research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of dilead(II) oxochromate(VI) oxotellurate(IV)

CROSSMARK_Color_square_no_text.svg

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weill@tuwien.ac.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 May 2017; accepted 10 May 2017; online 16 May 2017)

Reaction of chromium(III) precursors with TeO2 in PbF2/PbO melts in air led to oxidation of chromium(III) to chromium(VI), whereas tellurium remained its oxidation state of IV. In the resulting title compound, Pb2(CrO4)(TeO3), the two types of anions are isolated from each other, hence a double salt is formed. The two independent Pb2+ cations exhibit coordination number nine under formation of very distorted coordination polyhedra [bond-length range = 2.363 (6)–3.276 (7) Å]. The oxochromate(VI) and oxotellurate(IV) anions have tetra­hedral and trigonal–pyramidal configurations, respectively. In the crystal structure, (001) layers of metal cations alternate with layers of TeO32− and CrO42− anions along [001], forming a three-dimensional framework structure. Pb2(CrO4)(TeO3) is isotypic with its sulfate analogue Pb2(SO4)(TeO3) and is comparatively discussed.

1. Chemical context

Pb3Fe2Te2O12 is an oxotellurate(VI) with inter­esting structural features. It crystallizes in the non-centrosymmetric space group Cc and has TeVI and FeIII atoms occupationally disordered at the same sites (Müller-Buschbaum & Wedel, 1997[Müller-Buschbaum, H.-K. & Wedel, B. (1997). Z. Naturforsch. Teil B, 52, 35-39.]). This compound has been prepared by solid-state reactions from a PbO, Fe2O3 and TeO2 mixture in air, which led to oxidation of TeIV to TeVI. During an attempt to replace iron(III) by chromium(III) to prepare a possible phase with composition `Pb3Cr2Te2O12', the title compound, Pb2(CrO4)(TeO3), was obtained instead while working under similar conditions. Inter­estingly, chromium was then oxidized (CrIII → CrVI) while tellurium remained its oxidation state of IV. Pb2(CrO4)(TeO3) is isotypic with its sulfate analogue Pb2(SO4)(TeO3) (Weil & Shirkhanlou, 2017[Weil, M. & Shirkhanlou, M. (2017). Z. Anorg. Allg. Chem. Accepted. doi:10.1002/zaac.201700016.]).

2. Structural commentary

All atoms in the asymmetric unit, viz. two Pb, one Cr, one Te and seven O sites, are located on general positions.

The coordination environments of the two Pb2+ cations are markedly different. If only Pb—O bond lengths < 2.8 Å are considered, atom Pb1 is surrounded by six O atoms in the range 2.4–2.8 Å whereas atom Pb2 has four oxygen atoms as coordination partners, three at ∼2.38 Å and one at 2.75 Å. Taking into account the more remote oxygen atoms as well, the coordination numbers are increased to nine for both Pb2+ cations (Fig. 1[link], Table 1[link]).

Table 1
Comparison of bond lengths between isotypic Pb2(CrO4)(TeO3) and Pb2(SO4)(TeO3)

Bond Pb2(CrO4)(TeO3) Pb2(SO4)(TeO3)
Pb1—O2i 2.429 (6) 2.397 (3)
Pb1—O3ii 2.573 (6) 2.594 (3)
Pb1—O2iii 2.594 (6) 2.536 (3)
Pb1—O7iv 2.617 (7) 2.632 (3)
Pb1—O5v 2.750 (7) 2.789 (3)
Pb1—O4i 2.777 (7) 2.677 (3)
Pb1—O6iii 2.850 (7) 3.107 (4)
Pb1—O1ii 2.968 (6) 2.993 (3)
Pb1—O3iii 3.170 (6) 3.206 (3)
Pb2—O3iii 2.363 (6) 2.335 (3)
Pb2—O1ii 2.390 (6) 2.375 (3)
Pb2—O1 2.410 (6) 2.384 (3)
Pb2—O2 2.746 (6) 2.753 (3)
Pb2—O5vi 2.956 (7) 2.981 (4)
Pb2—O4vii 3.128 (7) 3.029 (3)
Pb2—O6iii 3.176 (7) 3.164 (3)
Pb2—O5vii 3.225 (7) 3.200 (4)
Pb2—O4vi 3.276 (7) 3.455 (3)
Te1—O2 1.891 (6) 1.890 (2)
Te1—O3 1.901 (6) 1.878 (2)
Te1—O1 1.902 (6) 1.895 (3)
Cr1—O7 1.634 (7) 1.462 (3)
Cr1—O5 1.640 (7) 1.476 (3)
Cr1—O4 1.653 (7) 1.488 (3)
Cr1—O6 1.667 (7) 1.484 (3)
Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (ii) −x + 2, −y + 1, −z + 1; (iii) −x + [{5\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (iv) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (v) −x + 2, −y + 1, −z + 2; (vi) x, y, z − 1; (vii) −x + 3, −y + 1, −z + 2.
[Figure 1]
Figure 1
Coordination environments around the two Pb2+ cations in Pb2(CrO4)(TeO3). Pb—O bonds < 2.8 Å are given in full and longer Pb–O bonds are open. Symmetry operators refer to Table 1[link].

