research communications
of 2-azido-1,3-bis(2,6-diisopropylphenyl)-1,3,2-diazaphospholidine
aDepartment of Chemistry, Saint Mary's University, 923 Robie St., Halifax, Nova Scotia, B3H 3C3, Canada
*Correspondence e-mail: jason.masuda@smu.ca
The title compound, C26H38N5P, was synthesized by reacting 2-chloro-1,3-bis(2,6-diisopropylphenyl)-1,3,2-diazaphospholidine with sodium azide and a catalytic amount of lithium chloride in tetrahydrofuran. The title compound is the first structurally characterized 2-azido-1,3,2-diazaphospholidine and exhibits a P atom in a trigonal pyramidal geometry. The azide P—N bond length of 1.8547 (16) Å is significantly longer than the P—N separations for the chelating diamine [P—N = 1.6680 (15) and 1.6684 (14) Å]. The sterically hindered 2,6-diisopropylphenyl groups twist away from the central heterocycle, with dihedral angles between the central heteocyclic ring and benzene rings of 76.17 (10) and 79.74 (9)°. In the crystal, a weak C—H⋯N link to the terminal N atom of the azide group leads to [100] chains.
CCDC reference: 1551849
1. Chemical context
Phosphine 2P(N3)–Cr(CO)5 readily undergoes photolysis under UV light to produce the phosphino–isocyanate complex Ph2P(NCO)–Cr(CO)5 (Ocando et al., 1985), while the related bis(diisopropylamino) complex (iPr2N)2P(N3)–Cr(CO)5 does not (Cowley et al., 1995). The of the title compound is the first reported example of a structurally characterized 2-azido-1,3,2-diazaphospholidine; however, a few closely related compounds are known, such as those derived from 1,3,2-diazaphospholenes.
possess at least one azide group attached to phosphorus and display a broad range of reactivity that is directly dependent on the other substituents attached to the P atom. One of the most interesting properties of these molecules is that both free and coordinated alkyl and aryl derivatives are much more reactive than their corresponding amino derivatives, as demonstrated by their lower thermal and photochemical stability. For example, the phosphinoazide complex Ph2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. It crystallizes in the monoclinic P21/n with one molecule in the The bond lengths between the P atom and its flanking N atoms are similar [P1—N4 = 1.6680 (15) Å, P1—N5 = 1.6684 (14) Å and N4—P1—N5 = 91.14 (7)°], while the phosphorus centre adopts a trigonal pyramidal geometry, with the sum of the angles at phosphorus equal to 294.14 (7)°. The azide group is quasilinear [N3—N2—N1 = 176.6 (2)°], with similar N—N bond lengths [N1—N2 = 1.168 (2) Å and N2—N3 = 1.155 (2) Å]. The phosphorus–azide bond length (P1—N1) is significantly longer [1.8547 (16) Å] than found for atoms N4 and N5. The average sum of the bond angles at the N4 and N5 positions is 359.87 (12)°, very close to an ideal trigonal planar geometry. This is a strong indication that the nominal lone pairs of atoms N4 and N5 participate in N—P⋯π interactions and, when coupled with the significantly longer P1—N1 bond length, suggests a partial ionic character similar to earlier reports in acyclic structures (Cowley et al., 1995). The overall conformation of the C1/C2/N4/N5/P1 ring is well described as an envelope, with atom N5 deviating from the other atoms (r.m.s. deviation = 0.030 Å) by −0.274 (2) Å. The steric demands of the bulky 2,6-diisopropylphenyl groups cause the aromatic rings to twist away from the central five-membered ring, with torsion angles of 103.69 (18) and 101.83 (17)° for P1—N1—C3—C4 and P1—N2—C15—C20, respectively. The isopropyl groups are oriented away from the central five-membered ring, but the `congested' nature of the molecule results in intramolecular short contacts between all four of the methine H atoms (H9, H12, H21 and H24) and atoms N4 and N5 (Table 1).
3. Supramolecular features
The only significant directional interaction in the crystal of the title compound is a long [2.69 (3) Å] C—H⋯N hydrogen bond to the terminal N atom of the azide group, which results in [100] chains in the crystal (Fig. 2).
4. Database survey
A search of the Cambridge Structural Database (Groom et al., 2016) indicated that no other 2-azido-1,3,2-(diarylamino)phospholidine derivatives have been structurally characterized. Some structurally similar compounds were identified, however, namely 2-azido-1,3-bis(2,6-diisopropyllphenyl)-1,3,2-diazaphospholene (CSD refcode CILBAC; Gediga et al., 2014) and its corresponding 2,6-dimethylphenyl derivative (GOFHAL; Burck et al., 2008). Acyclic derivatives featuring bis(diisopropylamino) (PIJZAJ; Englert et al., 1993) and bis(dicylohexylamino) (ZABCEK; Cowley et al., 1995) ligands are known, and also 1-azido-N,N′-bis(2,4,6-tri-tert-butylphenyl)phosphinediamine (YABVUV; Nieger et al., 2016).
5. Synthesis and crystallization
The synthesis of the title compound was achieved using a similar method as reported in the literature for 2-azido-1,3-bis(2,6-diisopropyllphenyl)-1,3,2-diazaphospholene (Gediga et al., 2014). In a 20 ml scintillation vial, 0.102 g (0.229 mmol, 1 eq.) of colourless 2-chloro-1,3-bis(2,6-diisopropylphenyl)-1,3,2-diazaphospholidine were dissolved in 1 ml of THF producing a colourless solution. To this solution, 0.016 g (0.246 mmol, 1.1 eq.) of colourless sodium azide and a spatula tip (<1 mg) of lithium chloride were added to solution immediately producing a colourless mixture. The reaction mixture was left to stir for 1 d and monitored using 31P{1H} NMR spectroscopy, and once the starting material was completely consumed the reaction mixture was dried in vacuo. Extraction of the colourless residue with cold pentane, followed by filtration through Celite produced a colourless solution, which afforded 0.060 g (60%) of the title compound as a colourless powder after removal of the solvent. Crystals of the product were obtained by concentrating the filtrate and storing in a 238 K freezer overnight. 1H NMR (CDCl3): δ 7.31 (t, 3JHH = 7.6 Hz, 2H, p-Dipp), 7.24–7.17 (m, 4H, m-Dipp), 3.88–3.82 (pseudo-q, 2H, NHC-CH2), 3.74 (sept, 3JHH = 6.8 Hz, 2H, iPr-CH), 3.48–3.39 (m, 4H, iPr-CH, NHC-CH2), 1.33–1.25 (m, 3JHH = 6.8 Hz, 24H, iPr-CH3). 13C{1H} NMR (CDCl3): δ 150.3, 148.4, 136.2, 128.1, 124.7, 124.2, 54.4, 29.0, 25.3, 24.9, 24.5. 31P{1H} NMR (CDCl3): δ 129.8. IR (KBr pellet): ν 3062 (w), 2963 (s), 2926 (m), 2867 (m), 2500 (w), 2125 (m), 2085 (s, N=N=N), 1678 (w), 1584 (w), 1462 (s), 1445 (s), 1383 (m), 1363 (m), 1324 (m), 1323 (m), 1257 (s), 1211 (w), 1185 (w), 1106 (m), 1075 (s), 1056 (w), 1043 (w), 980 (w), 946 (w), 935 (w), 852 (w), 806 (s), 761 (s), 730 (w), 688 (w), 651 (w), 602 (w), 583 (w), 550 (w), 542 (w), 470 (s), 437 cm−1 (w). M.p. (K): 415.4–417.6 (decomposes, gas was released).
6. Refinement
Crystal data, data collection and structure . H atoms were included in geometrically idealized positions and refined using a riding model. Dihedral angles for the methyl H atoms were allowed to refine freely. The atomic displacement parameters of atoms N1 and N2 were constrained to be approximately equal using an EADP command.
details are summarized in Table 2Supporting information
CCDC reference: 1551849
https://doi.org/10.1107/S2056989017007642/hb7680sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017007642/hb7680Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017007642/hb7680Isup3.cml
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C26H38N5P | F(000) = 976 |
Mr = 451.58 | Dx = 1.149 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0148 (12) Å | Cell parameters from 5265 reflections |
b = 17.343 (2) Å | θ = 2.2–25.2° |
c = 15.6270 (19) Å | µ = 0.13 mm−1 |
β = 105.948 (2)° | T = 150 K |
V = 2609.7 (5) Å3 | Block, colourless |
Z = 4 | 0.39 × 0.35 × 0.27 mm |
Siemens/Bruker APEXII diffractometer | 4350 reflections with I > 2σ(I) |
Detector resolution: 66 pixels mm-1 | Rint = 0.047 |
φ and ω scans | θmax = 27.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −12→12 |
Tmin = 0.718, Tmax = 0.746 | k = −22→22 |
29851 measured reflections | l = −19→19 |
5708 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.046 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0515P)2 + 1.4293P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
5708 reflections | Δρmax = 0.36 e Å−3 |
291 parameters | Δρmin = −0.39 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.59945 (4) | 0.54203 (3) | 0.26470 (3) | 0.02022 (12) | |
N1 | 0.79052 (16) | 0.53002 (10) | 0.29154 (11) | 0.0320 (3) | |
N2 | 0.84392 (16) | 0.55461 (10) | 0.23965 (11) | 0.0320 (3) | |
N3 | 0.9030 (2) | 0.57761 (13) | 0.19098 (13) | 0.0507 (5) | |
N4 | 0.54371 (15) | 0.45109 (8) | 0.24970 (9) | 0.0219 (3) | |
N5 | 0.57675 (15) | 0.54345 (8) | 0.36653 (9) | 0.0213 (3) | |
C1 | 0.5191 (3) | 0.41282 (12) | 0.32687 (13) | 0.0425 (6) | |
H1A | 0.574471 | 0.364849 | 0.340333 | 0.051* | |
H1B | 0.419615 | 0.399379 | 0.315259 | 0.051* | |
C2 | 0.5609 (2) | 0.46709 (11) | 0.40234 (13) | 0.0364 (5) | |
H2A | 0.489221 | 0.468627 | 0.435128 | 0.044* | |
H2B | 0.649678 | 0.450354 | 0.443932 | 0.044* | |
C3 | 0.51337 (18) | 0.41222 (10) | 0.16538 (11) | 0.0231 (4) | |
C4 | 0.60771 (19) | 0.35813 (11) | 0.14988 (12) | 0.0274 (4) | |
C5 | 0.5759 (2) | 0.32088 (13) | 0.06777 (14) | 0.0413 (5) | |
H5 | 0.638572 | 0.283914 | 0.055981 | 0.050* | |
C6 | 0.4543 (2) | 0.33718 (15) | 0.00350 (14) | 0.0492 (6) | |
H6 | 0.434281 | 0.311734 | −0.052431 | 0.059* | |
C7 | 0.3621 (2) | 0.38992 (13) | 0.01970 (13) | 0.0420 (5) | |
H7 | 0.278444 | 0.400226 | −0.025191 | 0.050* | |
C8 | 0.38869 (19) | 0.42858 (11) | 0.10071 (12) | 0.0286 (4) | |
C9 | 0.7420 (2) | 0.33751 (12) | 0.21946 (13) | 0.0336 (5) | |
H9 | 0.750243 | 0.371828 | 0.272092 | 0.040* | |
C10 | 0.7379 (3) | 0.25436 (14) | 0.25043 (17) | 0.0561 (7) | |
H10A | 0.731285 | 0.219361 | 0.200199 | 0.084* | |
H10B | 0.656980 | 0.247168 | 0.273363 | 0.084* | |
H10C | 0.822820 | 0.243131 | 0.297620 | 0.084* | |
C11 | 0.8689 (2) | 0.35145 (16) | 0.18521 (17) | 0.0519 (6) | |
H11A | 0.865868 | 0.316548 | 0.135398 | 0.078* | |
H11B | 0.953597 | 0.341772 | 0.233196 | 0.078* | |
H11C | 0.868644 | 0.404983 | 0.165078 | 0.078* | |
C12 | 0.2812 (2) | 0.48372 (12) | 0.11812 (14) | 0.0367 (5) | |
H12 | 0.326243 | 0.513951 | 0.172950 | 0.044* | |
C13 | 0.1612 (3) | 0.43896 (19) | 0.1354 (3) | 0.1000 (14) | |
H13A | 0.093897 | 0.475020 | 0.148196 | 0.150* | |
H13B | 0.196137 | 0.404586 | 0.186406 | 0.150* | |
H13C | 0.116090 | 0.408329 | 0.082660 | 0.150* | |
C14 | 0.2272 (4) | 0.53980 (17) | 0.0432 (2) | 0.0820 (10) | |
H14A | 0.177132 | 0.511669 | −0.010362 | 0.123* | |
H14B | 0.305181 | 0.567885 | 0.031406 | 0.123* | |
H14C | 0.164104 | 0.576421 | 0.059862 | 0.123* | |
C15 | 0.58170 (17) | 0.61147 (10) | 0.42027 (11) | 0.0207 (3) | |
C16 | 0.46359 (18) | 0.65928 (10) | 0.40491 (11) | 0.0219 (4) | |
C17 | 0.46834 (19) | 0.72263 (10) | 0.46045 (12) | 0.0274 (4) | |
H17 | 0.389882 | 0.755641 | 0.450633 | 0.033* | |
C18 | 0.5844 (2) | 0.73839 (11) | 0.52929 (12) | 0.0305 (4) | |
H18 | 0.585062 | 0.781626 | 0.566744 | 0.037* | |
C19 | 0.6994 (2) | 0.69150 (10) | 0.54386 (12) | 0.0281 (4) | |
H19 | 0.779039 | 0.703016 | 0.591430 | 0.034* | |
C20 | 0.70149 (18) | 0.62737 (10) | 0.49017 (11) | 0.0231 (4) | |
C21 | 0.33327 (18) | 0.64485 (11) | 0.32984 (12) | 0.0277 (4) | |
H21 | 0.331695 | 0.589036 | 0.313540 | 0.033* | |
C22 | 0.2000 (2) | 0.66235 (13) | 0.35634 (17) | 0.0453 (6) | |
H22A | 0.191522 | 0.718159 | 0.363168 | 0.068* | |
H22B | 0.203732 | 0.636691 | 0.412819 | 0.068* | |
H22C | 0.119651 | 0.643396 | 0.309992 | 0.068* | |
C23 | 0.3355 (2) | 0.69207 (13) | 0.24749 (14) | 0.0412 (5) | |
H23A | 0.254521 | 0.678656 | 0.198252 | 0.062* | |
H23B | 0.420602 | 0.680639 | 0.230557 | 0.062* | |
H23C | 0.332647 | 0.747141 | 0.260929 | 0.062* | |
C24 | 0.83013 (19) | 0.57663 (11) | 0.51126 (12) | 0.0285 (4) | |
H24 | 0.815047 | 0.535143 | 0.465149 | 0.034* | |
C25 | 0.8521 (2) | 0.53809 (13) | 0.60211 (14) | 0.0442 (5) | |
H25A | 0.769090 | 0.508486 | 0.602823 | 0.066* | |
H25B | 0.869085 | 0.577684 | 0.648599 | 0.066* | |
H25C | 0.932307 | 0.503398 | 0.613113 | 0.066* | |
C26 | 0.9599 (2) | 0.62141 (13) | 0.50874 (16) | 0.0432 (5) | |
H26A | 0.946650 | 0.644086 | 0.449550 | 0.065* | |
H26B | 1.039822 | 0.586419 | 0.521593 | 0.065* | |
H26C | 0.976794 | 0.662518 | 0.553468 | 0.065* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0210 (2) | 0.0213 (2) | 0.0179 (2) | −0.00023 (17) | 0.00470 (16) | 0.00068 (17) |
N1 | 0.0236 (6) | 0.0394 (7) | 0.0296 (6) | 0.0011 (5) | 0.0017 (4) | −0.0038 (5) |
N2 | 0.0236 (6) | 0.0394 (7) | 0.0296 (6) | 0.0011 (5) | 0.0017 (4) | −0.0038 (5) |
N3 | 0.0390 (11) | 0.0744 (15) | 0.0439 (11) | −0.0083 (10) | 0.0201 (9) | −0.0003 (10) |
N4 | 0.0268 (8) | 0.0214 (7) | 0.0180 (7) | −0.0014 (6) | 0.0070 (6) | −0.0002 (6) |
N5 | 0.0271 (8) | 0.0186 (7) | 0.0191 (7) | 0.0007 (6) | 0.0078 (6) | 0.0005 (6) |
C1 | 0.0801 (17) | 0.0260 (10) | 0.0300 (11) | −0.0088 (10) | 0.0293 (11) | −0.0024 (8) |
C2 | 0.0631 (14) | 0.0236 (10) | 0.0229 (9) | −0.0099 (9) | 0.0125 (9) | 0.0016 (8) |
C3 | 0.0262 (9) | 0.0233 (9) | 0.0200 (8) | −0.0019 (7) | 0.0067 (7) | −0.0023 (7) |
C4 | 0.0286 (10) | 0.0290 (10) | 0.0239 (9) | 0.0018 (8) | 0.0060 (7) | −0.0042 (7) |
C5 | 0.0395 (12) | 0.0490 (13) | 0.0339 (11) | 0.0079 (10) | 0.0077 (9) | −0.0162 (10) |
C6 | 0.0501 (14) | 0.0641 (16) | 0.0275 (11) | 0.0046 (12) | 0.0009 (10) | −0.0212 (11) |
C7 | 0.0367 (12) | 0.0535 (14) | 0.0277 (10) | 0.0043 (10) | −0.0050 (9) | −0.0066 (9) |
C8 | 0.0265 (9) | 0.0280 (10) | 0.0285 (10) | 0.0009 (7) | 0.0029 (8) | −0.0011 (8) |
C9 | 0.0325 (11) | 0.0347 (11) | 0.0301 (10) | 0.0094 (8) | 0.0027 (8) | −0.0077 (8) |
C10 | 0.0661 (17) | 0.0387 (13) | 0.0538 (15) | 0.0155 (12) | −0.0002 (13) | 0.0041 (11) |
C11 | 0.0322 (12) | 0.0669 (17) | 0.0542 (15) | 0.0099 (11) | 0.0081 (10) | −0.0126 (12) |
C12 | 0.0262 (10) | 0.0320 (11) | 0.0448 (12) | 0.0055 (8) | −0.0022 (9) | −0.0070 (9) |
C13 | 0.073 (2) | 0.065 (2) | 0.192 (4) | 0.0142 (17) | 0.086 (3) | 0.009 (2) |
C14 | 0.098 (3) | 0.0568 (19) | 0.082 (2) | 0.0371 (17) | 0.0091 (19) | 0.0182 (16) |
C15 | 0.0260 (9) | 0.0196 (8) | 0.0177 (8) | −0.0012 (7) | 0.0080 (7) | 0.0004 (6) |
C16 | 0.0245 (9) | 0.0198 (8) | 0.0223 (9) | −0.0013 (7) | 0.0079 (7) | 0.0033 (7) |
C17 | 0.0320 (10) | 0.0206 (9) | 0.0304 (10) | 0.0035 (7) | 0.0100 (8) | 0.0000 (7) |
C18 | 0.0400 (11) | 0.0231 (9) | 0.0285 (10) | −0.0017 (8) | 0.0093 (8) | −0.0069 (8) |
C19 | 0.0321 (10) | 0.0280 (10) | 0.0219 (9) | −0.0041 (8) | 0.0035 (7) | −0.0014 (7) |
C20 | 0.0261 (9) | 0.0222 (9) | 0.0212 (8) | −0.0006 (7) | 0.0068 (7) | 0.0025 (7) |
C21 | 0.0247 (9) | 0.0230 (9) | 0.0329 (10) | −0.0002 (7) | 0.0036 (8) | −0.0010 (8) |
C22 | 0.0250 (11) | 0.0445 (13) | 0.0645 (15) | −0.0016 (9) | 0.0090 (10) | −0.0103 (11) |
C23 | 0.0414 (12) | 0.0395 (12) | 0.0344 (11) | 0.0035 (9) | −0.0038 (9) | 0.0086 (9) |
C24 | 0.0284 (10) | 0.0263 (9) | 0.0272 (10) | 0.0026 (8) | 0.0015 (7) | −0.0014 (8) |
C25 | 0.0451 (13) | 0.0438 (13) | 0.0366 (12) | 0.0078 (10) | −0.0009 (10) | 0.0118 (10) |
C26 | 0.0291 (11) | 0.0429 (13) | 0.0576 (14) | 0.0040 (9) | 0.0120 (10) | 0.0013 (11) |
P1—N4 | 1.6680 (15) | C12—H12 | 1.0000 |
P1—N5 | 1.6684 (14) | C13—H13A | 0.9800 |
P1—N1 | 1.8547 (16) | C13—H13B | 0.9800 |
N1—N2 | 1.168 (2) | C13—H13C | 0.9800 |
N2—N3 | 1.155 (2) | C14—H14A | 0.9800 |
N4—C3 | 1.436 (2) | C14—H14B | 0.9800 |
N4—C1 | 1.456 (2) | C14—H14C | 0.9800 |
N5—C15 | 1.441 (2) | C15—C16 | 1.410 (2) |
N5—C2 | 1.463 (2) | C15—C20 | 1.410 (2) |
C1—C2 | 1.477 (3) | C16—C17 | 1.393 (2) |
C1—H1A | 0.9900 | C16—C21 | 1.517 (2) |
C1—H1B | 0.9900 | C17—C18 | 1.377 (3) |
C2—H2A | 0.9900 | C17—H17 | 0.9500 |
C2—H2B | 0.9900 | C18—C19 | 1.377 (3) |
C3—C4 | 1.399 (2) | C18—H18 | 0.9500 |
C3—C8 | 1.403 (2) | C19—C20 | 1.397 (2) |
C4—C5 | 1.393 (3) | C19—H19 | 0.9500 |
C4—C9 | 1.521 (3) | C20—C24 | 1.520 (2) |
C5—C6 | 1.378 (3) | C21—C23 | 1.531 (3) |
C5—H5 | 0.9500 | C21—C22 | 1.532 (3) |
C6—C7 | 1.372 (3) | C21—H21 | 1.0000 |
C6—H6 | 0.9500 | C22—H22A | 0.9800 |
C7—C8 | 1.392 (3) | C22—H22B | 0.9800 |
C7—H7 | 0.9500 | C22—H22C | 0.9800 |
C8—C12 | 1.519 (3) | C23—H23A | 0.9800 |
C9—C10 | 1.525 (3) | C23—H23B | 0.9800 |
C9—C11 | 1.528 (3) | C23—H23C | 0.9800 |
C9—H9 | 1.0000 | C24—C26 | 1.524 (3) |
C10—H10A | 0.9800 | C24—C25 | 1.529 (3) |
C10—H10B | 0.9800 | C24—H24 | 1.0000 |
C10—H10C | 0.9800 | C25—H25A | 0.9800 |
C11—H11A | 0.9800 | C25—H25B | 0.9800 |
C11—H11B | 0.9800 | C25—H25C | 0.9800 |
C11—H11C | 0.9800 | C26—H26A | 0.9800 |
C12—C14 | 1.503 (3) | C26—H26B | 0.9800 |
C12—C13 | 1.516 (4) | C26—H26C | 0.9800 |
N4—P1—N5 | 91.14 (7) | C12—C13—H13B | 109.5 |
N4—P1—N1 | 102.14 (8) | H13A—C13—H13B | 109.5 |
N5—P1—N1 | 100.86 (7) | C12—C13—H13C | 109.5 |
N2—N1—P1 | 116.29 (14) | H13A—C13—H13C | 109.5 |
N3—N2—N1 | 176.6 (2) | H13B—C13—H13C | 109.5 |
C3—N4—C1 | 120.31 (14) | C12—C14—H14A | 109.5 |
C3—N4—P1 | 123.43 (11) | C12—C14—H14B | 109.5 |
C1—N4—P1 | 116.17 (12) | H14A—C14—H14B | 109.5 |
C15—N5—C2 | 120.53 (14) | C12—C14—H14C | 109.5 |
C15—N5—P1 | 125.17 (11) | H14A—C14—H14C | 109.5 |
C2—N5—P1 | 114.15 (12) | H14B—C14—H14C | 109.5 |
N4—C1—C2 | 107.20 (16) | C16—C15—C20 | 120.81 (15) |
N4—C1—H1A | 110.3 | C16—C15—N5 | 119.29 (15) |
C2—C1—H1A | 110.3 | C20—C15—N5 | 119.82 (15) |
N4—C1—H1B | 110.3 | C17—C16—C15 | 118.32 (16) |
C2—C1—H1B | 110.3 | C17—C16—C21 | 119.13 (16) |
H1A—C1—H1B | 108.5 | C15—C16—C21 | 122.54 (15) |
N5—C2—C1 | 107.95 (15) | C18—C17—C16 | 121.37 (17) |
N5—C2—H2A | 110.1 | C18—C17—H17 | 119.3 |
C1—C2—H2A | 110.1 | C16—C17—H17 | 119.3 |
N5—C2—H2B | 110.1 | C17—C18—C19 | 120.01 (17) |
C1—C2—H2B | 110.1 | C17—C18—H18 | 120.0 |
H2A—C2—H2B | 108.4 | C19—C18—H18 | 120.0 |
C4—C3—C8 | 121.38 (16) | C18—C19—C20 | 121.38 (17) |
C4—C3—N4 | 119.40 (15) | C18—C19—H19 | 119.3 |
C8—C3—N4 | 119.21 (15) | C20—C19—H19 | 119.3 |
C5—C4—C3 | 118.43 (17) | C19—C20—C15 | 118.11 (16) |
C5—C4—C9 | 118.87 (17) | C19—C20—C24 | 118.84 (16) |
C3—C4—C9 | 122.69 (16) | C15—C20—C24 | 123.02 (15) |
C6—C5—C4 | 120.59 (19) | C16—C21—C23 | 110.73 (15) |
C6—C5—H5 | 119.7 | C16—C21—C22 | 112.73 (16) |
C4—C5—H5 | 119.7 | C23—C21—C22 | 109.64 (17) |
C7—C6—C5 | 120.47 (19) | C16—C21—H21 | 107.9 |
C7—C6—H6 | 119.8 | C23—C21—H21 | 107.9 |
C5—C6—H6 | 119.8 | C22—C21—H21 | 107.9 |
C6—C7—C8 | 121.22 (19) | C21—C22—H22A | 109.5 |
C6—C7—H7 | 119.4 | C21—C22—H22B | 109.5 |
C8—C7—H7 | 119.4 | H22A—C22—H22B | 109.5 |
C7—C8—C3 | 117.90 (17) | C21—C22—H22C | 109.5 |
C7—C8—C12 | 119.86 (17) | H22A—C22—H22C | 109.5 |
C3—C8—C12 | 122.18 (17) | H22B—C22—H22C | 109.5 |
C4—C9—C10 | 110.70 (18) | C21—C23—H23A | 109.5 |
C4—C9—C11 | 111.68 (17) | C21—C23—H23B | 109.5 |
C10—C9—C11 | 110.99 (19) | H23A—C23—H23B | 109.5 |
C4—C9—H9 | 107.8 | C21—C23—H23C | 109.5 |
C10—C9—H9 | 107.8 | H23A—C23—H23C | 109.5 |
C11—C9—H9 | 107.8 | H23B—C23—H23C | 109.5 |
C9—C10—H10A | 109.5 | C20—C24—C26 | 112.19 (16) |
C9—C10—H10B | 109.5 | C20—C24—C25 | 110.59 (16) |
H10A—C10—H10B | 109.5 | C26—C24—C25 | 109.90 (17) |
C9—C10—H10C | 109.5 | C20—C24—H24 | 108.0 |
H10A—C10—H10C | 109.5 | C26—C24—H24 | 108.0 |
H10B—C10—H10C | 109.5 | C25—C24—H24 | 108.0 |
C9—C11—H11A | 109.5 | C24—C25—H25A | 109.5 |
C9—C11—H11B | 109.5 | C24—C25—H25B | 109.5 |
H11A—C11—H11B | 109.5 | H25A—C25—H25B | 109.5 |
C9—C11—H11C | 109.5 | C24—C25—H25C | 109.5 |
H11A—C11—H11C | 109.5 | H25A—C25—H25C | 109.5 |
H11B—C11—H11C | 109.5 | H25B—C25—H25C | 109.5 |
C14—C12—C13 | 109.7 (2) | C24—C26—H26A | 109.5 |
C14—C12—C8 | 112.9 (2) | C24—C26—H26B | 109.5 |
C13—C12—C8 | 110.17 (19) | H26A—C26—H26B | 109.5 |
C14—C12—H12 | 108.0 | C24—C26—H26C | 109.5 |
C13—C12—H12 | 108.0 | H26A—C26—H26C | 109.5 |
C8—C12—H12 | 108.0 | H26B—C26—H26C | 109.5 |
C12—C13—H13A | 109.5 | ||
N4—P1—N1—N2 | 113.83 (16) | C3—C4—C9—C10 | 113.2 (2) |
N5—P1—N1—N2 | −152.62 (15) | C5—C4—C9—C11 | 58.4 (3) |
N5—P1—N4—C3 | 169.76 (14) | C3—C4—C9—C11 | −122.6 (2) |
N1—P1—N4—C3 | −88.87 (14) | C7—C8—C12—C14 | −48.6 (3) |
N5—P1—N4—C1 | −6.93 (16) | C3—C8—C12—C14 | 134.2 (2) |
N1—P1—N4—C1 | 94.44 (16) | C7—C8—C12—C13 | 74.3 (3) |
N4—P1—N5—C15 | −168.59 (14) | C3—C8—C12—C13 | −102.9 (3) |
N1—P1—N5—C15 | 88.82 (14) | C2—N5—C15—C16 | −103.4 (2) |
N4—P1—N5—C2 | 15.88 (14) | P1—N5—C15—C16 | 81.30 (19) |
N1—P1—N5—C2 | −86.71 (14) | C2—N5—C15—C20 | 73.4 (2) |
C3—N4—C1—C2 | 179.70 (17) | P1—N5—C15—C20 | −101.83 (17) |
P1—N4—C1—C2 | −3.5 (2) | C20—C15—C16—C17 | 0.1 (2) |
C15—N5—C2—C1 | 163.95 (17) | N5—C15—C16—C17 | 176.90 (15) |
P1—N5—C2—C1 | −20.3 (2) | C20—C15—C16—C21 | 179.24 (16) |
