research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a silver-, cobalt- and iron-based phosphate with an alluaudite-like structure: Ag1.655Co1.64Fe1.36(PO4)3

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and bDépartement de Chimie, Faculté des Sciences, Université des Sciences et Techniques de Masuku, BP 943, Franceville, Gabon
*Correspondence e-mail: adam_bouraima@yahoo.fr

Edited by E. F. C. Herdtweck, Technische Universität München, Germany (Received 20 April 2017; accepted 19 May 2017; online 26 May 2017)

The new silver-, cobalt- and iron-based phosphate, silver cobalt iron tris(ortho­phosphate), Ag1.655Co1.64Fe1.36(PO4)3, was synthesized by solid-state reactions. Its structure is isotypic to that of Na2Co2Fe(PO4)3, and belongs to the alluaudite family, with a partial cationic disorder, the AgI atoms being located on an inversion centre and twofold rotation axis sites (Wyckoff positions 4a and 4e), with partial occupancies of 0.885 (2) and 0.7688 (19), respectively. One of the two P atoms in the asymmetric unit completely fills one 4e site while the Co and Fe atoms fill another 4e site, with partial occupancies of 0.86 (5) and 0.14 (5), respectively. The remaining Co2+ and Fe3+ cations are distributed on a general position, 8f, in a 0.39 (4):0.61 (4) ratio. All O atoms and the other P atoms are in general positions. The structure is built up from zigzag chains of edge-sharing [MO6] (M = Fe/Co) octa­hedra stacked parallel to [101]. These chains are linked together through PO4 tetra­hedra, forming polyhedral sheets perpendicular to [010]. The resulting framework displays two types of channels running along [001], in which the AgI atoms (coordination number eight) are located.

1. Chemical context

Compounds belonging to the large alluaudite structural family (Moore, 1971[Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.]; Moore & Ito, 1979[Moore, P. B. & Ito, J. (1979). Mineral. Mag. 43, 227-235.]; Hatert et al., 2000[Hatert, F., Keller, P., Lissner, F., Antenucci, D. & Fransolet, A.-M. (2000). Eur. J. Mineral. 12, 847-857.], 2004[Hatert, F., Long, G. J., Hautot, D., Fransolet, A.-M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487-506.]) have been of continuing inter­est owing to their open-framework architecture, with hexa­gonal-shaped channels, and their physical properties. This fact is amply justified by their practical applications, for example as corrosion inhibitors, passivators of metal surfaces, and catalysts (Korzenski et al., 1999[Korzenski, M. B., Kolis, J. W. & Long, G. J. (1999). J. Solid State Chem. 147, 390-398.]). In addition, inter­est in alluaudite phosphates with monovalent cations has continued to grow in the electrochemical field, where they have applications as positive electrodes in lithium and sodium batteries (Trad et al., 2010[Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554-5562.]). Accordingly, our attention is mostly focused on the elaboration and structural characterization of new alluaudite-type phosphates within the A2O–MO–P2O5 systems (A = monovalent cation M = divalent cation). For instance, most recently, the hydro­thermal investigation of the Na2O–MO–P2O5 pseudo-ternary system has allowed the isolation of the sodium- and magnesium-based alluaudite phosphate NaMg3(PO4)(HPO4)2 (Ould Saleck et al., 2015[Ould Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813-815.]). On the other hand, within the Na2O–CoO–Fe2O3–P2O5 and Na2O–ZnO–Fe2O3–P2O5 pseudo-quaternary systems, solid-state synthesis has allowed Na2Co2Fe(PO4)3 (Bouraima et al., 2015[Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558-560.]) and Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690-692.]) to be obtained. With the same objective, a new silver-, cobalt- and iron-based alluaudite-type phosphate, namely Ag1.655Co1.64Fe1.36(PO4)3, has been synthesized by means of solid-state reactions and characterized by single crystal X-ray diffraction.