The chromium atom shows a tetra­hedral and the tellurium a trigonal–pyramidal coordination by oxygen atoms. These two coordination polyhedra and the corresponding bond lengths ranges are typical for oxochromates(VI) (Pressprich et al., 1988[Pressprich, M. R., Willett, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B. & Gard, H. B. (1988). Inorg. Chem. 27, 260-264.]) and oxotellurates(IV) (Christy et al., 2016[Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Mineral. Mag. 80, 415-545.]), respectively.

In the crystal structure, the Pb2+ cations are arranged in layers parallel to (001) at z ∼ 0, ½ and in turn are stacked into columns extending along [010]. The two types of anion polyhedra are isolated and are likewise arranged into columnar arrangements along [010], forming anion layers situated at z ∼ ¼ and ¾. The metal cation and anion layers alternate along [001] and build up the three-dimensional framework of the crystal structure. The 5s2 and 6s2 electron lone pairs of the TeIV atoms of the oxotellurate anions and of the Pb2+ cations, respectively, are stereochemically active and point into channels running parallel to the two types of columns along [010] (Fig. 2[link]).

[Figure 2]
Figure 2
The crystal structure of Pb2(CrO4)(TeO3) in a projection along [010]. Te atoms and TeO32– trigonal pyramids are given in red, CrO42− tetra­hedra in green, Pb2+ cations in blue, O atoms are colourless. For clarity, only Pb—O bonds < 2.8 Å are displayed. Displacement ellipsoids are given at the 50% probability level.

Relevant bond lengths of isotypic Pb2(CrO4)(TeO3) and Pb2(SO4)(TeO3) are compared in Table 1[link]. Whereas the TeO32− anions in the two structures show only marginal differences, the expected differences in the X—O bond lengths (X = Cr, S) of the chromate and sulfate tetra­hedra (average values 1.65 and 1.48 Å, respectively) also have consequences for those Pb—O bonds where the corresponding atoms O4–O7 are involved. These Pb—O bonds differ by up to 0.20 Å. A more qu­anti­tative comparison of the two isotypic structures was made with the program COMPSTRU (de la Flor et al., 2016[Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653-664.]). The degree of lattice distortion, S, is the spontaneous strain (sum of the squared eigenvalues of the strain tensor divided by 3) and amounts to 0.007. The maximum distance shows the maximal displacement between atomic positions of paired atoms and is 0.31 Å for atom pair O4. The next largest distances are 0.23 Å for pair O6, 0.17 Å for O5 and 0.13 Å for O7. The pairs of heavy atoms and the Cr/S pair show comparatively small distances of 0.095 Å (Pb1), 0.061 Å (Pb2), 0.087 Å (Te1) and 0.095 Å (Cr1/S1). The arithmetic mean of the distances is 0.12 Å. The measure of similarity (Δ) (Bergerhoff et al., 1999[Bergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147-156.]) is 0.034, revealing a close relation between the two structures. Δ takes into consideration the differences in atomic positions and the ratios of the corresponding lattice parameters of the structures.

3. Synthesis and crystallization

Cr(NO3)3·9H2O, PbF2, PbO and TeO2 were mixed thoroughly in a stoichiometric ratio of 1:1:2:1 and heated in an open alumina crucible to 1033 K within six h, held at this temperature for 30 h and cooled within eight h to room temperature. Most of the material had evaporated, and only a few orange plates of the title compound were left.

Alternatively, replacement of Cr(NO3)3·9H2O with Cr2O3 under the same reaction conditions likewise led to the formation of Pb2(CrO4)(TeO3).

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Starting coordinates were taken from isotypic Pb2(SO4)(TeO3) (Weil & Shirkhanlou, 2017[Weil, M. & Shirkhanlou, M. (2017). Z. Anorg. Allg. Chem. Accepted. doi:10.1002/zaac.201700016.]). The maximum and minimum electron densities are located 1.26 and 0.81 Å, respectively, from atom Pb2.

Table 2
Experimental details

Crystal data
Chemical formula Pb2(CrO4)(TeO3)
Mr 705.98
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 7.4736 (12), 10.8091 (16), 9.4065 (14)
β (°) 111.098 (12)
V3) 708.95 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 52.91
Crystal size (mm) 0.09 × 0.06 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.264, 0.494
No. of measured, independent and observed [I > 2σ(I)] reflections 23485, 2183, 1760
Rint 0.094
(sin θ/λ)max−1) 0.717
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.070, 1.06
No. of reflections 2183
No. of parameters 100
Δρmax, Δρmin (e Å−3) 2.47, −2.33
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: coordinates taken from an isotypic compound; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Dilead(II) oxochromate(VI) oxotellurate(IV) top
Crystal data top
Pb2(CrO4)(TeO3)F(000) = 1184
Mr = 705.98Dx = 6.614 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.4736 (12) ÅCell parameters from 3031 reflections
b = 10.8091 (16) Åθ = 3.1–28.3°
c = 9.4065 (14) ŵ = 52.91 mm1
β = 111.098 (12)°T = 296 K
V = 708.95 (19) Å3Plate, orange
Z = 40.09 × 0.06 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
1760 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.094
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 30.7°, θmin = 3.0°
Tmin = 0.264, Tmax = 0.494h = 1010
23485 measured reflectionsk = 1515
2183 independent reflectionsl = 1313
Refinement top
Refinement on F2100 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0264P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max = 0.001
S = 1.06Δρmax = 2.47 e Å3
2183 reflectionsΔρmin = 2.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.86662 (5)0.16252 (3)0.49204 (4)0.01746 (9)
Pb21.27667 (5)0.45615 (3)0.56450 (4)0.01735 (9)
Te11.11378 (8)0.63302 (5)0.81301 (6)0.01180 (12)
Cr11.2298 (2)0.61161 (13)1.21196 (16)0.0152 (3)
O11.0417 (9)0.5911 (6)0.6035 (7)0.0187 (13)
O21.3339 (8)0.5323 (5)0.8562 (7)0.0159 (12)
O31.2413 (9)0.7803 (5)0.7920 (6)0.0153 (12)
O41.3081 (10)0.4675 (6)1.2262 (8)0.0295 (17)
O51.3146 (11)0.6714 (6)1.3836 (8)0.0292 (16)
O61.3082 (11)0.6927 (7)1.0953 (8)0.0331 (18)
O70.9957 (10)0.6054 (7)1.1419 (9)0.0337 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01755 (19)0.01525 (15)0.01860 (18)0.00102 (12)0.00530 (14)0.00226 (12)
Pb20.01405 (18)0.01770 (16)0.01959 (18)0.00177 (12)0.00520 (14)0.00440 (12)
Te10.0107 (3)0.0117 (2)0.0124 (3)0.00001 (19)0.0036 (2)0.00064 (19)
Cr10.0131 (7)0.0191 (7)0.0138 (7)0.0005 (5)0.0053 (6)0.0002 (5)
O10.013 (3)0.025 (3)0.015 (3)0.003 (3)0.002 (3)0.004 (3)
O20.014 (3)0.009 (3)0.024 (3)0.003 (2)0.005 (3)0.002 (2)
O30.018 (3)0.013 (3)0.014 (3)0.003 (2)0.005 (3)0.000 (2)
O40.032 (4)0.024 (3)0.031 (4)0.003 (3)0.010 (3)0.006 (3)
O50.041 (4)0.028 (4)0.018 (3)0.007 (3)0.010 (3)0.008 (3)
O60.040 (5)0.036 (4)0.029 (4)0.018 (3)0.019 (4)0.004 (3)
O70.017 (4)0.039 (4)0.043 (5)0.005 (3)0.010 (3)0.015 (4)
Geometric parameters (Å, º) top
Pb1—O2i2.429 (6)Cr1—Te1x3.8465 (15)
Pb1—O3ii2.573 (6)Cr1—Pb1xi3.9532 (15)
Pb1—O2iii2.594 (6)Cr1—Pb1v3.9593 (14)
Pb1—O7iv2.617 (7)Cr1—Pb1xii4.1534 (15)
Pb1—O5v2.750 (7)O1—Pb2ii2.390 (6)
Pb1—O4i2.777 (7)O1—Pb1ii2.968 (6)
Pb1—O6iii2.850 (7)O1—Pb1xi4.515 (6)
Pb1—O1ii2.968 (6)O2—Pb1xi2.429 (6)
Pb1—O3iii3.170 (6)O2—Pb1xii2.594 (6)
Pb1—Te1iii3.6630 (9)O2—Pb1ii4.508 (6)
Pb2—O3iii2.363 (6)O3—Pb2xii2.363 (6)
Pb2—O1ii2.390 (6)O3—Pb1ii2.573 (6)
Pb2—O12.410 (6)O3—Pb1xii3.170 (6)
Pb2—O22.746 (6)O4—Pb1xi2.777 (7)
Pb2—O5vi2.956 (7)O4—Pb2vii3.128 (7)
Pb2—O4vii3.128 (7)O4—Te1v3.228 (7)
Pb2—O6iii3.176 (7)O4—Pb2ix3.276 (7)
Pb2—O5vii3.225 (7)O4—Pb1xii4.262 (7)
Pb2—O4vi3.276 (7)O5—Pb1v2.750 (7)
Pb2—Te13.5567 (7)O5—Pb2ix2.956 (7)
Te1—O21.891 (6)O5—Pb2vii3.225 (7)
Te1—O31.901 (6)O5—Te1x3.314 (8)
Te1—O11.902 (6)O6—Pb1xii2.850 (7)
Te1—O62.608 (7)O6—Te1x3.097 (7)
Te1—O7v2.782 (7)O6—Pb2xii3.176 (7)
Te1—O6viii3.097 (7)O6—Pb2vii3.912 (8)
Cr1—O71.634 (7)O6—Pb1xi4.023 (8)
Cr1—O51.640 (7)O7—Pb1xiii2.617 (7)
Cr1—O41.653 (7)O7—Te1v2.782 (7)
Cr1—O61.667 (7)O7—Pb2v4.032 (8)
Cr1—Pb2vii3.6027 (16)O7—Pb1v4.081 (8)
Cr1—Pb2ix3.6204 (15)O7—Pb2ix4.099 (7)
Cr1—Te1v3.6339 (16)O7—Pb1xi4.568 (8)
O2i—Pb1—O3ii74.19 (19)O7—Cr1—Pb1xi101.5 (3)
O2i—Pb1—O2iii73.9 (2)O5—Cr1—Pb1xi136.8 (3)
O3ii—Pb1—O2iii126.0 (2)O4—Cr1—Pb1xi35.4 (3)
O2i—Pb1—O7iv69.6 (2)O6—Cr1—Pb1xi80.3 (3)
O3ii—Pb1—O7iv70.9 (2)Te1—Cr1—Pb1xi60.35 (2)
O2iii—Pb1—O7iv132.5 (2)Pb2vii—Cr1—Pb1xi75.50 (3)
O2i—Pb1—O5v144.9 (2)Pb2ix—Cr1—Pb1xi99.99 (3)
O3ii—Pb1—O5v105.45 (19)Te1v—Cr1—Pb1xi74.38 (3)
O2iii—Pb1—O5v125.4 (2)Te1x—Cr1—Pb1xi110.89 (4)
O7iv—Pb1—O5v77.1 (2)O7—Cr1—Pb1v82.5 (3)
O2i—Pb1—O4i87.9 (2)O5—Cr1—Pb1v33.7 (3)
O3ii—Pb1—O4i149.93 (19)O4—Cr1—Pb1v132.3 (3)
O2iii—Pb1—O4i68.9 (2)O6—Cr1—Pb1v109.6 (3)
O7iv—Pb1—O4i80.3 (2)Te1—Cr1—Pb1v131.89 (4)
O5v—Pb1—O4i75.6 (2)Pb2vii—Cr1—Pb1v97.02 (3)
O2i—Pb1—O6iii83.2 (2)Pb2ix—Cr1—Pb1v67.93 (3)
O3ii—Pb1—O6iii69.8 (2)Te1v—Cr1—Pb1v101.01 (4)
O2iii—Pb1—O6iii64.2 (2)Te1x—Cr1—Pb1v72.07 (3)
O7iv—Pb1—O6iii136.9 (2)Pb1xi—Cr1—Pb1v167.69 (4)
O5v—Pb1—O6iii130.5 (2)O7—Cr1—Pb1xii132.0 (3)
O4i—Pb1—O6iii132.9 (2)O5—Cr1—Pb1xii108.4 (3)
O2i—Pb1—O1ii127.50 (19)O4—Cr1—Pb1xii82.4 (3)
O3ii—Pb1—O1ii59.35 (17)O6—Cr1—Pb1xii30.7 (3)
O2iii—Pb1—O1ii113.96 (17)Te1—Cr1—Pb1xii56.17 (2)
O7iv—Pb1—O1ii112.2 (2)Pb2vii—Cr1—Pb1xii62.31 (3)
O5v—Pb1—O1ii75.3 (2)Pb2ix—Cr1—Pb1xii129.63 (4)
O4i—Pb1—O1ii144.43 (19)Te1v—Cr1—Pb1xii132.87 (4)
O6iii—Pb1—O1ii59.76 (19)Te1x—Cr1—Pb1xii54.39 (2)
O2i—Pb1—O3iii125.43 (18)Pb1xi—Cr1—Pb1xii59.33 (2)
O3ii—Pb1—O3iii116.15 (16)Pb1v—Cr1—Pb1xii126.12 (4)
O2iii—Pb1—O3iii56.62 (16)Te1—O1—Pb2ii125.4 (3)
O7iv—Pb1—O3iii164.00 (19)Te1—O1—Pb2110.6 (3)
O5v—Pb1—O3iii87.05 (19)Pb2ii—O1—Pb2112.1 (2)
O4i—Pb1—O3iii93.90 (18)Te1—O1—Pb1ii95.2 (2)
O6iii—Pb1—O3iii56.72 (18)Pb2ii—O1—Pb1ii106.0 (2)
O1ii—Pb1—O3iii64.71 (16)Pb2—O1—Pb1ii103.7 (2)
O2i—Pb1—Te1iii94.34 (14)Te1—O1—Pb1xi55.69 (15)
O3ii—Pb1—Te1iii114.85 (13)Pb2ii—O1—Pb1xi121.5 (2)
O2iii—Pb1—Te1iii29.32 (12)Pb2—O1—Pb1xi63.04 (13)
O7iv—Pb1—Te1iii161.34 (16)Pb1ii—O1—Pb1xi132.40 (18)
O5v—Pb1—Te1iii116.07 (15)Te1—O2—Pb1xi121.8 (3)
O4i—Pb1—Te1iii90.00 (15)Te1—O2—Pb1xii108.5 (2)
O6iii—Pb1—Te1iii45.10 (15)Pb1xi—O2—Pb1xii106.1 (2)
O1ii—Pb1—Te1iii84.89 (12)Te1—O2—Pb298.5 (2)
O3iii—Pb1—Te1iii31.26 (10)Pb1xi—O2—Pb2102.47 (19)
O3iii—Pb2—O1ii87.6 (2)Pb1xii—O2—Pb2120.4 (2)
O3iii—Pb2—O1101.9 (2)Te1—O2—Pb1ii52.16 (15)
O1ii—Pb2—O167.9 (2)Pb1xi—O2—Pb1ii163.9 (2)
O3iii—Pb2—O272.00 (18)Pb1xii—O2—Pb1ii89.88 (14)
O1ii—Pb2—O2119.0 (2)Pb2—O2—Pb1ii66.54 (12)
O1—Pb2—O261.76 (19)Te1—O3—Pb2xii118.7 (3)
O3iii—Pb2—O5vi177.4 (2)Te1—O3—Pb1ii109.1 (2)
O1ii—Pb2—O5vi93.8 (2)Pb2xii—O3—Pb1ii109.8 (2)
O1—Pb2—O5vi80.6 (2)Te1—O3—Pb1xii88.8 (2)
O2—Pb2—O5vi109.06 (17)Pb2xii—O3—Pb1xii100.75 (19)
O3iii—Pb2—O4vii95.8 (2)Pb1ii—O3—Pb1xii129.3 (2)
O1ii—Pb2—O4vii176.63 (19)Te1—O3—Pb258.39 (14)
O1—Pb2—O4vii110.89 (19)Pb2xii—O3—Pb2176.2 (2)
O2—Pb2—O4vii61.95 (18)Pb1ii—O3—Pb273.89 (13)
O5vi—Pb2—O4vii82.9 (2)Pb1xii—O3—Pb277.08 (11)
O3iii—Pb2—O6iii60.41 (19)Cr1—O4—Pb1xi124.4 (4)
O1ii—Pb2—O6iii60.90 (19)Cr1—O4—Pb2vii92.6 (3)
O1—Pb2—O6iii125.6 (2)Pb1xi—O4—Pb2vii103.2 (2)
O2—Pb2—O6iii132.40 (18)Cr1—O4—Te1v90.3 (3)
O5vi—Pb2—O6iii118.53 (18)Pb1xi—O4—Te1v99.5 (2)
O4vii—Pb2—O6iii121.22 (17)Pb2vii—O4—Te1v150.2 (3)
O3iii—Pb2—O5vii79.3 (2)Cr1—O4—Pb2ix88.1 (3)
O1ii—Pb2—O5vii132.23 (19)Pb1xi—O4—Pb2ix147.0 (2)
O1—Pb2—O5vii159.74 (19)Pb2vii—O4—Pb2ix78.49 (16)
O2—Pb2—O5vii100.28 (16)Te1v—O4—Pb2ix71.93 (15)
O5vi—Pb2—O5vii98.15 (17)Cr1—O4—Te160.7 (2)
O4vii—Pb2—O5vii49.20 (17)Pb1xi—O4—Te164.28 (14)
O6iii—Pb2—O5vii72.86 (18)Pb2vii—O4—Te1114.8 (2)
O3iii—Pb2—O4vi128.57 (18)Te1v—O4—Te192.34 (16)
O1ii—Pb2—O4vi76.61 (19)Pb2ix—O4—Te1145.4 (2)
O1—Pb2—O4vi115.84 (19)Cr1—O4—Pb1xii75.0 (3)
O2—Pb2—O4vi156.81 (17)Pb1xi—O4—Pb1xii65.68 (15)
O5vi—Pb2—O4vi49.92 (17)Pb2vii—O4—Pb1xii64.16 (13)
O4vii—Pb2—O4vi101.51 (16)Te1v—O4—Pb1xii144.5 (2)
O6iii—Pb2—O4vi69.25 (17)Pb2ix—O4—Pb1xii137.7 (2)
O5vii—Pb2—O4vi76.56 (18)Te1—O4—Pb1xii52.26 (9)
O3iii—Pb2—Te187.36 (14)Cr1—O5—Pb1v126.9 (4)
O1ii—Pb2—Te193.13 (15)Cr1—O5—Pb2ix100.0 (3)
O1—Pb2—Te130.03 (14)Pb1v—O5—Pb2ix96.0 (2)
O2—Pb2—Te131.73 (12)Cr1—O5—Pb2vii89.4 (3)
O5vi—Pb2—Te194.68 (13)Pb1v—O5—Pb2vii143.1 (2)
O4vii—Pb2—Te186.63 (13)Pb2ix—O5—Pb2vii81.85 (17)
O6iii—Pb2—Te1137.38 (13)Cr1—O5—Te1x95.9 (3)
O5vii—Pb2—Te1131.31 (12)Pb1v—O5—Te1x98.0 (2)
O4vi—Pb2—Te1141.21 (12)Pb2ix—O5—Te1x146.0 (3)
O2—Te1—O394.3 (3)Pb2vii—O5—Te1x68.42 (15)
O2—Te1—O189.2 (3)Cr1—O6—Te1109.9 (3)
O3—Te1—O193.3 (3)Cr1—O6—Pb1xii131.9 (4)
O2—Te1—O678.5 (3)Te1—O6—Pb1xii84.2 (2)
O3—Te1—O677.4 (2)Cr1—O6—Te1x103.6 (3)
O1—Te1—O6163.8 (2)Te1—O6—Te1x146.3 (3)
O2—Te1—O7v73.4 (2)Pb1xii—O6—Te1x75.99 (17)
O3—Te1—O7v167.7 (2)Cr1—O6—Pb2xii136.5 (4)
O1—Te1—O7v87.0 (2)Te1—O6—Pb2xii78.27 (18)
O6—Te1—O7v99.2 (2)Pb1xii—O6—Pb2xii90.68 (17)
O2—Te1—O6viii150.4 (2)Te1x—O6—Pb2xii75.03 (16)
O3—Te1—O6viii72.5 (2)Cr1—O6—Pb2vii67.0 (2)
O1—Te1—O6viii66.0 (2)Te1—O6—Pb2vii135.9 (3)
O6—Te1—O6viii122.06 (13)Pb1xii—O6—Pb2vii71.42 (16)
O7v—Te1—O6viii118.5 (2)Te1x—O6—Pb2vii61.99 (13)
O7—Cr1—O5113.0 (4)Pb2xii—O6—Pb2vii136.1 (2)
O7—Cr1—O4106.9 (4)Cr1—O6—Pb1xi75.6 (3)
O5—Cr1—O4106.9 (3)Te1—O6—Pb1xi65.61 (16)
O7—Cr1—O6109.6 (4)Pb1xii—O6—Pb1xi69.10 (16)
O5—Cr1—O6109.8 (4)Te1x—O6—Pb1xi128.5 (2)
O4—Cr1—O6110.5 (4)Pb2xii—O6—Pb1xi139.7 (2)
O7—Cr1—Te176.0 (3)Pb2vii—O6—Pb1xi71.46 (13)
O5—Cr1—Te1151.4 (3)Cr1—O7—Pb1xiii163.1 (4)
O4—Cr1—Te195.3 (3)Cr1—O7—Te1v107.9 (3)
O6—Cr1—Te143.8 (3)Pb1xiii—O7—Te1v89.0 (2)
O7—Cr1—Pb2vii161.7 (3)Cr1—O7—Te177.3 (3)
O5—Cr1—Pb2vii63.5 (3)Pb1xiii—O7—Te195.7 (2)
O4—Cr1—Pb2vii60.2 (3)Te1v—O7—Te1113.1 (2)
O6—Cr1—Pb2vii87.8 (3)Cr1—O7—Pb2v117.5 (3)
Te1—Cr1—Pb2vii116.13 (4)Pb1xiii—O7—Pb2v71.26 (16)
O7—Cr1—Pb2ix95.0 (3)Te1v—O7—Pb2v59.62 (13)
O5—Cr1—Pb2ix53.5 (3)Te1—O7—Pb2v164.5 (2)
O4—Cr1—Pb2ix64.8 (3)Cr1—O7—Pb1v74.1 (3)
O6—Cr1—Pb2ix154.9 (3)Pb1xiii—O7—Pb1v99.4 (2)
Te1—Cr1—Pb2ix155.08 (4)Te1v—O7—Pb1v116.1 (2)
Pb2vii—Cr1—Pb2ix68.28 (3)Te1—O7—Pb1v128.5 (2)
O7—Cr1—Te1v46.7 (3)Pb2v—O7—Pb1v63.88 (12)
O5—Cr1—Te1v111.3 (3)Cr1—O7—Pb2ix61.6 (2)
O4—Cr1—Te1v62.7 (3)Pb1xiii—O7—Pb2ix129.8 (2)
O6—Cr1—Te1v138.4 (3)Te1v—O7—Pb2ix64.15 (14)
Te1—Cr1—Te1v94.66 (4)Te1—O7—Pb2ix133.03 (19)
Pb2vii—Cr1—Te1v116.17 (4)Pb2v—O7—Pb2ix58.65 (10)
Pb2ix—Cr1—Te1v63.55 (3)Pb1v—O7—Pb2ix62.50 (11)
O7—Cr1—Te1x136.4 (3)Cr1—O7—Pb1xi58.0 (2)
O5—Cr1—Te1x59.0 (3)Pb1xiii—O7—Pb1xi129.7 (2)
O4—Cr1—Te1x116.4 (3)Te1v—O7—Pb1xi72.81 (16)
O6—Cr1—Te1x51.5 (3)Te1—O7—Pb1xi53.91 (10)
Te1—Cr1—Te1x95.23 (3)Pb2v—O7—Pb1xi128.24 (17)
Pb2vii—Cr1—Te1x59.04 (2)Pb1v—O7—Pb1xi130.79 (17)
Pb2ix—Cr1—Te1x106.81 (4)Pb2ix—O7—Pb1xi83.91 (12)
Te1v—Cr1—Te1x170.10 (4)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+2, y+1, z+1; (iii) x+5/2, y1/2, z+3/2; (iv) x+3/2, y1/2, z+3/2; (v) x+2, y+1, z+2; (vi) x, y, z1; (vii) x+3, y+1, z+2; (viii) x1/2, y+3/2, z1/2; (ix) x, y, z+1; (x) x+1/2, y+3/2, z+1/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x+5/2, y+1/2, z+3/2; (xiii) x+3/2, y+1/2, z+3/2.
Comparison of bond lengths between isotypic Pb2(CrO4)(TeO3) and Pb2(SO4)(TeO3) top
BondPb2(CrO4)(TeO3)Pb2(SO4)(TeO3)
Pb1—O2i2.429 (6)2.397 (3)
Pb1—O3ii2.573 (6)2.594 (3)
Pb1—O2iii2.594 (6)2.536 (3)
Pb1—O7iv2.617 (7)2.632 (3)
Pb1—O5v2.750 (7)2.789 (3)
Pb1—O4i2.777 (7)2.677 (3)
Pb1—O6iii2.850 (7)3.107 (4)
Pb1—O1ii2.968 (6)2.993 (3)
Pb1—O3iii3.170 (6)3.206 (3)
Pb2—O3iii2.363 (6)2.335 (3)
Pb2—O1ii2.390 (6)2.375 (3)
Pb2—O12.410 (6)2.384 (3)
Pb2—O22.746 (6)2.753 (3)
Pb2—O5vi2.956 (7)2.981 (4)
Pb2—O4vii3.128 (7)3.029 (3)
Pb2—O6iii3.176 (7)3.164 (3)
Pb2—O5vii3.225 (7)3.200 (4)
Pb2—O4vi3.276 (7)3.455 (3)
Te1—O21.891 (6)1.890 (2)
Te1—O31.901 (6)1.878 (2)
Te1—O11.902 (6)1.895 (3)
Cr1—O71.634 (7)1.462 (3)
Cr1—O51.640 (7)1.476 (3)
Cr1—O41.653 (7)1.488 (3)
Cr1—O61.667 (7)1.484 (3)
Symmetry codes: (i) x - 1/2, -y + 1/2, z - 1/2; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 5/2, y - 1/2, -z + 3/2; (iv) -x + 3/2, y - 1/2, -z + 3/2; (v) -x + 2, -y + 1, -z + 2; (vi) x, y, z - 1; (vii) -x + 3, -y + 1, -z + 2.
 

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for financial support and for providing access to the single-crystal diffractometer.

References

First citationBergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147–156.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristy, A. G., Mills, S. J. & Kampf, A. R. (2016). Mineral. Mag. 80, 415–545.  Web of Science CrossRef CAS Google Scholar
First citationDowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationFlor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMüller-Buschbaum, H.-K. & Wedel, B. (1997). Z. Naturforsch. Teil B, 52, 35–39.  Google Scholar
First citationPressprich, M. R., Willett, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B. & Gard, H. B. (1988). Inorg. Chem. 27, 260–264.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeil, M. & Shirkhanlou, M. (2017). Z. Anorg. Allg. Chem. Accepted. doi:10.1002/zaac.201700016.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds