research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Three closely related (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­­[1-(meth­­oxy­phen­yl)prop-2-en-1-ones]: supra­molecular assemblies in one dimension mediated by hydrogen bonding and C—H⋯π inter­actions

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering &, Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, Karnataka, India, cSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, dDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul, Rahman, Perak Campus, Jalan Universiti, Bandar Barat, Perak, Malaysia, eInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, fDepartment of Sugar Technology & Chemistry, University of Mysore, Sir M. Visvesvaraya PG Centre, Tubinakere, Mandya 571 402, India, gDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru, 570 006, India, and hDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: chidankumar@gmail.com, khalil.i@najah.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 May 2017; accepted 20 May 2017; online 26 May 2017)

In the title compounds, (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­[1-(2-meth­oxy­phen­yl)prop-2-en-1-one], C26H22O4 (I), (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­[1-(3-meth­oxy­phen­yl)prop-2-en-1-one], C26H22O4 (II) and (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­[1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one], C28H26O6 (III), the asymmetric unit consists of a half-mol­ecule, completed by crystallographic inversion symmetry. The dihedral angles between the central and terminal benzene rings are 56.98 (8), 7.74 (7) and 7.73 (7)° for (I), (II) and (III), respectively. In the crystal of (I), mol­ecules are linked by pairs of C—H⋯π inter­actions into chains running parallel to [101]. The packing for (II) and (III), features inversion dimers linked by pairs of C—H⋯O hydrogen bonds, forming R22(16) and R22(14) ring motifs, respectively, as parts of [201] and [101] chains, respectively.

1. Chemical context

Chalcones and their derivatives are natural or synthetic 1,3-diaryl-2-propenones that may exist in cis and trans isomeric forms, the trans form being thermodynamically stable. The α,β-unsaturated enone C=C—C(=O)—C moiety in the chalcone structure plays an important role in the biological activities of these species (Husain et al., 2013[Husain, A., Ahmad, A., Mkhalid, I. A. I., Mishra, R. & Rashid, M. (2013). Med. Chem. Res. 22, 1578-1586.]; Abdel Ghani et al., 2008[Abdel Ghani, S. B., Weaver, L., Zidan, Z. H., Ali, H. M., Keevil, C. W. & Brown, R. C. D. (2008). Bioorg. Med. Chem. Lett. 18, 518-522.]). As a result of the -enone system, these mol­ecules present relatively low redox potentials and have a greater probability of undergoing electron-transfer reactions. Apart from the biological activities, the photophysical properties of chalcone derivatives also attracted considerable attention from both chemists and physicists. Many chalcone derivatives have been reported in relation to non-linear optics (NLO), photorefractive polymers, holographic recording materials and fluorescent probes for sensing metal ions (Ruzié et al., 2009[Ruzié, C., Krayer, M. & Lindsey, J. S. (2009). Org. Lett. 11, 1761-1764.]; Wei et al., 2011[Wei, Y., Qin, G., Wang, W., Bian, W., Shuang, S. & Dong, C. (2011). J. Lumin. 131, 1672-1676.]; Chandra Shekhara Shetty et al., 2016[Chandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205.]). As part of our studies in this area, we report herein the syntheses and structures of three new bis­chalcone derivatives, (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­(1-(2-meth­oxy­phen­yl)prop-2-en-1-one), C26H22O4 (I)[link], (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­(1-(3-meth­oxy­phen­yl)prop-2-en-1-one), C26H22O4 (II)[link] and (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­(1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one), C28H26O6 (III)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structures of (I)–(III) are shown in Figs. 1[link]–3[link][link], respectively. The asymmetric unit of each compound consists of a half-mol­ecule, with the complete mol­ecule generated by a crystallographic inversion centre at the centroid of the central benzene ring.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 40% probability displacement ellipsoids. [Symmetry code: (A) −x, 1 − y, −z.]
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing 40% probability displacement ellipsoids. [Symmetry code: (A) 1 − x, 1 − y, 1 − z.]
[Figure 3]
Figure 3
The mol­ecular structure of (III)[link], showing 40% probability displacement ellipsoids. [Symmetry code: (A) 2 − x, −y, 1 − z.]

Each compound is constructed from two aromatic rings (centre benzene and terminal meth­oxy­phenyl rings), which are linked by a C=C—C(=O)—C enone bridge. Despite having an extra meth­oxy substituent, the conformation of compounds (II)[link] and (III)[link] are very similar, as indicated by the dihedral angles between the rings of 7.74 (7) and 7.73 (7)°, respectively. The enone linkage moiety of compounds (II)[link] and (III)[link] has similar torsion angles [O1—C7—C8—C9 = 0.2 (2) and 7.3 (2)°, respectively], but compound (II)[link] has a higher overall planarity than compound (III)[link], as its enone bridge forms a smaller torsion angle with the meth­oxy­phenyl ring [C1—C6—C7—O1 = −6.5 (2)°] and benzene ring [C8—C9—C10—C11 = −1.7 (2)°; C1—C6—C7—O1 = 7.3 (2)° and C8—C9—C10—C11 = −5.6 (2)° in (III)]. Compared to the nearly coplanar arrangement of rings in compounds (II)[link] and (III)[link], compound (I)[link] is substanti­ally twisted [O1—C7—C8—C9 = −13.5 (2)° and C1—C6—C7—O1 = 143.60 (15)°] about the enone bridge, which may arise from steric repulsion with the ortho-O2 atom. Hence, the dihedral angle between the 2-meth­oxy­phenyl and benzene rings in (I)[link] increases to 56.98 (8)°. Key torsion angles are tabulated in Table 1[link]. The C atoms of the meth­oxy groups are close to the planes of their attached rings in all cases: for (I)[link], deviation of C13 = 0.163 (2) Å, for (II)[link], deviation of C13 = 0.329 (2) Å, and for (III)[link], deviations of C13 and C14 = 0.091 (2) and −0.266 (2) Å, respectively.