2. Structural commentary

In the new isolated compound, either cobalt or iron atoms are distributed in the two octa­hedral sites while the phosphorus atoms are tetra­hedrally coordinated, as shown in Fig. 1[link]. The structure is built up from two edge-sharing [(Co1/Fe1)O6] octa­hedra, leading to the formation of [(Co1/Fe1)2O10] dimers. Those dimers are connected by a common edge to [(Fe2/Co2)O6] octa­hedra, forming an infinite chain (Fig. 2[link]). The junction between these chains is ensured by sharing vertices with the PO4 tetra­hedra so as to form an open layer perpendicular to [010] (Fig. 3[link]). The three-dimensional framework resulting from the stacking of the sheets along the b-axis direction delimits channels parallel to [001] in which the Ag+ cations are accommodated, as shown in Fig. 4[link].

[Figure 1]
Figure 1
The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) x, −y + 1, z + [{1\over 2}]; (ii) −x + 1, y, −z + [{1\over 2}]; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 2, y, −z + [{3\over 2}]; (v) −x + 2, −y + 1, −z + 1; (vi) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (vii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (viii) x, −y + 1, z − [{1\over 2}]; (ix) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (x) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (xi) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (xii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (xiii) x + [{1\over 2}], y + [{1\over 2}], z + 1.]
[Figure 2]
Figure 2
Edge-sharing [(Fe/Co)O6] octa­hedra forming a layer parallel to [101].
[Figure 3]
Figure 3
A view along [010], showing a layer resulting from the connection of chains via vertices of PO4 tetra­hedra and [FeO6] octa­hedra.
[Figure 4]
Figure 4
Polyhedral representation of Ag1.655Co1.64Fe1.36(PO4)3, showing channels running along [001].

3. Comparison with a related structure

It is worth mentioning that the distribution of metallic cations observed in the case of the silver–cobalt–iron-based phosphate is not encountered in the sodium homologue. Hence, in the title silver-based phosphate, the octa­hedral M1 site (Wyckoff position 8f) is occupied to 60% by Fe1 and to 40% by Co1. The octa­hedrally surrounded M2 site (Wyckoff position 4e) is essentially occupied by Fe2 atoms (43%) along with a small amount of Co2 (7%). However, in the Na2Co2Fe(PO4)3 phosphate, the M1 and M2 sites are entirely occupied by Fe and Co atoms, respectively. For the mixed sites, the occupancy rate was refined without any constraint. The results of the refinements are in good agreement with the electrical neutrality of the compound and calculations of the bond-valence sums of the atoms in the structure (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). Accordingly, in the silver-based phosphate, the cations at the M1 site form double octahedra [(Fe1/Co1)2O10] alternating with [(Fe2/Co2)O6] octa­hedra, while in the sodium homologue phosphate, the obtained [Co2O10] double octahedra alternate with [FeO6] octa­hedra (Fig. 4[link]). Moreover, both the Ag1 and Ag2 atoms are located in channels, surrounded by eight oxygen atoms with Ag1—O bond lengths between 2.3320 (13) Å and 2.9176 (13) Å, whereas Ag2—O bond lengths are in the range 2.4733 (13)–2.9035 (12) Å. The structure of the title phosphate is isotypic to that of Na2Co2Fe(PO4)3 (Bouraima et al., 2015[Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558-560.]) and Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690-692.]).

4. Synthesis and crystallization

The title compound was isolated from solid-state reactions in air by mixing nitrates of silver, cobalt and iron with phospho­ric acid. The various precursors are taken in the molar ratio Ag:Co:Fe:P = 2:2:1:3. The mixture was stirred at room temperature overnight. After different heat treatments in a platinum crucible at up to 873 K, the reaction mixture was heated to the melting temperature of 1221 K. The molten product was then cooled to room temperature at a rate of 5 K h−1. Brown homogeneous crystals corresponding to the title compound of a suitable size for X-ray diffraction were obtained.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The maximum and minimum residual electron densities in the final Fourier map are 0.68 and 0.55 Å from Ag1 and Ag2, respectively.

Table 1
Experimental details

Crystal data
Chemical formula Ag1.655Co1.64Fe1.36(PO4)3
Mr 2544.10
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 11.8680 (3), 12.5514 (3), 6.4386 (2)
β (°) 114.012 (1)
V3) 876.09 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 9.51
Crystal size (mm) 0.31 × 0.26 × 0.22
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.066, 0.124
No. of measured, independent and observed [I > 2σ(I)] reflections 13097, 2137, 2079
Rint 0.030
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.047, 1.19
No. of reflections 2137
No. of parameters 99
Δρmax, Δρmin (e Å−3) 1.47, −0.92
Computer programs: APEX2 aand SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Silver cobalt iron tris(orthophosphate) top
Crystal data top
Ag1.655Co1.64Fe1.36(PO4)3F(000) = 1194
Mr = 2544.10Dx = 4.822 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.8680 (3) ÅCell parameters from 2137 reflections
b = 12.5514 (3) Åθ = 3.3–36.3°
c = 6.4386 (2) ŵ = 9.51 mm1
β = 114.012 (1)°T = 296 K
V = 876.09 (4) Å3Block, brown
Z = 10.31 × 0.26 × 0.22 mm
Data collection top
Bruker X8 APEX
diffractometer
2137 independent reflections
Radiation source: fine-focus sealed tube2079 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 36.3°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1919
Tmin = 0.066, Tmax = 0.124k = 2020
13097 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0121P)2 + 3.2851P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.020(Δ/σ)max = 0.001
wR(F2) = 0.047Δρmax = 1.47 e Å3
S = 1.19Δρmin = 0.92 e Å3
2137 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
99 parametersExtinction coefficient: 0.00102 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.50000.50000.50000.01952 (7)0.885 (2)
Ag21.00000.48916 (3)0.75000.02408 (10)0.7688 (19)
Fe10.78227 (2)0.34311 (2)0.37115 (3)0.00565 (6)0.61 (4)
Co10.78227 (2)0.34311 (2)0.37115 (3)0.00565 (6)0.39 (4)
Fe21.00000.76503 (2)0.75000.00714 (8)0.14 (5)
Co21.00000.76503 (2)0.75000.00714 (8)0.86 (5)
P10.76272 (3)0.61138 (3)0.37428 (6)0.00502 (8)
P20.50000.28909 (4)0.25000.00535 (10)
O10.77807 (11)0.67841 (10)0.18620 (19)0.00908 (19)
O20.81856 (12)0.49999 (9)0.3820 (2)0.0112 (2)
O30.62598 (11)0.60711 (11)0.3280 (2)0.0135 (2)
O40.83676 (12)0.66524 (9)0.60788 (19)0.00917 (19)
O50.45841 (10)0.21873 (10)0.03381 (18)0.00821 (19)
O60.60284 (12)0.36401 (10)0.2530 (2)0.0122 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02917 (14)0.00879 (9)0.01123 (10)0.00389 (7)0.00138 (8)0.00128 (6)
Ag20.01069 (12)0.02795 (16)0.02519 (15)0.0000.00133 (10)0.000
Fe10.00485 (9)0.00657 (9)0.00575 (9)0.00037 (6)0.00240 (6)0.00058 (6)
Co10.00485 (9)0.00657 (9)0.00575 (9)0.00037 (6)0.00240 (6)0.00058 (6)
Fe20.00620 (12)0.00833 (13)0.00796 (13)0.0000.00398 (10)0.000
Co20.00620 (12)0.00833 (13)0.00796 (13)0.0000.00398 (10)0.000
P10.00488 (15)0.00490 (15)0.00521 (15)0.00006 (11)0.00198 (11)0.00022 (10)
P20.00397 (19)0.0071 (2)0.00466 (19)0.0000.00138 (16)0.000
O10.0101 (5)0.0112 (5)0.0062 (4)0.0001 (4)0.0036 (4)0.0020 (3)
O20.0118 (5)0.0070 (4)0.0144 (5)0.0024 (4)0.0048 (4)0.0013 (4)
O30.0067 (4)0.0125 (5)0.0221 (6)0.0007 (4)0.0066 (4)0.0031 (4)
O40.0127 (5)0.0083 (4)0.0062 (4)0.0011 (4)0.0034 (4)0.0013 (3)
O50.0064 (4)0.0124 (5)0.0053 (4)0.0011 (4)0.0018 (3)0.0017 (3)
O60.0085 (5)0.0119 (5)0.0166 (5)0.0036 (4)0.0054 (4)0.0007 (4)
Geometric parameters (Å, º) top
Ag1—O6i2.3320 (13)Fe1—O4viii2.0481 (12)
Ag1—O6ii2.3320 (13)Fe1—O1i2.0669 (11)
Ag1—O3i2.4356 (14)Fe1—O5vi2.0705 (12)
Ag1—O3ii2.4356 (14)Fe1—O1ix2.1695 (12)
Ag1—O3iii2.5724 (13)Fe2—O3x2.1099 (13)
Ag1—O32.5725 (13)Fe2—O3xi2.1099 (13)
Ag1—O6iii2.9176 (13)Fe2—O5xii2.1575 (11)
Ag1—O62.9176 (13)Fe2—O5xiii2.1575 (11)
Ag2—O2iv2.4733 (13)Fe2—O4iv2.1717 (12)
Ag2—O22.4733 (13)Fe2—O42.1717 (12)
Ag2—O2i2.6204 (13)P1—O31.5270 (13)
Ag2—O2v2.6204 (13)P1—O21.5393 (12)
Ag2—O42.8341 (12)P1—O11.5451 (12)
Ag2—O4iv2.8341 (12)P1—O41.5543 (12)
Ag2—O5vi2.9035 (13)P2—O6ii1.5346 (13)
Ag2—O5vii2.9035 (12)P2—O61.5346 (13)
Fe1—O61.9656 (13)P2—O5ii1.5498 (12)
Fe1—O22.0108 (12)P2—O51.5498 (12)
O6i—Ag1—O6ii180.00 (4)O2—Ag2—O1i64.62 (4)
O6i—Ag1—O3i80.58 (4)O2i—Ag2—O1i49.21 (3)
O6ii—Ag1—O3i99.42 (4)O2v—Ag2—O1i136.08 (3)
O6i—Ag1—O3ii99.42 (4)O4—Ag2—O1i92.94 (3)
O6ii—Ag1—O3ii80.58 (4)O4iv—Ag2—O1i162.54 (3)
O3i—Ag1—O3ii180.0O5vi—Ag2—O1i52.36 (3)
O6i—Ag1—O3iii108.21 (5)O5vii—Ag2—O1i56.78 (3)
O6ii—Ag1—O3iii71.79 (5)O2iv—Ag2—O1v64.62 (4)
O3i—Ag1—O3iii66.27 (5)O2—Ag2—O1v119.96 (4)
O3ii—Ag1—O3iii113.73 (5)O2i—Ag2—O1v136.08 (3)
O6i—Ag1—O371.79 (5)O2v—Ag2—O1v49.21 (3)
O6ii—Ag1—O3108.21 (5)O4—Ag2—O1v162.54 (3)
O3i—Ag1—O3113.73 (5)O4iv—Ag2—O1v92.94 (3)
O3ii—Ag1—O366.27 (5)O5vi—Ag2—O1v56.78 (3)
O3iii—Ag1—O3180.0O5vii—Ag2—O1v52.36 (3)
O6i—Ag1—O6iii53.64 (5)O6—Fe1—O293.77 (5)
O6ii—Ag1—O6iii126.36 (5)O6—Fe1—O4viii110.10 (5)
O3i—Ag1—O6iii95.49 (4)O2—Fe1—O4viii86.76 (5)
O3ii—Ag1—O6iii84.51 (4)O6—Fe1—O1i86.70 (5)
O3iii—Ag1—O6iii68.02 (4)O2—Fe1—O1i100.62 (5)
O3—Ag1—O6iii111.98 (4)O4viii—Fe1—O1i161.33 (5)
O6i—Ag1—O6126.36 (5)O6—Fe1—O5vi163.25 (5)
O6ii—Ag1—O653.64 (5)O2—Fe1—O5vi101.04 (5)
O3i—Ag1—O684.51 (4)O4viii—Fe1—O5vi78.79 (5)
O3ii—Ag1—O695.49 (4)O1i—Fe1—O5vi82.95 (5)
O3iii—Ag1—O6111.98 (4)O6—Fe1—O1ix80.26 (5)
O3—Ag1—O668.02 (4)O2—Fe1—O1ix171.95 (5)
O6iii—Ag1—O6180.0O4viii—Fe1—O1ix90.22 (4)
O2iv—Ag2—O2173.70 (6)O1i—Fe1—O1ix84.52 (5)
O2iv—Ag2—O2i101.33 (4)O5vi—Fe1—O1ix85.66 (5)
O2—Ag2—O2i78.34 (4)O3x—Fe2—O3xi80.97 (7)
O2iv—Ag2—O2v78.34 (4)O3x—Fe2—O5xii91.27 (5)
O2—Ag2—O2v101.33 (4)O3xi—Fe2—O5xii112.81 (5)
O2i—Ag2—O2v174.04 (5)O3x—Fe2—O5xiii112.81 (5)
O2iv—Ag2—O4118.73 (4)O3xi—Fe2—O5xiii91.27 (5)
O2—Ag2—O455.50 (4)O5xii—Fe2—O5xiii148.74 (7)
O2i—Ag2—O461.33 (4)O3x—Fe2—O4iv85.08 (5)
O2v—Ag2—O4113.50 (4)O3xi—Fe2—O4iv164.39 (5)
O2iv—Ag2—O4iv55.50 (4)O5xii—Fe2—O4iv74.29 (4)
O2—Ag2—O4iv118.73 (4)O5xiii—Fe2—O4iv87.71 (4)
O2i—Ag2—O4iv113.50 (4)O3x—Fe2—O4164.39 (5)
O2v—Ag2—O4iv61.33 (4)O3xi—Fe2—O485.08 (5)
O4—Ag2—O4iv77.51 (5)O5xii—Fe2—O487.71 (4)
O2iv—Ag2—O5vi114.87 (4)O5xiii—Fe2—O474.29 (4)
O2—Ag2—O5vi71.23 (4)O4iv—Fe2—O4109.56 (7)
O2i—Ag2—O5vi101.56 (4)O3—P1—O2112.57 (7)
O2v—Ag2—O5vi83.86 (4)O3—P1—O1108.72 (7)
O4—Ag2—O5vi125.84 (3)O2—P1—O1109.47 (7)
O4iv—Ag2—O5vi144.70 (3)O3—P1—O4109.98 (7)
O2iv—Ag2—O5vii71.23 (4)O2—P1—O4107.31 (7)
O2—Ag2—O5vii114.87 (4)O1—P1—O4108.73 (7)
O2i—Ag2—O5vii83.86 (4)O6ii—P2—O6104.43 (10)
O2v—Ag2—O5vii101.56 (4)O6ii—P2—O5ii108.75 (7)
O4—Ag2—O5vii144.70 (3)O6—P2—O5ii112.14 (7)
O4iv—Ag2—O5vii125.84 (3)O6ii—P2—O5112.14 (7)
O5vi—Ag2—O5vii52.03 (4)O6—P2—O5108.75 (7)
O2iv—Ag2—O1i119.96 (4)O5ii—P2—O5110.52 (9)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z+1; (iv) x+2, y, z+3/2; (v) x+2, y+1, z+1; (vi) x+1/2, y+1/2, z+1/2; (vii) x+3/2, y+1/2, z+1; (viii) x, y+1, z1/2; (ix) x+3/2, y1/2, z+1/2; (x) x+1/2, y+3/2, z+1/2; (xi) x+3/2, y+3/2, z+1; (xii) x+3/2, y+1/2, z+1/2; (xiii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Funding information

Funding for this research was provided by: Mohammed V University, Rabat, Morocco.

References

First citationBouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHatert, F., Keller, P., Lissner, F., Antenucci, D. & Fransolet, A.-M. (2000). Eur. J. Mineral. 12, 847–857.  CrossRef CAS Google Scholar
First citationHatert, F., Long, G. J., Hautot, D., Fransolet, A.-M., Delwiche, J., Hubin-Franskin, M. J. & Grandjean, F. (2004). Phys. Chem. Miner. 31, 487–506.  CrossRef CAS Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorzenski, M. B., Kolis, J. W. & Long, G. J. (1999). J. Solid State Chem. 147, 390–398.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoore, P. B. (1971). Am. Mineral. 56, 1955–1975.  CAS Google Scholar
First citationMoore, P. B. & Ito, J. (1979). Mineral. Mag. 43, 227–235.  CrossRef CAS Web of Science Google Scholar
First citationOuld Saleck, A., Assani, A., Saadi, M., Mercier, C., Follet, C. & El Ammari, L. (2015). Acta Cryst. E71, 813–815.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds