory with a 6-311G* basis set. The optimized parameters such as bond lengths and bond angles are in excellent agreement with the experimental crystallographic data (Table 2[link]). In particular, the theoretical value (67.07°) for the angle between the decyl chain and the plane of the pyromellitic di­imide ring is almost equal that obtained from the experimental crystallographic data (67.96°).

Table 2
Experimental and calculated bond lengths (Å)

Bond X-ray B3LYP (6–311G*)
O1—C1 1.2059 (13) 1.2069
O2—C4 1.2034 (13) 1.2069
N1—C1 1.3924 (14) 1.4019
N1—C4 1.3915 (14) 1.4011
N1—C6 1.4590 (13) 1.4607
C1—C2 1.4933 (14) 1.4972
C2—C3 1.3911 (15) 1.3968
C3—C4 1.4984 (14) 1.4971
C2—C5 1.3869 (14) 1.3896
C6—C7 1.5235 (15) 1.5318
C7—C8 1.5225 (15) 1.5317
C8—C9 1.5238 (16) 1.5323
C9—C10 1.5221 (15) 1.5322
C10—C11 1.5230 (16) 1.5322
C11—C12 1.5223 (16) 1.5323
C12—C13 1.5235 (17) 1.5321
C13—C14 1.5200 (17) 1.5324
C14—C15 1.5236 (19) 1.5303

5. Synthesis and crystallization

A mixture of pyromellitic dianhydride (0.55g, 2.5mmol) and decyl amine (0.88 g, 5.3mmol) in toluene (10 ml) and dimethyl sulfoxide (6 ml) was heated at 453 K with stirring for 5 h. Upon cooling to room temperature, an off-white crude solid was filtered and washed with water, methanol and ether. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a di­chloro­methane solution of the title compound. 1H NMR (300 MHz, CDCl3): d = 8.27 (s, 2H, Ar), 3.74 (t, 4H, CH2N), 1.70 (t, 4H, CH2CH2N), 1.32 (m, 28H, CH2), 0.88 (t, 6H, CH3)

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for aromatic C—H, d(C—H) = 0.99 Å, Uiso(H) = 1.2Ueq(C) for Csp3—H, d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl group.

Table 3
Experimental details

Crystal data
Chemical formula C30H44N2O4
Mr 496.67
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 30.6365 (16), 5.0149 (3), 8.9393 (5)
β (°) 93.980 (3)
V3) 1370.11 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.66 × 0.65 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.703, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22193, 3364, 2964
Rint 0.026
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.09
No. of reflections 3364
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

2,6-Didecylpyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone top
Crystal data top
C30H44N2O4F(000) = 540
Mr = 496.67Dx = 1.204 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 30.6365 (16) ÅCell parameters from 9966 reflections
b = 5.0149 (3) Åθ = 3.3–28.1°
c = 8.9393 (5) ŵ = 0.08 mm1
β = 93.980 (3)°T = 173 K
V = 1370.11 (13) Å3Block, colourless
Z = 20.66 × 0.65 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
2964 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 1.3°
Tmin = 0.703, Tmax = 0.746h = 4040
22193 measured reflectionsk = 66
3364 independent reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.4968P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3364 reflectionsΔρmax = 0.33 e Å3
164 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.46219 (3)0.6062 (2)1.04594 (11)0.0174 (2)
O10.40031 (3)0.12036 (16)0.84589 (9)0.0248 (2)
O20.40323 (3)0.85647 (16)1.14895 (9)0.02379 (19)
N10.39028 (3)0.47982 (19)1.00209 (10)0.0198 (2)
C20.46141 (3)0.3850 (2)0.95188 (11)0.0175 (2)
C40.41601 (3)0.6734 (2)1.07673 (11)0.0185 (2)
C50.49907 (3)0.2709 (2)0.90256 (11)0.0183 (2)
H50.49840.11980.83830.022*
C10.41477 (3)0.3030 (2)0.92185 (12)0.0189 (2)
C60.34303 (3)0.4510 (2)1.00787 (13)0.0233 (2)
H6A0.33360.54421.09770.028*
H6B0.33580.25971.01740.028*
C70.31819 (4)0.5643 (3)0.86860 (13)0.0251 (2)
H7A0.31750.76120.87640.030*
H7B0.33400.51800.77930.030*
C80.27152 (4)0.4597 (3)0.84738 (13)0.0257 (3)
H8A0.25540.50980.93550.031*
H8B0.27220.26260.84170.031*
C90.24734 (4)0.5696 (3)0.70588 (14)0.0275 (3)
H9A0.24440.76510.71650.033*
H9B0.26520.53590.61970.033*
C100.20209 (4)0.4500 (3)0.67147 (14)0.0288 (3)
H10A0.18400.48450.75700.035*
H10B0.20490.25440.66070.035*
C120.13370 (4)0.4426 (3)0.49163 (14)0.0305 (3)
H12A0.11520.47440.57650.037*
H12B0.13670.24740.47970.037*
C110.17877 (4)0.5626 (3)0.52925 (14)0.0292 (3)
H11A0.17570.75790.54080.035*
H11B0.19720.53070.44420.035*
C130.11075 (4)0.5574 (3)0.34923 (14)0.0312 (3)
H13A0.10790.75270.36110.037*
H13B0.12920.52490.26440.037*
C140.06564 (4)0.4394 (3)0.31123 (16)0.0378 (3)
H14A0.04690.47550.39480.045*
H14B0.06830.24360.30120.045*
C150.04360 (5)0.5520 (4)0.16677 (17)0.0469 (4)
H15A0.03940.74450.17780.070*
H15B0.01510.46560.14600.070*
H15C0.06210.51820.08360.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0191 (5)0.0168 (5)0.0161 (5)0.0019 (4)0.0005 (4)0.0016 (4)
O10.0268 (4)0.0240 (4)0.0230 (4)0.0051 (3)0.0021 (3)0.0033 (3)
O20.0258 (4)0.0219 (4)0.0241 (4)0.0038 (3)0.0050 (3)0.0017 (3)
N10.0168 (4)0.0238 (5)0.0186 (4)0.0001 (3)0.0004 (3)0.0000 (4)
C20.0200 (5)0.0165 (5)0.0157 (5)0.0005 (4)0.0013 (4)0.0016 (4)
C40.0201 (5)0.0193 (5)0.0162 (5)0.0011 (4)0.0006 (4)0.0035 (4)
C50.0218 (5)0.0159 (5)0.0170 (5)0.0008 (4)0.0002 (4)0.0010 (4)
C10.0208 (5)0.0191 (5)0.0164 (5)0.0000 (4)0.0009 (4)0.0031 (4)
C60.0156 (5)0.0321 (6)0.0222 (5)0.0020 (4)0.0008 (4)0.0023 (4)
C70.0184 (5)0.0313 (6)0.0252 (6)0.0014 (4)0.0017 (4)0.0041 (5)
C80.0186 (5)0.0324 (6)0.0257 (6)0.0017 (4)0.0012 (4)0.0019 (5)
C90.0201 (5)0.0341 (6)0.0279 (6)0.0006 (5)0.0026 (4)0.0019 (5)
C100.0215 (6)0.0345 (7)0.0296 (6)0.0016 (5)0.0040 (5)0.0014 (5)
C120.0229 (6)0.0371 (7)0.0305 (6)0.0020 (5)0.0055 (5)0.0009 (5)
C110.0218 (5)0.0355 (7)0.0296 (6)0.0009 (5)0.0043 (5)0.0017 (5)
C130.0241 (6)0.0388 (7)0.0298 (6)0.0005 (5)0.0049 (5)0.0011 (5)
C140.0253 (6)0.0519 (9)0.0349 (7)0.0032 (6)0.0074 (5)0.0005 (6)
C150.0311 (7)0.0702 (11)0.0374 (8)0.0019 (7)0.0111 (6)0.0015 (7)
Geometric parameters (Å, º) top
C3—C5i1.3873 (14)C9—C101.5221 (15)
C3—C21.3911 (15)C9—H9A0.9900
C3—C41.4984 (14)C9—H9B0.9900
O1—C11.2059 (13)C10—C111.5230 (16)
O2—C41.2034 (13)C10—H10A0.9900
N1—C41.3915 (14)C10—H10B0.9900
N1—C11.3924 (14)C12—C111.5223 (16)
N1—C61.4590 (13)C12—C131.5235 (17)
C2—C51.3869 (14)C12—H12A0.9900
C2—C11.4933 (14)C12—H12B0.9900
C5—C3i1.3872 (14)C11—H11A0.9900
C5—H50.9500C11—H11B0.9900
C6—C71.5235 (15)C13—C141.5200 (17)
C6—H6A0.9900C13—H13A0.9900
C6—H6B0.9900C13—H13B0.9900
C7—C81.5225 (15)C14—C151.5236 (19)
C7—H7A0.9900C14—H14A0.9900
C7—H7B0.9900C14—H14B0.9900
C8—C91.5238 (16)C15—H15A0.9800
C8—H8A0.9900C15—H15B0.9800
C8—H8B0.9900C15—H15C0.9800
C5i—C3—C2122.23 (10)C10—C9—H9B108.7
C5i—C3—C4129.49 (10)C8—C9—H9B108.7
C2—C3—C4108.27 (9)H9A—C9—H9B107.6
C4—N1—C1112.56 (9)C9—C10—C11113.00 (11)
C4—N1—C6125.64 (9)C9—C10—H10A109.0
C1—N1—C6121.77 (9)C11—C10—H10A109.0
C5—C2—C3122.78 (10)C9—C10—H10B109.0
C5—C2—C1129.49 (10)C11—C10—H10B109.0
C3—C2—C1107.72 (9)H10A—C10—H10B107.8
O2—C4—N1126.50 (10)C11—C12—C13113.21 (11)
O2—C4—C3128.08 (10)C11—C12—H12A108.9
N1—C4—C3105.42 (9)C13—C12—H12A108.9
C2—C5—C3i114.99 (10)C11—C12—H12B108.9
C2—C5—H5122.5C13—C12—H12B108.9
C3i—C5—H5122.5H12A—C12—H12B107.7
O1—C1—N1125.71 (10)C12—C11—C10113.81 (11)
O1—C1—C2128.31 (10)C12—C11—H11A108.8
N1—C1—C2105.97 (9)C10—C11—H11A108.8
N1—C6—C7112.01 (9)C12—C11—H11B108.8
N1—C6—H6A109.2C10—C11—H11B108.8
C7—C6—H6A109.2H11A—C11—H11B107.7
N1—C6—H6B109.2C14—C13—C12113.54 (11)
C7—C6—H6B109.2C14—C13—H13A108.9
H6A—C6—H6B107.9C12—C13—H13A108.9
C8—C7—C6112.63 (10)C14—C13—H13B108.9
C8—C7—H7A109.1C12—C13—H13B108.9
C6—C7—H7A109.1H13A—C13—H13B107.7
C8—C7—H7B109.1C13—C14—C15112.82 (13)
C6—C7—H7B109.1C13—C14—H14A109.0
H7A—C7—H7B107.8C15—C14—H14A109.0
C7—C8—C9112.15 (10)C13—C14—H14B109.0
C7—C8—H8A109.2C15—C14—H14B109.0
C9—C8—H8A109.2H14A—C14—H14B107.8
C7—C8—H8B109.2C14—C15—H15A109.5
C9—C8—H8B109.2C14—C15—H15B109.5
H8A—C8—H8B107.9H15A—C15—H15B109.5
C10—C9—C8114.13 (10)C14—C15—H15C109.5
C10—C9—H9A108.7H15A—C15—H15C109.5
C8—C9—H9A108.7H15B—C15—H15C109.5
C5i—C3—C2—C50.00 (18)C4—N1—C1—C22.09 (12)
C4—C3—C2—C5179.64 (9)C6—N1—C1—C2175.94 (9)
C5i—C3—C2—C1178.88 (9)C5—C2—C1—O11.11 (19)
C4—C3—C2—C10.76 (11)C3—C2—C1—O1179.89 (11)
C1—N1—C4—O2176.76 (10)C5—C2—C1—N1178.05 (10)
C6—N1—C4—O25.30 (17)C3—C2—C1—N10.73 (11)
C1—N1—C4—C32.53 (11)C4—N1—C6—C7101.29 (12)
C6—N1—C4—C3175.41 (9)C1—N1—C6—C780.95 (13)
C5i—C3—C4—O23.09 (18)N1—C6—C7—C8161.36 (10)
C2—C3—C4—O2177.30 (11)C6—C7—C8—C9178.71 (10)
C5i—C3—C4—N1177.63 (10)C7—C8—C9—C10174.31 (11)
C2—C3—C4—N11.98 (11)C8—C9—C10—C11179.78 (11)
C3—C2—C5—C3i0.00 (17)C13—C12—C11—C10179.93 (11)
C1—C2—C5—C3i178.62 (10)C9—C10—C11—C12179.16 (11)
C4—N1—C1—O1178.71 (10)C11—C12—C13—C14179.76 (12)
C6—N1—C1—O13.26 (17)C12—C13—C14—C15178.76 (13)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O2ii0.992.573.3929 (14)141
Symmetry code: (ii) x, y+3/2, z1/2.
Experimental and calculated bond lengths (Å). top
BondX-rayB3LYP (6-311G*)
O1—C11.2059 (13)1.2069
O2—C41.2034 (13)1.2069
N1—C11.3924 (14)1.4019
N1—C41.3915 (14)1.4011
N1—C61.4590 (13)1.4607
C1—C21.4933 (14)1.4972
C2—C31.3911 (15)1.3968
C3—C41.4984 (14)1.4971
C2—C51.3869 (14)1.3896
C6—C71.5235 (15)1.5318
C7—C81.5225 (15)1.5317
C8—C91.5238 (16)1.5323
C9—C101.5221 (15)1.5322
C10—C111.5230 (16)1.5322
C11—C121.5223 (16)1.5323
C12—C131.5235 (17)1.5321
C13—C141.5200 (17)1.5324
C14—C151.5236 (19)1.5303
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Nos. 2015R1D1A3A01020410 and 2016R1D1A1B03934376), with the main calculations carried out by the Supercomputing Center/Korea Institute of Science and Technology Information (KISTI): (KSC-2017-C1-0002).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, Connecticut, USA.  Google Scholar
First citationKang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanosue, K. & Ando, S. (2016). ACS Macro Lett. 5, 1301–1305.  Web of Science CrossRef CAS Google Scholar
First citationShao, J., Chang, J., Dai, G. & Chi, C. (2014). J. Polym. Sci. Part A Polym. Chem. 52, 2454–2464.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, Z., Zhan, H. & Zhou, Y. (2010). Angew. Chem. Int. Ed. 49, 8444–8448.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds