research communications
of dilead(II) oxochromate(VI) oxotellurate(IV)
aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weill@tuwien.ac.at
Reaction of chromium(III) precursors with TeO2 in PbF2/PbO melts in air led to oxidation of chromium(III) to chromium(VI), whereas tellurium remained its of IV. In the resulting title compound, Pb2(CrO4)(TeO3), the two types of anions are isolated from each other, hence a double salt is formed. The two independent Pb2+ cations exhibit nine under formation of very distorted coordination polyhedra [bond-length range = 2.363 (6)–3.276 (7) Å]. The oxochromate(VI) and oxotellurate(IV) anions have tetrahedral and trigonal–pyramidal configurations, respectively. In the (001) layers of metal cations alternate with layers of TeO32− and CrO42− anions along [001], forming a three-dimensional framework structure. Pb2(CrO4)(TeO3) is isotypic with its sulfate analogue Pb2(SO4)(TeO3) and is comparatively discussed.
Keywords: crystal structure; lead; oxochromate(VI); oxotellurate(IV); isotypism.
CCDC reference: 1548953
1. Chemical context
Pb3Fe2Te2O12 is an oxotellurate(VI) with interesting structural features. It crystallizes in the non-centrosymmetric Cc and has TeVI and FeIII atoms occupationally disordered at the same sites (Müller-Buschbaum & Wedel, 1997). This compound has been prepared by solid-state reactions from a PbO, Fe2O3 and TeO2 mixture in air, which led to oxidation of TeIV to TeVI. During an attempt to replace iron(III) by chromium(III) to prepare a possible phase with composition `Pb3Cr2Te2O12', the title compound, Pb2(CrO4)(TeO3), was obtained instead while working under similar conditions. Interestingly, chromium was then oxidized (CrIII → CrVI) while tellurium remained its of IV. Pb2(CrO4)(TeO3) is isotypic with its sulfate analogue Pb2(SO4)(TeO3) (Weil & Shirkhanlou, 2017).
2. Structural commentary
All atoms in the viz. two Pb, one Cr, one Te and seven O sites, are located on general positions.
The coordination environments of the two Pb2+ cations are markedly different. If only Pb—O bond lengths < 2.8 Å are considered, atom Pb1 is surrounded by six O atoms in the range 2.4–2.8 Å whereas atom Pb2 has four oxygen atoms as coordination partners, three at ∼2.38 Å and one at 2.75 Å. Taking into account the more remote oxygen atoms as well, the coordination numbers are increased to nine for both Pb2+ cations (Fig. 1, Table 1).
The chromium atom shows a tetrahedral and the tellurium a trigonal–pyramidal coordination by oxygen atoms. These two coordination polyhedra and the corresponding bond lengths ranges are typical for oxochromates(VI) (Pressprich et al., 1988) and oxotellurates(IV) (Christy et al., 2016), respectively.
In the 2+ cations are arranged in layers parallel to (001) at z ∼ 0, ½ and in turn are stacked into columns extending along [010]. The two types of anion polyhedra are isolated and are likewise arranged into columnar arrangements along [010], forming anion layers situated at z ∼ ¼ and ¾. The metal cation and anion layers alternate along [001] and build up the three-dimensional framework of the The 5s2 and 6s2 electron lone pairs of the TeIV atoms of the oxotellurate anions and of the Pb2+ cations, respectively, are stereochemically active and point into channels running parallel to the two types of columns along [010] (Fig. 2).
the PbRelevant bond lengths of isotypic Pb2(CrO4)(TeO3) and Pb2(SO4)(TeO3) are compared in Table 1. Whereas the TeO32− anions in the two structures show only marginal differences, the expected differences in the X—O bond lengths (X = Cr, S) of the chromate and sulfate tetrahedra (average values 1.65 and 1.48 Å, respectively) also have consequences for those Pb—O bonds where the corresponding atoms O4–O7 are involved. These Pb—O bonds differ by up to 0.20 Å. A more quantitative comparison of the two isotypic structures was made with the program COMPSTRU (de la Flor et al., 2016). The degree of S, is the spontaneous strain (sum of the squared eigenvalues of the strain tensor divided by 3) and amounts to 0.007. The maximum distance shows the maximal displacement between atomic positions of paired atoms and is 0.31 Å for atom pair O4. The next largest distances are 0.23 Å for pair O6, 0.17 Å for O5 and 0.13 Å for O7. The pairs of heavy atoms and the Cr/S pair show comparatively small distances of 0.095 Å (Pb1), 0.061 Å (Pb2), 0.087 Å (Te1) and 0.095 Å (Cr1/S1). The arithmetic mean of the distances is 0.12 Å. The measure of similarity (Δ) (Bergerhoff et al., 1999) is 0.034, revealing a close relation between the two structures. Δ takes into consideration the differences in atomic positions and the ratios of the corresponding lattice parameters of the structures.
3. Synthesis and crystallization
Cr(NO3)3·9H2O, PbF2, PbO and TeO2 were mixed thoroughly in a stoichiometric ratio of 1:1:2:1 and heated in an open alumina crucible to 1033 K within six h, held at this temperature for 30 h and cooled within eight h to room temperature. Most of the material had evaporated, and only a few orange plates of the title compound were left.
Alternatively, replacement of Cr(NO3)3·9H2O with Cr2O3 under the same reaction conditions likewise led to the formation of Pb2(CrO4)(TeO3).
4. Refinement
Crystal data, data collection and structure . Starting coordinates were taken from isotypic Pb2(SO4)(TeO3) (Weil & Shirkhanlou, 2017). The maximum and minimum electron densities are located 1.26 and 0.81 Å, respectively, from atom Pb2.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1548953
https://doi.org/10.1107/S2056989017006995/hb7677sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017006995/hb7677Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: coordinates taken from an isotypic compound; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Pb2(CrO4)(TeO3) | F(000) = 1184 |
Mr = 705.98 | Dx = 6.614 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4736 (12) Å | Cell parameters from 3031 reflections |
b = 10.8091 (16) Å | θ = 3.1–28.3° |
c = 9.4065 (14) Å | µ = 52.91 mm−1 |
β = 111.098 (12)° | T = 296 K |
V = 708.95 (19) Å3 | Plate, orange |
Z = 4 | 0.09 × 0.06 × 0.01 mm |
Bruker APEXII CCD diffractometer | 1760 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.094 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | θmax = 30.7°, θmin = 3.0° |
Tmin = 0.264, Tmax = 0.494 | h = −10→10 |
23485 measured reflections | k = −15→15 |
2183 independent reflections | l = −13→13 |
Refinement on F2 | 100 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.031 | w = 1/[σ2(Fo2) + (0.0264P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.070 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 2.47 e Å−3 |
2183 reflections | Δρmin = −2.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pb1 | 0.86662 (5) | 0.16252 (3) | 0.49204 (4) | 0.01746 (9) | |
Pb2 | 1.27667 (5) | 0.45615 (3) | 0.56450 (4) | 0.01735 (9) | |
Te1 | 1.11378 (8) | 0.63302 (5) | 0.81301 (6) | 0.01180 (12) | |
Cr1 | 1.2298 (2) | 0.61161 (13) | 1.21196 (16) | 0.0152 (3) | |
O1 | 1.0417 (9) | 0.5911 (6) | 0.6035 (7) | 0.0187 (13) | |
O2 | 1.3339 (8) | 0.5323 (5) | 0.8562 (7) | 0.0159 (12) | |
O3 | 1.2413 (9) | 0.7803 (5) | 0.7920 (6) | 0.0153 (12) | |
O4 | 1.3081 (10) | 0.4675 (6) | 1.2262 (8) | 0.0295 (17) | |
O5 | 1.3146 (11) | 0.6714 (6) | 1.3836 (8) | 0.0292 (16) | |
O6 | 1.3082 (11) | 0.6927 (7) | 1.0953 (8) | 0.0331 (18) | |
O7 | 0.9957 (10) | 0.6054 (7) | 1.1419 (9) | 0.0337 (18) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb1 | 0.01755 (19) | 0.01525 (15) | 0.01860 (18) | 0.00102 (12) | 0.00530 (14) | −0.00226 (12) |
Pb2 | 0.01405 (18) | 0.01770 (16) | 0.01959 (18) | 0.00177 (12) | 0.00520 (14) | 0.00440 (12) |
Te1 | 0.0107 (3) | 0.0117 (2) | 0.0124 (3) | 0.00001 (19) | 0.0036 (2) | −0.00064 (19) |
Cr1 | 0.0131 (7) | 0.0191 (7) | 0.0138 (7) | −0.0005 (5) | 0.0053 (6) | −0.0002 (5) |
O1 | 0.013 (3) | 0.025 (3) | 0.015 (3) | 0.003 (3) | 0.002 (3) | −0.004 (3) |
O2 | 0.014 (3) | 0.009 (3) | 0.024 (3) | 0.003 (2) | 0.005 (3) | 0.002 (2) |
O3 | 0.018 (3) | 0.013 (3) | 0.014 (3) | −0.003 (2) | 0.005 (3) | 0.000 (2) |
O4 | 0.032 (4) | 0.024 (3) | 0.031 (4) | 0.003 (3) | 0.010 (3) | −0.006 (3) |
O5 | 0.041 (4) | 0.028 (4) | 0.018 (3) | 0.007 (3) | 0.010 (3) | −0.008 (3) |
O6 | 0.040 (5) | 0.036 (4) | 0.029 (4) | −0.018 (3) | 0.019 (4) | 0.004 (3) |
O7 | 0.017 (4) | 0.039 (4) | 0.043 (5) | 0.005 (3) | 0.010 (3) | 0.015 (4) |
Pb1—O2i | 2.429 (6) | Cr1—Te1x | 3.8465 (15) |
Pb1—O3ii | 2.573 (6) | Cr1—Pb1xi | 3.9532 (15) |
Pb1—O2iii | 2.594 (6) | Cr1—Pb1v | 3.9593 (14) |
Pb1—O7iv | 2.617 (7) | Cr1—Pb1xii | 4.1534 (15) |
Pb1—O5v | 2.750 (7) | O1—Pb2ii | 2.390 (6) |
Pb1—O4i | 2.777 (7) | O1—Pb1ii | 2.968 (6) |
Pb1—O6iii | 2.850 (7) | O1—Pb1xi | 4.515 (6) |
Pb1—O1ii | 2.968 (6) | O2—Pb1xi | 2.429 (6) |
Pb1—O3iii | 3.170 (6) | O2—Pb1xii | 2.594 (6) |
Pb1—Te1iii | 3.6630 (9) | O2—Pb1ii | 4.508 (6) |
Pb2—O3iii | 2.363 (6) | O3—Pb2xii | 2.363 (6) |
Pb2—O1ii | 2.390 (6) | O3—Pb1ii | 2.573 (6) |
Pb2—O1 | 2.410 (6) | O3—Pb1xii | 3.170 (6) |
Pb2—O2 | 2.746 (6) | O4—Pb1xi | 2.777 (7) |
Pb2—O5vi | 2.956 (7) | O4—Pb2vii | 3.128 (7) |
Pb2—O4vii | 3.128 (7) | O4—Te1v | 3.228 (7) |
Pb2—O6iii | 3.176 (7) | O4—Pb2ix | 3.276 (7) |
Pb2—O5vii | 3.225 (7) | O4—Pb1xii | 4.262 (7) |
Pb2—O4vi | 3.276 (7) | O5—Pb1v | 2.750 (7) |
Pb2—Te1 | 3.5567 (7) | O5—Pb2ix | 2.956 (7) |
Te1—O2 | 1.891 (6) | O5—Pb2vii | 3.225 (7) |
Te1—O3 | 1.901 (6) | O5—Te1x | 3.314 (8) |
Te1—O1 | 1.902 (6) | O6—Pb1xii | 2.850 (7) |
Te1—O6 | 2.608 (7) | O6—Te1x | 3.097 (7) |
Te1—O7v | 2.782 (7) | O6—Pb2xii | 3.176 (7) |
Te1—O6viii | 3.097 (7) | O6—Pb2vii | 3.912 (8) |
Cr1—O7 | 1.634 (7) | O6—Pb1xi | 4.023 (8) |
Cr1—O5 | 1.640 (7) | O7—Pb1xiii | 2.617 (7) |
Cr1—O4 | 1.653 (7) | O7—Te1v | 2.782 (7) |
Cr1—O6 | 1.667 (7) | O7—Pb2v | 4.032 (8) |
Cr1—Pb2vii | 3.6027 (16) | O7—Pb1v | 4.081 (8) |
Cr1—Pb2ix | 3.6204 (15) | O7—Pb2ix | 4.099 (7) |
Cr1—Te1v | 3.6339 (16) | O7—Pb1xi | 4.568 (8) |
O2i—Pb1—O3ii | 74.19 (19) | O7—Cr1—Pb1xi | 101.5 (3) |
O2i—Pb1—O2iii | 73.9 (2) | O5—Cr1—Pb1xi | 136.8 (3) |
O3ii—Pb1—O2iii | 126.0 (2) | O4—Cr1—Pb1xi | 35.4 (3) |
O2i—Pb1—O7iv | 69.6 (2) | O6—Cr1—Pb1xi | 80.3 (3) |
O3ii—Pb1—O7iv | 70.9 (2) | Te1—Cr1—Pb1xi | 60.35 (2) |
O2iii—Pb1—O7iv | 132.5 (2) | Pb2vii—Cr1—Pb1xi | 75.50 (3) |
O2i—Pb1—O5v | 144.9 (2) | Pb2ix—Cr1—Pb1xi | 99.99 (3) |
O3ii—Pb1—O5v | 105.45 (19) | Te1v—Cr1—Pb1xi | 74.38 (3) |
O2iii—Pb1—O5v | 125.4 (2) | Te1x—Cr1—Pb1xi | 110.89 (4) |
O7iv—Pb1—O5v | 77.1 (2) | O7—Cr1—Pb1v | 82.5 (3) |
O2i—Pb1—O4i | 87.9 (2) | O5—Cr1—Pb1v | 33.7 (3) |
O3ii—Pb1—O4i | 149.93 (19) | O4—Cr1—Pb1v | 132.3 (3) |
O2iii—Pb1—O4i | 68.9 (2) | O6—Cr1—Pb1v | 109.6 (3) |
O7iv—Pb1—O4i | 80.3 (2) | Te1—Cr1—Pb1v | 131.89 (4) |
O5v—Pb1—O4i | 75.6 (2) | Pb2vii—Cr1—Pb1v | 97.02 (3) |
O2i—Pb1—O6iii | 83.2 (2) | Pb2ix—Cr1—Pb1v | 67.93 (3) |
O3ii—Pb1—O6iii | 69.8 (2) | Te1v—Cr1—Pb1v | 101.01 (4) |
O2iii—Pb1—O6iii | 64.2 (2) | Te1x—Cr1—Pb1v | 72.07 (3) |
O7iv—Pb1—O6iii | 136.9 (2) | Pb1xi—Cr1—Pb1v | 167.69 (4) |
O5v—Pb1—O6iii | 130.5 (2) | O7—Cr1—Pb1xii | 132.0 (3) |
O4i—Pb1—O6iii | 132.9 (2) | O5—Cr1—Pb1xii | 108.4 (3) |
O2i—Pb1—O1ii | 127.50 (19) | O4—Cr1—Pb1xii | 82.4 (3) |
O3ii—Pb1—O1ii | 59.35 (17) | O6—Cr1—Pb1xii | 30.7 (3) |
O2iii—Pb1—O1ii | 113.96 (17) | Te1—Cr1—Pb1xii | 56.17 (2) |
O7iv—Pb1—O1ii | 112.2 (2) | Pb2vii—Cr1—Pb1xii | 62.31 (3) |
O5v—Pb1—O1ii | 75.3 (2) | Pb2ix—Cr1—Pb1xii | 129.63 (4) |
O4i—Pb1—O1ii | 144.43 (19) | Te1v—Cr1—Pb1xii | 132.87 (4) |
O6iii—Pb1—O1ii | 59.76 (19) | Te1x—Cr1—Pb1xii | 54.39 (2) |
O2i—Pb1—O3iii | 125.43 (18) | Pb1xi—Cr1—Pb1xii | 59.33 (2) |
O3ii—Pb1—O3iii | 116.15 (16) | Pb1v—Cr1—Pb1xii | 126.12 (4) |
O2iii—Pb1—O3iii | 56.62 (16) | Te1—O1—Pb2ii | 125.4 (3) |
O7iv—Pb1—O3iii | 164.00 (19) | Te1—O1—Pb2 | 110.6 (3) |
O5v—Pb1—O3iii | 87.05 (19) | Pb2ii—O1—Pb2 | 112.1 (2) |
O4i—Pb1—O3iii | 93.90 (18) | Te1—O1—Pb1ii | 95.2 (2) |
O6iii—Pb1—O3iii | 56.72 (18) | Pb2ii—O1—Pb1ii | 106.0 (2) |
O1ii—Pb1—O3iii | 64.71 (16) | Pb2—O1—Pb1ii | 103.7 (2) |
O2i—Pb1—Te1iii | 94.34 (14) | Te1—O1—Pb1xi | 55.69 (15) |
O3ii—Pb1—Te1iii | 114.85 (13) | Pb2ii—O1—Pb1xi | 121.5 (2) |
O2iii—Pb1—Te1iii | 29.32 (12) | Pb2—O1—Pb1xi | 63.04 (13) |
O7iv—Pb1—Te1iii | 161.34 (16) | Pb1ii—O1—Pb1xi | 132.40 (18) |
O5v—Pb1—Te1iii | 116.07 (15) | Te1—O2—Pb1xi | 121.8 (3) |
O4i—Pb1—Te1iii | 90.00 (15) | Te1—O2—Pb1xii | 108.5 (2) |
O6iii—Pb1—Te1iii | 45.10 (15) | Pb1xi—O2—Pb1xii | 106.1 (2) |
O1ii—Pb1—Te1iii | 84.89 (12) | Te1—O2—Pb2 | 98.5 (2) |
O3iii—Pb1—Te1iii | 31.26 (10) | Pb1xi—O2—Pb2 | 102.47 (19) |
O3iii—Pb2—O1ii | 87.6 (2) | Pb1xii—O2—Pb2 | 120.4 (2) |
O3iii—Pb2—O1 | 101.9 (2) | Te1—O2—Pb1ii | 52.16 (15) |
O1ii—Pb2—O1 | 67.9 (2) | Pb1xi—O2—Pb1ii | 163.9 (2) |
O3iii—Pb2—O2 | 72.00 (18) | Pb1xii—O2—Pb1ii | 89.88 (14) |
O1ii—Pb2—O2 | 119.0 (2) | Pb2—O2—Pb1ii | 66.54 (12) |
O1—Pb2—O2 | 61.76 (19) | Te1—O3—Pb2xii | 118.7 (3) |
O3iii—Pb2—O5vi | 177.4 (2) | Te1—O3—Pb1ii | 109.1 (2) |
O1ii—Pb2—O5vi | 93.8 (2) | Pb2xii—O3—Pb1ii | 109.8 (2) |
O1—Pb2—O5vi | 80.6 (2) | Te1—O3—Pb1xii | 88.8 (2) |
O2—Pb2—O5vi | 109.06 (17) | Pb2xii—O3—Pb1xii | 100.75 (19) |
O3iii—Pb2—O4vii | 95.8 (2) | Pb1ii—O3—Pb1xii | 129.3 (2) |
O1ii—Pb2—O4vii | 176.63 (19) | Te1—O3—Pb2 | 58.39 (14) |
O1—Pb2—O4vii | 110.89 (19) | Pb2xii—O3—Pb2 | 176.2 (2) |
O2—Pb2—O4vii | 61.95 (18) | Pb1ii—O3—Pb2 | 73.89 (13) |
O5vi—Pb2—O4vii | 82.9 (2) | Pb1xii—O3—Pb2 | 77.08 (11) |
O3iii—Pb2—O6iii | 60.41 (19) | Cr1—O4—Pb1xi | 124.4 (4) |
O1ii—Pb2—O6iii | 60.90 (19) | Cr1—O4—Pb2vii | 92.6 (3) |
O1—Pb2—O6iii | 125.6 (2) | Pb1xi—O4—Pb2vii | 103.2 (2) |
O2—Pb2—O6iii | 132.40 (18) | Cr1—O4—Te1v | 90.3 (3) |
O5vi—Pb2—O6iii | 118.53 (18) | Pb1xi—O4—Te1v | 99.5 (2) |
O4vii—Pb2—O6iii | 121.22 (17) | Pb2vii—O4—Te1v | 150.2 (3) |
O3iii—Pb2—O5vii | 79.3 (2) | Cr1—O4—Pb2ix | 88.1 (3) |
O1ii—Pb2—O5vii | 132.23 (19) | Pb1xi—O4—Pb2ix | 147.0 (2) |
O1—Pb2—O5vii | 159.74 (19) | Pb2vii—O4—Pb2ix | 78.49 (16) |
O2—Pb2—O5vii | 100.28 (16) | Te1v—O4—Pb2ix | 71.93 (15) |
O5vi—Pb2—O5vii | 98.15 (17) | Cr1—O4—Te1 | 60.7 (2) |
O4vii—Pb2—O5vii | 49.20 (17) | Pb1xi—O4—Te1 | 64.28 (14) |
O6iii—Pb2—O5vii | 72.86 (18) | Pb2vii—O4—Te1 | 114.8 (2) |
O3iii—Pb2—O4vi | 128.57 (18) | Te1v—O4—Te1 | 92.34 (16) |
O1ii—Pb2—O4vi | 76.61 (19) | Pb2ix—O4—Te1 | 145.4 (2) |
O1—Pb2—O4vi | 115.84 (19) | Cr1—O4—Pb1xii | 75.0 (3) |
O2—Pb2—O4vi | 156.81 (17) | Pb1xi—O4—Pb1xii | 65.68 (15) |
O5vi—Pb2—O4vi | 49.92 (17) | Pb2vii—O4—Pb1xii | 64.16 (13) |
O4vii—Pb2—O4vi | 101.51 (16) | Te1v—O4—Pb1xii | 144.5 (2) |
O6iii—Pb2—O4vi | 69.25 (17) | Pb2ix—O4—Pb1xii | 137.7 (2) |
O5vii—Pb2—O4vi | 76.56 (18) | Te1—O4—Pb1xii | 52.26 (9) |
O3iii—Pb2—Te1 | 87.36 (14) | Cr1—O5—Pb1v | 126.9 (4) |
O1ii—Pb2—Te1 | 93.13 (15) | Cr1—O5—Pb2ix | 100.0 (3) |
O1—Pb2—Te1 | 30.03 (14) | Pb1v—O5—Pb2ix | 96.0 (2) |
O2—Pb2—Te1 | 31.73 (12) | Cr1—O5—Pb2vii | 89.4 (3) |
O5vi—Pb2—Te1 | 94.68 (13) | Pb1v—O5—Pb2vii | 143.1 (2) |
O4vii—Pb2—Te1 | 86.63 (13) | Pb2ix—O5—Pb2vii | 81.85 (17) |
O6iii—Pb2—Te1 | 137.38 (13) | Cr1—O5—Te1x | 95.9 (3) |
O5vii—Pb2—Te1 | 131.31 (12) | Pb1v—O5—Te1x | 98.0 (2) |
O4vi—Pb2—Te1 | 141.21 (12) | Pb2ix—O5—Te1x | 146.0 (3) |
O2—Te1—O3 | 94.3 (3) | Pb2vii—O5—Te1x | 68.42 (15) |
O2—Te1—O1 | 89.2 (3) | Cr1—O6—Te1 | 109.9 (3) |
O3—Te1—O1 | 93.3 (3) | Cr1—O6—Pb1xii | 131.9 (4) |
O2—Te1—O6 | 78.5 (3) | Te1—O6—Pb1xii | 84.2 (2) |
O3—Te1—O6 | 77.4 (2) | Cr1—O6—Te1x | 103.6 (3) |
O1—Te1—O6 | 163.8 (2) | Te1—O6—Te1x | 146.3 (3) |
O2—Te1—O7v | 73.4 (2) | Pb1xii—O6—Te1x | 75.99 (17) |
O3—Te1—O7v | 167.7 (2) | Cr1—O6—Pb2xii | 136.5 (4) |
O1—Te1—O7v | 87.0 (2) | Te1—O6—Pb2xii | 78.27 (18) |
O6—Te1—O7v | 99.2 (2) | Pb1xii—O6—Pb2xii | 90.68 (17) |
O2—Te1—O6viii | 150.4 (2) | Te1x—O6—Pb2xii | 75.03 (16) |
O3—Te1—O6viii | 72.5 (2) | Cr1—O6—Pb2vii | 67.0 (2) |
O1—Te1—O6viii | 66.0 (2) | Te1—O6—Pb2vii | 135.9 (3) |
O6—Te1—O6viii | 122.06 (13) | Pb1xii—O6—Pb2vii | 71.42 (16) |
O7v—Te1—O6viii | 118.5 (2) | Te1x—O6—Pb2vii | 61.99 (13) |
O7—Cr1—O5 | 113.0 (4) | Pb2xii—O6—Pb2vii | 136.1 (2) |
O7—Cr1—O4 | 106.9 (4) | Cr1—O6—Pb1xi | 75.6 (3) |
O5—Cr1—O4 | 106.9 (3) | Te1—O6—Pb1xi | 65.61 (16) |
O7—Cr1—O6 | 109.6 (4) | Pb1xii—O6—Pb1xi | 69.10 (16) |
O5—Cr1—O6 | 109.8 (4) | Te1x—O6—Pb1xi | 128.5 (2) |
O4—Cr1—O6 | 110.5 (4) | Pb2xii—O6—Pb1xi | 139.7 (2) |
O7—Cr1—Te1 | 76.0 (3) | Pb2vii—O6—Pb1xi | 71.46 (13) |
O5—Cr1—Te1 | 151.4 (3) | Cr1—O7—Pb1xiii | 163.1 (4) |
O4—Cr1—Te1 | 95.3 (3) | Cr1—O7—Te1v | 107.9 (3) |
O6—Cr1—Te1 | 43.8 (3) | Pb1xiii—O7—Te1v | 89.0 (2) |
O7—Cr1—Pb2vii | 161.7 (3) | Cr1—O7—Te1 | 77.3 (3) |
O5—Cr1—Pb2vii | 63.5 (3) | Pb1xiii—O7—Te1 | 95.7 (2) |
O4—Cr1—Pb2vii | 60.2 (3) | Te1v—O7—Te1 | 113.1 (2) |
O6—Cr1—Pb2vii | 87.8 (3) | Cr1—O7—Pb2v | 117.5 (3) |
Te1—Cr1—Pb2vii | 116.13 (4) | Pb1xiii—O7—Pb2v | 71.26 (16) |
O7—Cr1—Pb2ix | 95.0 (3) | Te1v—O7—Pb2v | 59.62 (13) |
O5—Cr1—Pb2ix | 53.5 (3) | Te1—O7—Pb2v | 164.5 (2) |
O4—Cr1—Pb2ix | 64.8 (3) | Cr1—O7—Pb1v | 74.1 (3) |
O6—Cr1—Pb2ix | 154.9 (3) | Pb1xiii—O7—Pb1v | 99.4 (2) |
Te1—Cr1—Pb2ix | 155.08 (4) | Te1v—O7—Pb1v | 116.1 (2) |
Pb2vii—Cr1—Pb2ix | 68.28 (3) | Te1—O7—Pb1v | 128.5 (2) |
O7—Cr1—Te1v | 46.7 (3) | Pb2v—O7—Pb1v | 63.88 (12) |
O5—Cr1—Te1v | 111.3 (3) | Cr1—O7—Pb2ix | 61.6 (2) |
O4—Cr1—Te1v | 62.7 (3) | Pb1xiii—O7—Pb2ix | 129.8 (2) |
O6—Cr1—Te1v | 138.4 (3) | Te1v—O7—Pb2ix | 64.15 (14) |
Te1—Cr1—Te1v | 94.66 (4) | Te1—O7—Pb2ix | 133.03 (19) |
Pb2vii—Cr1—Te1v | 116.17 (4) | Pb2v—O7—Pb2ix | 58.65 (10) |
Pb2ix—Cr1—Te1v | 63.55 (3) | Pb1v—O7—Pb2ix | 62.50 (11) |
O7—Cr1—Te1x | 136.4 (3) | Cr1—O7—Pb1xi | 58.0 (2) |
O5—Cr1—Te1x | 59.0 (3) | Pb1xiii—O7—Pb1xi | 129.7 (2) |
O4—Cr1—Te1x | 116.4 (3) | Te1v—O7—Pb1xi | 72.81 (16) |
O6—Cr1—Te1x | 51.5 (3) | Te1—O7—Pb1xi | 53.91 (10) |
Te1—Cr1—Te1x | 95.23 (3) | Pb2v—O7—Pb1xi | 128.24 (17) |
Pb2vii—Cr1—Te1x | 59.04 (2) | Pb1v—O7—Pb1xi | 130.79 (17) |
Pb2ix—Cr1—Te1x | 106.81 (4) | Pb2ix—O7—Pb1xi | 83.91 (12) |
Te1v—Cr1—Te1x | 170.10 (4) |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+2, −y+1, −z+1; (iii) −x+5/2, y−1/2, −z+3/2; (iv) −x+3/2, y−1/2, −z+3/2; (v) −x+2, −y+1, −z+2; (vi) x, y, z−1; (vii) −x+3, −y+1, −z+2; (viii) x−1/2, −y+3/2, z−1/2; (ix) x, y, z+1; (x) x+1/2, −y+3/2, z+1/2; (xi) x+1/2, −y+1/2, z+1/2; (xii) −x+5/2, y+1/2, −z+3/2; (xiii) −x+3/2, y+1/2, −z+3/2. |
Bond | Pb2(CrO4)(TeO3) | Pb2(SO4)(TeO3) |
Pb1—O2i | 2.429 (6) | 2.397 (3) |
Pb1—O3ii | 2.573 (6) | 2.594 (3) |
Pb1—O2iii | 2.594 (6) | 2.536 (3) |
Pb1—O7iv | 2.617 (7) | 2.632 (3) |
Pb1—O5v | 2.750 (7) | 2.789 (3) |
Pb1—O4i | 2.777 (7) | 2.677 (3) |
Pb1—O6iii | 2.850 (7) | 3.107 (4) |
Pb1—O1ii | 2.968 (6) | 2.993 (3) |
Pb1—O3iii | 3.170 (6) | 3.206 (3) |
Pb2—O3iii | 2.363 (6) | 2.335 (3) |
Pb2—O1ii | 2.390 (6) | 2.375 (3) |
Pb2—O1 | 2.410 (6) | 2.384 (3) |
Pb2—O2 | 2.746 (6) | 2.753 (3) |
Pb2—O5vi | 2.956 (7) | 2.981 (4) |
Pb2—O4vii | 3.128 (7) | 3.029 (3) |
Pb2—O6iii | 3.176 (7) | 3.164 (3) |
Pb2—O5vii | 3.225 (7) | 3.200 (4) |
Pb2—O4vi | 3.276 (7) | 3.455 (3) |
Te1—O2 | 1.891 (6) | 1.890 (2) |
Te1—O3 | 1.901 (6) | 1.878 (2) |
Te1—O1 | 1.902 (6) | 1.895 (3) |
Cr1—O7 | 1.634 (7) | 1.462 (3) |
Cr1—O5 | 1.640 (7) | 1.476 (3) |
Cr1—O4 | 1.653 (7) | 1.488 (3) |
Cr1—O6 | 1.667 (7) | 1.484 (3) |
Symmetry codes: (i) x - 1/2, -y + 1/2, z - 1/2; (ii) -x + 2, -y + 1, -z + 1; (iii) -x + 5/2, y - 1/2, -z + 3/2; (iv) -x + 3/2, y - 1/2, -z + 3/2; (v) -x + 2, -y + 1, -z + 2; (vi) x, y, z - 1; (vii) -x + 3, -y + 1, -z + 2. |
Acknowledgements
The X-ray centre of the Vienna University of Technology is acknowledged for financial support and for providing access to the single-crystal diffractometer.
References
Bergerhoff, G., Berndt, M., Brandenburg, K. & Degen, T. (1999). Acta Cryst. B55, 147–156. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Mineral. Mag. 80, 415–545. Web of Science CrossRef CAS Google Scholar
Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664. Web of Science CrossRef IUCr Journals Google Scholar
Müller-Buschbaum, H.-K. & Wedel, B. (1997). Z. Naturforsch. Teil B, 52, 35–39. Google Scholar
Pressprich, M. R., Willett, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B. & Gard, H. B. (1988). Inorg. Chem. 27, 260–264. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Weil, M. & Shirkhanlou, M. (2017). Z. Anorg. Allg. Chem. Accepted. doi:10.1002/zaac.201700016. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.