N4—C1—C2—N5 | 14.1 (3) | N5—C15—C16—C21 | −3.9 (2) |
C1—N4—C3—C4 | −79.8 (2) | C15—C16—C17—C18 | −0.5 (3) |
P1—N4—C3—C4 | 103.69 (18) | C21—C16—C17—C18 | −179.74 (17) |
C1—N4—C3—C8 | 99.4 (2) | C16—C17—C18—C19 | 0.6 (3) |
P1—N4—C3—C8 | −77.2 (2) | C17—C18—C19—C20 | −0.2 (3) |
C8—C3—C4—C5 | 0.6 (3) | C18—C19—C20—C15 | −0.2 (3) |
N4—C3—C4—C5 | 179.73 (18) | C18—C19—C20—C24 | −178.33 (17) |
C8—C3—C4—C9 | −178.35 (18) | C16—C15—C20—C19 | 0.3 (2) |
N4—C3—C4—C9 | 0.8 (3) | N5—C15—C20—C19 | −176.51 (15) |
C3—C4—C5—C6 | 0.1 (3) | C16—C15—C20—C24 | 178.31 (16) |
C9—C4—C5—C6 | 179.1 (2) | N5—C15—C20—C24 | 1.5 (2) |
C4—C5—C6—C7 | −0.6 (4) | C17—C16—C21—C23 | 84.6 (2) |
C5—C6—C7—C8 | 0.4 (4) | C15—C16—C21—C23 | −94.5 (2) |
C6—C7—C8—C3 | 0.3 (3) | C17—C16—C21—C22 | −38.6 (2) |
C6—C7—C8—C12 | −177.1 (2) | C15—C16—C21—C22 | 142.23 (18) |
C4—C3—C8—C7 | −0.8 (3) | C19—C20—C24—C26 | −58.9 (2) |
N4—C3—C8—C7 | −179.90 (18) | C15—C20—C24—C26 | 123.11 (19) |
C4—C3—C8—C12 | 176.48 (18) | C19—C20—C24—C25 | 64.2 (2) |
N4—C3—C8—C12 | −2.6 (3) | C15—C20—C24—C25 | −113.80 (19) |
C5—C4—C9—C10 | −65.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···N4 | 1.00 | 2.43 | 2.926 (2) | 110 |
C12—H12···N4 | 1.00 | 2.44 | 2.913 (2) | 109 |
C21—H21···N5 | 1.00 | 2.49 | 2.932 (2) | 106 |
C24—H24···N1 | 1.00 | 2.66 | 3.443 (3) | 136 |
C24—H24···N5 | 1.00 | 2.46 | 2.955 (2) | 110 |
C22—H22C···N3i | 0.98 | 2.69 | 3.669 (3) | 174 |
Symmetry code: (i) x−1, y, z. |
Acknowledgements
We thank the Natural Sciences and Engineering Research Council of Canada (through the Discovery Grants Program to JDM). JDM also acknowledges support from the Canadian Foundation for Innovation, the Nova Scotia Research and Innovation Trust Fund and Saint Mary's University.
References
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burck, S., Gudat, D., Nieger, M., Schalley, C. A. & Weilandt, T. (2008). Dalton Trans. pp. 3478–3485. CrossRef Google Scholar
Cowley, A. H., Gabbaï, F. P., Bertrand, G., Carrano, C. J. & Bond, M. R. (1995). J. Organomet. Chem. 493, 95–99. CrossRef CAS Google Scholar
Englert, U., Paetzold, P. & Eversheim, E. (1993). Z. Kristallogr. 208, 307–309. CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gediga, M., Burck, S., Bender, J., Förster, D., Nieger, M. & Gudat, D. (2014). Eur. J. Inorg. Chem. pp. 1818–1825. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nieger, M., Niecke, E. & Larbig, M. (2016). Private communication (refcode YABVUV). CCDC, Cambridge, England. Google Scholar
Ocando, E., Majid, S., Pierre Majoral, J., Baceiredo, A. & Bertrand, G. (1985). Polyhedron, 4, 1667–1668. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.