Table 1
Selected torsion and dihedral angles (°) for compounds (I)–(III)

Dihedral 1 is the dihedral angle between the mean planes of the terminal meth­oxy­phenyl and central benzene rings.

Compound C1—C6—C7—O1 O1—C7—C8—C9 C8—C9—C10—C11 Dihedral 1
(I) −13.5 (2) 143.60 (15) 167.44 (15) 56.98 (8)
(II) 0.2 (2) 6.5 (2) −1.6 (2) 7.74 (7)
(III) 7.3 (2) 7.3 (2) −5.6 (2) 7.73 (7)

3. Supra­molecular features

The packing of (I)[link] is consolidated by a weak C—H⋯π contact (Table 2[link]) involving a hydrogen atom from the phenyl ring and the centroid of the central benzene ring (C10–C12/C10A–C12A). This C—H⋯π inter­action connects the mol­ecules of (I)[link] into chains parallel to the [101] direction with a C—H⋯π distance of 2.74 Å (Fig. 4[link]). In the supra­molecular assemblies of compounds (II)[link] and (III)[link], the mol­ecules are connected by pairs of C—H⋯O hydrogen bonds (Table 2[link]) into inversion dimers, which form R22(16) and R22(14) ring motifs, respectively. The dimers are parts of [201] chains (Fig. 5[link]) in (II)[link], while mol­ecules in compound (III)[link] are parts of chains propagating in the [101] direction (Fig. 6[link]).

Table 2
Hydrogen-bonding geometry (Å, °) for compounds (I)–(III)

Cg1 is the centroid of the C10–C12/C10A–C12A ring.

Compound D—H⋯A D—H H⋯A D⋯A D—H⋯A
(I) C5—H5ACg1i 0.93 2.74 3.491 (3) 139
(II) C13—H13C⋯O1ii 0.96 2.60 3.503 (3) 157
(III) C12—H12A⋯O1iii 0.96 2.47 3.337 (3) 156
Symmetry codes: (i) 1 + x, y, 1 + z; (ii) 3 − x, 1 − y, 2 − z; (iii) 1 − x, −y, −z.
[Figure 4]
Figure 4
Fragment of a [101] chain of mol­ecules of (I)[link] linked by pairs of weak C—H⋯π inter­actions (dashed lines).
[Figure 5]
Figure 5
Fragment of a [201] chain of mol­ecules of (II)[link] linked by pairs of weak C—H⋯O inter­actions (dashed lines).
[Figure 6]
Figure 6
Fragment of a [101] chain of mol­ecules of (III)[link] linked by pairs of weak C—H⋯O inter­actions (dashed lines).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, last update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using (2E,2′E)-3,3′-(1,4-phenyl­ene)bis­(1-phenyl­prop-2-en-1-one) as the main skeleton, revealed the presence of four structures containing the bis­chalcone moiety with different substituents, similar to the title compounds in this study. These include 3,3′-(1,4-phenyl­ene)bis­[1-(X)prop-2-en-1-one], where X = 2-hy­droxy­phenyl (DIDNUB; Gaur & Mishra, 2013[Gaur, R. & Mishra, L. (2013). RSC Adv. 3, 12210-12219.]), 4-chloro­phenyl (KIKFUG; Harrison et al., 2007[Harrison, W. T. A., Ravindra, H. J., Kumar, M. R. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o3702.]), 4-meth­oxy­phenyl (UDUPUF[link]; Harrison et al., 2007a[Harrison, W. T. A., Ravindra, H. J., Suresh Kumar, M. R. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o3067.]) and 3,4-meth­oxy­phenyl (UDUQAM[link]; Harrison et al., 2007b[Harrison, W. T. A., Ravindra, H. J., Suresh Kumar, M. R. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o3068.]). It is notable that UDUPUF[link] and UDUQAH[link] are positional isomers of compounds (I)[link] and (II)[link], and (III)[link], respectively, differing from them only in the location of the meth­oxy substituent (see scheme below[link]). The dihedral angles between the central and terminal phenyl ring in these compounds vary from 10.9 to 46.3°. In terms of the title compounds, (II)[link] and (III)[link] are more planar [7.74 (7) and 7.73 (7)°] while compound (I)[link] is more twisted [56.98 (8)°]. The supra­molecular assembly in UDUPUF[link] also depends upon a single C—H⋯O hydrogen bond between inversion-related pairs of mol­ecules, forming a centrosymmetric dimer.

[Scheme 2]

5. Synthesis and crystallization

A mixture of the corresponding meth­oxy­aceto­phenone (0.02 mol) and terephthaldi­aldehyde (0.01 mol) was dissolved in methanol (20 ml). A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixtures were stirred for about 5–6 h at room temperature. The resultant crude products were filtered, washed successively with distilled water and recrystallized from ethanol to obtain the title compounds. Yellow blocks [(I) and (III)] and yellow needles (II)[link] were recrystallized using the solvents noted below.

(2E,2′E)-3,3′-(1,4-phenyl­ene)bis­(1-(2-meth­oxy­phen­yl)prop-2-en-1-one), C26H22O4 (I)

Solvent for growing crystals: acetone; yield 85%, m.p. 429–431 K. FT–IR [ATR (solid) cm−1]: 3010 (Ar, C—H, ν), 2945 (methyl, C—H, νs), 2842 (methyl, C—H, ν), 1658 (C=O, ν), 1598, 1417(Ar, C=C, ν), 1245, 1055 (C—O, ν). 1H NMR (500 MHz, CDCl3): δ ppm 7.677–7.632 (m, 8H, 5CH, 8CH, 11CH, 12CH), 7.536–7.504 (t, 2H, J = 8.0 Hz 3CH), 7.496–7.437 (d, 2H, J = 15.9 Hz, 9CH), 7.095–7.065 (t, 2H, J = 8.0 Hz, 4CH), 7.048–7.031 (d, 2H, J = 8.0 Hz, 2CH), 3.944 (s, 6H, 13CH3). 13C NMR (125 MHz, CDCl3): δ ppm 192.61 (C7), 158.23 (C1), 141.48 (C9), 136.95 (C10), 133.09 (C3), 130.47 (C5), 129.17 (C6), 128.84 (C11, C12), 127.91 (C4), 120.84 (C8), 111.69 (C2), 55.80 (C13).

(2E,2′E)-3,3′-(1,4-phenyl­ene)bis­(1-(3-meth­oxy­phen­yl)prop-2-en-1-one), C26H22O4 (II)

Solvent for growing crystals: chloro­form and methanol; yield 85%, m.p. 444–446 K. FT–IR [ATR (solid) cm−1]: 3074 (Ar, C—H, ν), 2952 (methyl, C—H, νs), 2839 (methyl, C—H, ν), 1658 (C=O, ν), 1582, 1414 (Ar, C=C, ν), 1259, 1022 (C—O, ν). 1H NMR (500 MHz, CDCl3): δ ppm 7.855–7.823 (d, 2H, J = 15.7 Hz, 8CH), 7.722 (s, 4H, 11CH, 12CH) , 7.650–7.635 (d, 2H, J = 8.0 Hz, 5CH), 7.606–7.574 (m, 2H, 1CH, 9CH), 7.473–441 (t, 2H, J = 8.0 Hz, 4CH), 7.189–7.172 (d, 2H, J = 8.0 Hz, 3CH), 3.924 (s, 6H, 13CH3). 13C NMR (125 MHz, CDCl3): δ ppm 189.99 (C7), 159.99 (C2), 143.57 (C9), 139.46 (C10), 136.92 (C6), 129.65 (C5), 128.98 (C11, C12), 123.14 (C8), 121.08 (C3), 119.45 (C4), 112.96 (C1), 55.53 (C13)

(2E,2′E)-3,3′-(1,4-phenyl­ene)bis­(1-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one), C28H26O6 (III)

Solvent for growing crystals: acetone; yield 85%, m.p. 479–481 K. FT–IR [ATR (solid) cm−1]: 3018 (Ar, C—H, ν), 2962 (methyl, C—H, νs), 2836 (methyl, C—H, ν), 1651 (C=O, ν), 1592, 1418 (Ar, C=C, ν), 1240, 1017 (C—O, ν). 1H NMR (500 MHz, CDCl3): δ ppm 7.857–7.826 (d, 2H, J = 15.6 Hz, 8CH), 7.740–7.720 (m, 6H, 5CH, 11CH, 12CH), 7.666 (s, 2H, 1CH), 7.651–7.619 (d, 2H, J = 15.6 Hz, 9CH), 6.984–6.967 (d, 2H, J = 8.4 Hz, 4CH), 4.012–4.009 (d, 12H, 13CH3, 14CH3). 13C NMR (125 MHz, CDCl3): δ ppm 188.34 (C7), 153.47 (C3), 149.37 (C2), 142.80 (C9), 136.94 (C10), 131.22 (C6), 128.89 (C11, C12), 123.11 (C5), 122.62 (C8), 110.82 (C4), 110.01 (C1), 56.15 (C14), 66.10 (C13)

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In (I)[link], (II)[link] and (III)[link], the C-bound H atoms were positioned geometrically [C—H = 0.93–0.96 Å] and refined using a riding model with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C26H22O4 C26H22O4 C28H26O6
Mr 398.43 398.43 458.49
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 294 294 294
a, b, c (Å) 7.1078 (11), 24.544 (4), 6.0449 (9) 5.2626 (5), 15.6157 (14), 12.4824 (11) 6.9595 (6), 21.0272 (17), 8.3297 (7)
β (°) 101.898 (2) 98.760 (2) 103.602 (2)
V3) 1031.9 (3) 1013.83 (16) 1184.77 (17)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.09 0.09
Crystal size (mm) 0.39 × 0.35 × 0.18 0.90 × 0.48 × 0.09 0.35 × 0.27 × 0.16
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector Bruker APEXII DUO CCD area-detector Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.883, 0.985 0.874, 0.992 0.890, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 8322, 2183, 1705 17791, 2458, 1574 12532, 3165, 2328
Rint 0.024 0.043 0.030
(sin θ/λ)max−1) 0.634 0.662 0.683
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.03 0.044, 0.132, 1.03 0.049, 0.136, 1.04
No. of reflections 2183 2458 3165
No. of parameters 137 137 156
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.14 0.14, −0.14 0.20, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015) and PLATON (Spek, 2009).

(I) (2E,2'E)-3,3'-(1,4-Phenylene)bis[1-(2-methoxyphenyl)prop-2-en-1-one] top
Crystal data top
C26H22O4F(000) = 420
Mr = 398.43Dx = 1.282 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1078 (11) ÅCell parameters from 3004 reflections
b = 24.544 (4) Åθ = 2.9–26.4°
c = 6.0449 (9) ŵ = 0.09 mm1
β = 101.898 (2)°T = 294 K
V = 1031.9 (3) Å3Block, yellow
Z = 20.39 × 0.35 × 0.18 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2183 independent reflections
Radiation source: fine-focus sealed tube1705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.8°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 88
Tmin = 0.883, Tmax = 0.985k = 2431
8322 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.2315P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2183 reflectionsΔρmax = 0.19 e Å3
137 parametersΔρmin = 0.14 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.51518 (16)0.40818 (5)0.74340 (18)0.0615 (4)
O20.57299 (19)0.32593 (5)0.2133 (2)0.0652 (4)
C10.7420 (2)0.33535 (6)0.3621 (3)0.0492 (4)
C20.9148 (3)0.31024 (8)0.3517 (4)0.0689 (5)
H2A0.92370.28770.23070.083*
C31.0731 (3)0.31908 (9)0.5223 (4)0.0802 (6)
H3A1.18910.30260.51380.096*
C41.0640 (3)0.35160 (8)0.7040 (4)0.0731 (6)
H4A1.17150.35650.81940.088*
C50.8930 (2)0.37687 (7)0.7125 (3)0.0545 (4)
H5A0.88540.39880.83570.065*
C60.7315 (2)0.37030 (6)0.5413 (2)0.0420 (3)
C70.5545 (2)0.40138 (6)0.5584 (2)0.0426 (3)
C80.4371 (2)0.42573 (6)0.3525 (2)0.0430 (3)
H8A0.48400.42660.21980.052*
C90.2652 (2)0.44645 (6)0.3551 (2)0.0416 (3)
H9A0.22390.44350.49090.050*
C100.13276 (19)0.47340 (5)0.1704 (2)0.0379 (3)
C110.0569 (2)0.48284 (6)0.1921 (2)0.0417 (3)
H11A0.09580.47130.32220.050*
C120.18710 (19)0.49116 (6)0.0255 (2)0.0413 (3)
H12A0.31220.48540.04420.050*
C130.5741 (4)0.29130 (8)0.0256 (3)0.0783 (6)
H13A0.44720.28960.06720.117*
H13B0.61400.25540.07850.117*
H13C0.66190.30540.06140.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0571 (7)0.0849 (9)0.0427 (6)0.0192 (6)0.0106 (5)0.0041 (6)
O20.0741 (8)0.0619 (8)0.0550 (7)0.0175 (6)0.0022 (6)0.0104 (6)
C10.0528 (9)0.0429 (8)0.0539 (9)0.0073 (7)0.0153 (7)0.0099 (7)
C20.0705 (12)0.0593 (11)0.0838 (13)0.0179 (9)0.0322 (11)0.0019 (9)
C30.0479 (11)0.0703 (13)0.1266 (19)0.0173 (9)0.0276 (12)0.0082 (13)
C40.0414 (9)0.0636 (12)0.1088 (16)0.0044 (8)0.0027 (10)0.0043 (11)
C50.0437 (8)0.0469 (9)0.0693 (11)0.0002 (7)0.0032 (7)0.0037 (7)
C60.0406 (7)0.0372 (7)0.0488 (8)0.0027 (6)0.0107 (6)0.0094 (6)
C70.0398 (7)0.0430 (8)0.0448 (8)0.0017 (6)0.0084 (6)0.0031 (6)
C80.0436 (8)0.0441 (8)0.0421 (8)0.0055 (6)0.0108 (6)0.0051 (6)
C90.0436 (8)0.0444 (8)0.0369 (7)0.0047 (6)0.0082 (6)0.0003 (6)
C100.0388 (7)0.0374 (7)0.0371 (7)0.0033 (5)0.0071 (5)0.0034 (5)
C110.0422 (7)0.0478 (8)0.0370 (7)0.0042 (6)0.0127 (6)0.0026 (6)
C120.0339 (7)0.0485 (8)0.0430 (7)0.0043 (6)0.0116 (6)0.0003 (6)
C130.1169 (18)0.0615 (12)0.0537 (11)0.0150 (11)0.0114 (11)0.0064 (9)
Geometric parameters (Å, º) top
O1—C71.2187 (17)C7—C81.474 (2)
O2—C11.364 (2)C8—C91.3267 (19)
O2—C131.419 (2)C8—H8A0.9300
C1—C21.387 (2)C9—C101.4616 (19)
C1—C61.396 (2)C9—H9A0.9300
C2—C31.378 (3)C10—C121.3897 (19)
C2—H2A0.9300C10—C111.4002 (19)
C3—C41.370 (3)C11—C12i1.3760 (19)
C3—H3A0.9300C11—H11A0.9300
C4—C51.375 (2)C12—C11i1.3761 (19)
C4—H4A0.9300C12—H12A0.9300
C5—C61.387 (2)C13—H13A0.9600
C5—H5A0.9300C13—H13B0.9600
C6—C71.4932 (19)C13—H13C0.9600
C1—O2—C13118.66 (14)C9—C8—C7120.50 (13)
O2—C1—C2124.22 (16)C9—C8—H8A119.8
O2—C1—C6115.79 (13)C7—C8—H8A119.8
C2—C1—C6119.87 (16)C8—C9—C10127.89 (13)
C3—C2—C1119.34 (18)C8—C9—H9A116.1
C3—C2—H2A120.3C10—C9—H9A116.1
C1—C2—H2A120.3C12—C10—C11118.03 (13)
C4—C3—C2121.72 (17)C12—C10—C9122.99 (12)
C4—C3—H3A119.1C11—C10—C9118.97 (12)
C2—C3—H3A119.1C12i—C11—C10121.57 (12)
C3—C4—C5118.73 (19)C12i—C11—H11A119.2
C3—C4—H4A120.6C10—C11—H11A119.2
C5—C4—H4A120.6C11i—C12—C10120.40 (12)
C4—C5—C6121.43 (18)C11i—C12—H12A119.8
C4—C5—H5A119.3C10—C12—H12A119.8
C6—C5—H5A119.3O2—C13—H13A109.5
C5—C6—C1118.81 (14)O2—C13—H13B109.5
C5—C6—C7117.92 (14)H13A—C13—H13B109.5
C1—C6—C7123.27 (14)O2—C13—H13C109.5
O1—C7—C8121.49 (13)H13A—C13—H13C109.5
O1—C7—C6119.30 (13)H13B—C13—H13C109.5
C8—C7—C6119.12 (12)
C13—O2—C1—C24.7 (2)C5—C6—C7—O136.6 (2)
C13—O2—C1—C6179.21 (14)C1—C6—C7—O1143.60 (15)
O2—C1—C2—C3174.24 (17)C5—C6—C7—C8140.06 (15)
C6—C1—C2—C31.7 (3)C1—C6—C7—C839.8 (2)
C1—C2—C3—C40.8 (3)O1—C7—C8—C913.5 (2)
C2—C3—C4—C51.5 (3)C6—C7—C8—C9169.90 (14)
C3—C4—C5—C60.4 (3)C7—C8—C9—C10178.03 (14)
C4—C5—C6—C12.8 (2)C8—C9—C10—C1213.8 (2)
C4—C5—C6—C7177.02 (15)C8—C9—C10—C11167.44 (15)
O2—C1—C6—C5172.83 (13)C12—C10—C11—C12i0.1 (2)
C2—C1—C6—C53.4 (2)C9—C10—C11—C12i178.90 (13)
O2—C1—C6—C77.4 (2)C11—C10—C12—C11i0.1 (2)
C2—C1—C6—C7176.38 (14)C9—C10—C12—C11i178.84 (13)
Symmetry code: (i) x, y+1, z.
(II) (2E,2'E)-3,3'-(1,4-Phenylene)bis[1-(3-methoxyphenyl)prop-2-en-1-one] top
Crystal data top
C26H22O4F(000) = 420
Mr = 398.43Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.2626 (5) ÅCell parameters from 2940 reflections
b = 15.6157 (14) Åθ = 2.6–27.7°
c = 12.4824 (11) ŵ = 0.09 mm1
β = 98.760 (2)°T = 294 K
V = 1013.83 (16) Å3Needle, yellow
Z = 20.90 × 0.48 × 0.09 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2458 independent reflections
Radiation source: fine-focus sealed tube1574 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 28.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 66
Tmin = 0.874, Tmax = 0.992k = 2020
17791 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.138P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2458 reflectionsΔρmax = 0.14 e Å3
137 parametersΔρmin = 0.14 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.3466 (2)0.50160 (7)0.83740 (9)0.0753 (4)
O22.0704 (2)0.69588 (8)1.00094 (10)0.0771 (4)
C11.6959 (3)0.63162 (9)0.89251 (12)0.0502 (4)
H1A1.69620.58560.93990.060*
C21.8795 (3)0.69465 (10)0.91308 (12)0.0552 (4)
C31.8786 (3)0.76279 (11)0.84322 (15)0.0680 (5)
H3A2.00340.80520.85720.082*
C41.6943 (3)0.76859 (11)0.75284 (16)0.0723 (5)
H4A1.69450.81500.70620.087*
C51.5086 (3)0.70582 (10)0.73089 (13)0.0583 (4)
H5A1.38410.71000.66970.070*
C61.5086 (3)0.63679 (9)0.80022 (11)0.0461 (3)
C71.3200 (3)0.56519 (9)0.78002 (11)0.0499 (4)
C81.1041 (3)0.57169 (10)0.69022 (12)0.0525 (4)
H8A1.08790.62070.64730.063*
C90.9345 (3)0.51020 (9)0.66922 (11)0.0505 (4)
H9A0.95790.46290.71490.061*
C100.7126 (2)0.50652 (9)0.58281 (10)0.0450 (3)
C110.6491 (3)0.57310 (9)0.50998 (11)0.0514 (4)
H11A0.74780.62280.51610.062*
C120.5587 (3)0.43363 (10)0.57116 (11)0.0522 (4)
H12A0.59710.38840.61940.063*
C132.1228 (4)0.61900 (12)1.05960 (15)0.0766 (6)
H13A2.26570.62751.11630.115*
H13B2.16400.57481.01170.115*
H13C1.97430.60241.09080.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0691 (8)0.0679 (7)0.0765 (8)0.0179 (6)0.0289 (6)0.0158 (6)
O20.0662 (8)0.0728 (8)0.0805 (8)0.0176 (6)0.0268 (6)0.0033 (6)
C10.0443 (8)0.0523 (8)0.0509 (8)0.0004 (6)0.0027 (6)0.0046 (6)
C20.0451 (8)0.0557 (9)0.0609 (9)0.0035 (7)0.0040 (7)0.0106 (7)
C30.0536 (10)0.0573 (10)0.0894 (12)0.0104 (8)0.0009 (9)0.0014 (9)
C40.0619 (11)0.0631 (10)0.0882 (13)0.0042 (8)0.0010 (9)0.0156 (9)
C50.0494 (9)0.0604 (9)0.0612 (9)0.0040 (7)0.0042 (7)0.0039 (7)
C60.0369 (7)0.0511 (8)0.0480 (7)0.0035 (6)0.0007 (6)0.0063 (6)
C70.0418 (8)0.0558 (8)0.0486 (8)0.0010 (6)0.0044 (6)0.0040 (7)
C80.0435 (8)0.0583 (8)0.0513 (8)0.0010 (7)0.0072 (6)0.0015 (6)
C90.0450 (8)0.0561 (8)0.0464 (7)0.0026 (6)0.0063 (6)0.0029 (6)
C100.0366 (7)0.0524 (8)0.0432 (7)0.0042 (6)0.0031 (6)0.0071 (6)
C110.0442 (8)0.0511 (8)0.0550 (8)0.0035 (6)0.0048 (7)0.0032 (6)
C120.0453 (8)0.0549 (8)0.0516 (8)0.0015 (6)0.0076 (6)0.0035 (6)
C130.0648 (11)0.0864 (13)0.0689 (11)0.0082 (9)0.0214 (9)0.0006 (9)
Geometric parameters (Å, º) top
O1—C71.2199 (17)C7—C81.4729 (18)
O2—C21.3698 (17)C8—C91.310 (2)
O2—C131.411 (2)C8—H8A0.9300
C1—C21.376 (2)C9—C101.4652 (17)
C1—C61.3998 (18)C9—H9A0.9300
C1—H1A0.9300C10—C111.3882 (19)
C2—C31.375 (2)C10—C121.392 (2)
C3—C41.374 (2)C11—C12i1.3765 (18)
C3—H3A0.9300C11—H11A0.9300
C4—C51.382 (2)C12—C11i1.3766 (18)
C4—H4A0.9300C12—H12A0.9300
C5—C61.382 (2)C13—H13A0.9600
C5—H5A0.9300C13—H13B0.9600
C6—C71.491 (2)C13—H13C0.9600
C2—O2—C13117.70 (12)C9—C8—C7121.65 (14)
C2—C1—C6119.92 (14)C9—C8—H8A119.2
C2—C1—H1A120.0C7—C8—H8A119.2
C6—C1—H1A120.0C8—C9—C10128.20 (14)
O2—C2—C3115.34 (13)C8—C9—H9A115.9
O2—C2—C1124.61 (14)C10—C9—H9A115.9
C3—C2—C1120.05 (14)C11—C10—C12117.76 (12)
C4—C3—C2120.36 (15)C11—C10—C9122.57 (13)
C4—C3—H3A119.8C12—C10—C9119.67 (13)
C2—C3—H3A119.8C12i—C11—C10120.65 (13)
C3—C4—C5120.36 (16)C12i—C11—H11A119.7
C3—C4—H4A119.8C10—C11—H11A119.7
C5—C4—H4A119.8C11i—C12—C10121.59 (13)
C4—C5—C6119.78 (14)C11i—C12—H12A119.2
C4—C5—H5A120.1C10—C12—H12A119.2
C6—C5—H5A120.1O2—C13—H13A109.5
C5—C6—C1119.53 (13)O2—C13—H13B109.5
C5—C6—C7122.86 (12)H13A—C13—H13B109.5
C1—C6—C7117.59 (13)O2—C13—H13C109.5
O1—C7—C8120.62 (13)H13A—C13—H13C109.5
O1—C7—C6119.81 (12)H13B—C13—H13C109.5
C8—C7—C6119.57 (13)
C13—O2—C2—C3164.12 (17)C1—C6—C7—O16.5 (2)
C13—O2—C2—C116.2 (2)C5—C6—C7—C87.6 (2)
C6—C1—C2—O2179.81 (14)C1—C6—C7—C8173.97 (13)
C6—C1—C2—C30.2 (2)O1—C7—C8—C90.2 (2)
O2—C2—C3—C4179.41 (16)C6—C7—C8—C9179.71 (14)
C1—C2—C3—C40.3 (3)C7—C8—C9—C10179.20 (14)
C2—C3—C4—C50.3 (3)C8—C9—C10—C111.7 (2)
C3—C4—C5—C60.0 (3)C8—C9—C10—C12177.64 (16)
C4—C5—C6—C10.5 (2)C12—C10—C11—C12i0.4 (2)
C4—C5—C6—C7177.93 (16)C9—C10—C11—C12i178.90 (14)
C2—C1—C6—C50.5 (2)C11—C10—C12—C11i0.4 (2)
C2—C1—C6—C7177.94 (14)C9—C10—C12—C11i178.91 (14)
C5—C6—C7—O1171.91 (15)
Symmetry code: (i) x+1, y+1, z+1.
(III) (2E,2'E)-3,3'-(1,4-Phenylene)bis[1-(3,4-dimethoxyphenyl)prop-2-en-1-one] top
Crystal data top
C28H26O6F(000) = 484
Mr = 458.49Dx = 1.285 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.9595 (6) ÅCell parameters from 3549 reflections
b = 21.0272 (17) Åθ = 2.7–28.5°
c = 8.3297 (7) ŵ = 0.09 mm1
β = 103.602 (2)°T = 294 K
V = 1184.77 (17) Å3Block, yellow
Z = 20.35 × 0.27 × 0.16 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3165 independent reflections
Radiation source: fine-focus sealed tube2328 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 98
Tmin = 0.890, Tmax = 0.985k = 2826
12532 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.2808P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3165 reflectionsΔρmax = 0.20 e Å3
156 parametersΔρmin = 0.16 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26810 (16)0.04480 (7)0.05640 (13)0.0667 (4)
O20.37696 (15)0.15896 (5)0.01870 (14)0.0560 (3)
O30.33472 (18)0.22511 (6)0.28240 (17)0.0694 (4)
C10.04399 (19)0.11677 (6)0.10365 (16)0.0377 (3)
H1A0.06100.09190.00900.045*
C20.1959 (2)0.15447 (6)0.12601 (17)0.0399 (3)
C30.1726 (2)0.19126 (7)0.2696 (2)0.0459 (3)
C40.0049 (2)0.19044 (7)0.3851 (2)0.0525 (4)
H4A0.02170.21540.47960.063*
C50.1585 (2)0.15265 (7)0.36105 (18)0.0469 (4)
H5A0.27790.15250.43980.056*
C60.13686 (19)0.11510 (6)0.22134 (16)0.0369 (3)
C70.2924 (2)0.07224 (7)0.18910 (16)0.0413 (3)
C80.4765 (2)0.06233 (7)0.31697 (16)0.0419 (3)
H8A0.48790.07940.42180.050*
C90.62488 (19)0.02971 (7)0.28517 (16)0.0385 (3)
H9A0.60620.01400.17820.046*
C100.81526 (18)0.01514 (6)0.39711 (15)0.0348 (3)
C110.8724 (2)0.03954 (7)0.55600 (16)0.0422 (3)
H11A0.78720.06640.59470.051*
C120.9466 (2)0.02452 (7)0.34276 (16)0.0429 (3)
H12A0.91170.04120.23640.051*
C130.4046 (3)0.12540 (11)0.1316 (2)0.0727 (6)
H13A0.53750.13160.19500.109*
H13B0.38160.08090.10920.109*
H13C0.31350.14090.19290.109*
C140.3309 (3)0.25570 (12)0.4350 (3)0.0920 (8)
H14A0.45950.27270.43310.138*
H14B0.23600.28960.45160.138*
H14C0.29480.22550.52340.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0427 (6)0.1049 (10)0.0443 (6)0.0272 (6)0.0066 (5)0.0257 (6)
O20.0389 (6)0.0653 (7)0.0565 (6)0.0185 (5)0.0031 (5)0.0026 (5)
O30.0576 (7)0.0680 (8)0.0820 (9)0.0234 (6)0.0149 (6)0.0190 (7)
C10.0349 (7)0.0413 (7)0.0355 (6)0.0040 (5)0.0056 (5)0.0013 (5)
C20.0344 (7)0.0387 (7)0.0443 (7)0.0040 (5)0.0048 (5)0.0051 (6)
C30.0434 (8)0.0380 (7)0.0578 (9)0.0059 (6)0.0149 (7)0.0026 (6)
C40.0523 (9)0.0492 (9)0.0544 (9)0.0001 (7)0.0092 (7)0.0169 (7)
C50.0378 (7)0.0522 (8)0.0469 (8)0.0014 (6)0.0024 (6)0.0087 (7)
C60.0308 (6)0.0414 (7)0.0372 (6)0.0006 (5)0.0052 (5)0.0015 (5)
C70.0306 (7)0.0553 (8)0.0357 (6)0.0048 (6)0.0030 (5)0.0022 (6)
C80.0327 (7)0.0572 (8)0.0325 (6)0.0042 (6)0.0010 (5)0.0027 (6)
C90.0303 (7)0.0504 (8)0.0316 (6)0.0003 (5)0.0010 (5)0.0006 (5)
C100.0274 (6)0.0443 (7)0.0306 (6)0.0005 (5)0.0026 (5)0.0037 (5)
C110.0323 (7)0.0559 (8)0.0365 (7)0.0091 (6)0.0040 (5)0.0049 (6)
C120.0358 (7)0.0574 (9)0.0316 (6)0.0054 (6)0.0004 (5)0.0066 (6)
C130.0523 (11)0.0953 (14)0.0582 (10)0.0179 (10)0.0117 (8)0.0150 (10)
C140.0722 (14)0.0934 (16)0.1191 (19)0.0054 (12)0.0398 (13)0.0499 (15)
Geometric parameters (Å, º) top
O1—C71.2229 (17)C8—C91.318 (2)
O2—C21.3660 (16)C8—H8A0.9300
O2—C131.410 (2)C9—C101.4621 (16)
O3—C31.3593 (18)C9—H9A0.9300
O3—C141.419 (2)C10—C111.3877 (18)
C1—C21.3688 (19)C10—C121.3893 (19)
C1—C61.4022 (18)C11—C12i1.3781 (18)
C1—H1A0.9300C11—H11A0.9300
C2—C31.401 (2)C12—C11i1.3780 (18)
C3—C41.376 (2)C12—H12A0.9300
C4—C51.384 (2)C13—H13A0.9600
C4—H4A0.9300C13—H13B0.9600
C5—C61.3848 (19)C13—H13C0.9600
C5—H5A0.9300C14—H14A0.9600
C6—C71.4807 (19)C14—H14B0.9600
C7—C81.4756 (17)C14—H14C0.9600
C2—O2—C13117.30 (12)C7—C8—H8A119.4
C3—O3—C14117.82 (15)C8—C9—C10128.07 (12)
C2—C1—C6120.95 (13)C8—C9—H9A116.0
C2—C1—H1A119.5C10—C9—H9A116.0
C6—C1—H1A119.5C11—C10—C12118.04 (11)
O2—C2—C1125.04 (13)C11—C10—C9122.96 (12)
O2—C2—C3115.10 (12)C12—C10—C9119.00 (12)
C1—C2—C3119.85 (12)C12i—C11—C10120.96 (13)
O3—C3—C4125.24 (14)C12i—C11—H11A119.5
O3—C3—C2115.11 (13)C10—C11—H11A119.5
C4—C3—C2119.65 (13)C11i—C12—C10121.00 (12)
C3—C4—C5120.21 (14)C11i—C12—H12A119.5
C3—C4—H4A119.9C10—C12—H12A119.5
C5—C4—H4A119.9O2—C13—H13A109.5
C4—C5—C6120.91 (13)O2—C13—H13B109.5
C4—C5—H5A119.5H13A—C13—H13B109.5
C6—C5—H5A119.5O2—C13—H13C109.5
C5—C6—C1118.41 (12)H13A—C13—H13C109.5
C5—C6—C7124.03 (12)H13B—C13—H13C109.5
C1—C6—C7117.55 (12)O3—C14—H14A109.5
O1—C7—C8119.85 (12)O3—C14—H14B109.5
O1—C7—C6119.98 (12)H14A—C14—H14B109.5
C8—C7—C6120.17 (12)O3—C14—H14C109.5
C9—C8—C7121.13 (12)H14A—C14—H14C109.5
C9—C8—H8A119.4H14B—C14—H14C109.5
C13—O2—C2—C14.5 (2)C2—C1—C6—C50.1 (2)
C13—O2—C2—C3176.83 (15)C2—C1—C6—C7178.99 (13)
C6—C1—C2—O2179.73 (13)C5—C6—C7—O1173.70 (15)
C6—C1—C2—C31.1 (2)C1—C6—C7—O17.3 (2)
C14—O3—C3—C48.5 (3)C5—C6—C7—C86.5 (2)
C14—O3—C3—C2170.79 (17)C1—C6—C7—C8172.50 (13)
O2—C2—C3—O31.14 (19)O1—C7—C8—C97.3 (2)
C1—C2—C3—O3177.63 (13)C6—C7—C8—C9172.95 (14)
O2—C2—C3—C4179.52 (14)C7—C8—C9—C10179.46 (13)
C1—C2—C3—C41.7 (2)C8—C9—C10—C115.6 (2)
O3—C3—C4—C5178.13 (15)C8—C9—C10—C12174.89 (15)
C2—C3—C4—C51.1 (2)C12—C10—C11—C12i0.4 (2)
C3—C4—C5—C60.0 (2)C9—C10—C11—C12i179.97 (14)
C4—C5—C6—C10.7 (2)C11—C10—C12—C11i0.4 (2)
C4—C5—C6—C7178.35 (14)C9—C10—C12—C11i179.98 (13)
Symmetry code: (i) x+2, y, z+1.
Selected torsion and dihedral angles (°) for compounds (I)–(III) top
Dihedral 1 is the dihedral angle between the mean planes of the terminal methoxyphenyl and central benzene rings.
CompoundC1—C6—C7—O1O1—C7—C8—C9C8—C9—C10—C11Dihedral 1
(I)-13.5 (2)143.60 (15)167.44 (15)56.98 (8)
(II)0.2 (2)6.5 (2)-1.6 (2)7.74 (7)
(III)7.3 (2)7.3 (2)-5.6 (2)7.73 (7)
Hydrogen-bonding geometry (Å, °) for compounds (I)–(III) top
Cg1 is the centroid of the C10–C12/C10A–C12A ring.
CompoundD—H···AD—HH···AD···AD—H···A
(I)C5—H5A···Cg1i0.932.743.491 (3)139
(II)C13—H13C···O1ii0.962.603.503 (3)157
(III)C12—H12A···O1iii0.962.473.337 (3)156
Symmetry codes: (i) 1 + x, y, 1 + z; (ii) 3 - x, 1 - y, 2 - z; (iii) 1 - x, -y, -z.
 

Acknowledgements

AS, HCK and LYT thank the Malaysian Government for MyBrain15 (MyPhD) scholarships. The authors thank Vidya Vikas Research & Development Centre for the facilities and encouragement.

References

First citationAbdel Ghani, S. B., Weaver, L., Zidan, Z. H., Ali, H. M., Keevil, C. W. & Brown, R. C. D. (2008). Bioorg. Med. Chem. Lett. 18, 518–522.  CrossRef PubMed CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra Shekhara Shetty, T., Raghavendra, S., Chidan Kumar, C. S. & Dharmaprakash, S. M. (2016). Appl. Phys. B, 122, 205.  CrossRef Google Scholar
First citationGaur, R. & Mishra, L. (2013). RSC Adv. 3, 12210–12219.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ravindra, H. J., Kumar, M. R. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o3702.  CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ravindra, H. J., Suresh Kumar, M. R. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o3067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Ravindra, H. J., Suresh Kumar, M. R. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o3068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHusain, A., Ahmad, A., Mkhalid, I. A. I., Mishra, R. & Rashid, M. (2013). Med. Chem. Res. 22, 1578–1586.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRuzié, C., Krayer, M. & Lindsey, J. S. (2009). Org. Lett. 11, 1761–1764.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y., Qin, G., Wang, W., Bian, W., Shuang, S. & Dong, C. (2011). J. Lumin. 131, 1672–1676.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds