research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of chlorido­[1-(4-nitro­phen­yl)thio­urea-κS]bis­­(tri­phenyl­phosphane-κP)silver(I)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Boston University, Boston, Massachusetts 02215, University, and bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 , Thailand
*Correspondence e-mail: yupa.t@psu.ac.th

Edited by A. J. Lough, University of Toronto, Canada (Received 14 March 2017; accepted 28 April 2017; online 9 May 2017)

In the title compound, [AgCl(C7H7N3O2S)(C18H15P)2], the AgI ion is in a distorted tetra­hedral coordination environment formed by P atoms from two tri­phenyl­phosphane ligands, one terminal S atom from the 1-(4-nitro­phen­yl)thio­urea ligand and a chloride ion. In the crystal, bifurcated (N—H)2⋯Cl hydrogen bonds [with graph-set motif R21(6)] connect complex mol­ecules, forming zigzag chains along [001]. These chains are linked via weak C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (100). An intra­molecular N—H⋯Cl hydrogen bond forming an S(6) ring is also observed.

1. Chemical context

Studies of thio­urea and thio­urea derivatives have recently attracted considerable attention because of their variety of biological properties such as increasing technologies for plasma membrane proteomics (Cordwell & Thingholm, 2010[Cordwell, S. C. & Thingholm, T. E. (2010). Proteomics, 10, 611-627.]), anti­microbial and cytotoxic activity (Bielenica et al., 2015[Bielenica, A., Stefańska, J., Stępień, K., Napiórkowska, A., Augustynowicz-Kopeć, E., Sanna, G., Madeddu, S., Boi, S., Giliberti, G., Wrzosek, M. & Struga, M. (2015). Eur. J. Med. Chem. 101, 111-125.]) and significant anti­fungal and anti-viral activity of curative rates (Wu et al., 2012[Wu, J., Shi, Q., Chen, Z., He, M., Jin, L. & Hu, D. (2012). Molecules, 17, 5139-5150.]). Silver(I) complexes containing tri­phenyl­phosphane as precursors have been studied extensively for the preparation of mixed ligands with thio­urea derivatives (Mekarat et al., 2014[Mekarat, S., Pakawatchai, C. & Saithong, S. (2014). Acta Cryst. E70, m281-m282.]; Wattanakanjana et al., 2014[Wattanakanjana, Y., Nimthong, A. & Darasuriyong, C. (2014). Acta Cryst. E70, m337-m338.]). Recently, we reported a complex that was prepared by reacting copper(I) chloride containing tri­phenyl­phosphane and 1-(4-nitro­phen­yl)thio­urea ligands (Nimthong-Roldán et al., 2017[Nimthong-Roldán, A., Promsuwhan, N., Puetpaiboon, W. & Wattanakanjana, Y. (2017). Acta Cryst. E73, 41-44.]). Herein, we report the crystal structure of the compound formed using silver(I) instead of copper(I) under the same conditions, [AgCl(C7H7N3O2S)(C18H15P)2] (I)[link].

[Scheme 1]

2. Structural commentary

In compound (I)[link], tri­phenyl­phosphane, PPh3, and a 1-(4-nitro­phen­yl)thio­urea ligand, NPTU, as co-ligands coordinate the AgI ion with two P atoms from two PPh3 ligands, one terminal S atom from the NPTU ligand and one chloride ion, resulting in a distorted tetra­hedral environment (Fig. 1[link]). The Ag—S bond length of 2.6316 (5) is similar to that of 2.603 (4) Å found in [Ag2Cl2(CH5N3S)2(C18H15P)2], (Wattanakanjana et al., 2012[Wattanakanjana, Y., Pakawatchai, C., Kowittheeraphong, S. & Nimthong, R. (2012). Acta Cryst. E68, m1572-m1573.]). An intra­molecular N2—H2B⋯Cl1 hydrogen bond with graph-set motif S(6) is observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.88 2.41 3.2454 (17) 159
N2—H2A⋯Cl1i 0.88 (2) 2.39 (2) 3.2257 (18) 160 (2)
N2—H2B⋯Cl1 0.87 (2) 2.50 (2) 3.3247 (18) 159 (2)
C12—H12⋯O2ii 0.95 2.60 3.272 (3) 129
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal, N2—H2A⋯Cl1 and N1—H1⋯Cl1 hydrogen bonds link the mol­ecules, forming a zigzag chain along [001]. These chains are linked by weak C12—H12⋯O2 hydrogen bonds, leading to the formation of a two-dimensional network parallel to (100) (Fig. 2[link] and Table 1[link]).

[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing the two-dimensional network formed by inter­molecular N—H⋯Cl and C—H⋯O hydrogen bonds (shown as dashed lines) parallel to (100).

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no complexes with the 1-(4-nitro­phen­yl)thio­urea ligand, and only the crystal structure of the ligand itself has been reported (LONSEN; Xian et al., 2008[Xian, L., Wang, Y. & Zhang, B. (2008). Z. Kristallogr. New Cryst. Struct. 223, 411-412.]). A search for phenyl­thio­urea ligands with substitutions on the phenyl ring yielded 34 hits. Of these, four hits were AgI complexes, namely TUYZAQ (Wattanakanjana et al., 2015[Wattanakanjana, Y., Nimthong-Roldán, A., Palavat, S. & Puetpaiboon, W. (2015). Acta Cryst. E71, m187-m188.]), SUFDUU (Nimthong-Roldán et al., 2015b[Nimthong-Roldán, A., Wattanakanjana, Y. & Rodkeaw, J. (2015b). Acta Cryst. E71, m89-m90.]), WUFBIK (Nimthong-Roldán et al., 2015a[Nimthong-Roldán, A., Ratthiwal, J. & Wattanakanjana, Y. (2015a). Acta Cryst. E71, m133-m134.]), and XOFDED (Mekarat et al., 2014[Mekarat, S., Pakawatchai, C. & Saithong, S. (2014). Acta Cryst. E70, m281-m282.])

5. Synthesis and crystallization

Tri­phenyl­phosphane, PPh3 (0.16 g, 0.51 mmol) was dissolved in 30 ml of aceto­nitrile at 340 K and then silver(I) chloride, AgCl (0.04 g, 0.25 mmol) , was added. The mixture was stirred for 3 h and then 1-(4-nitro­phen­yl)-2- thio­urea, NPTU (0.05 g, 0.25 mmol), was added. The resulting reaction mixture was heated under reflux for 3 h during which the precipitate gradually disappeared. The resulting clear solution was filtered and left to evaporate at room temperature. The crystalline complex, which deposited upon standing for a couple of days, was filtered off and dried in vacuo (0.16 g, 66% yield). M.p. 465–467 K. IR bands (KBr, cm−1): 3259 (w), 3134 (w), 3051(w), 2366 (w), 2345 (w), 1584 (w), 1509 (w), 1498 (w), 1458 (w), 1433 (w), 1399 (w), 1334 (s), 1297 (w), 1259 (w), 1181 (w), 1157 (w), 1110 (w), 1095 (w), 1027 (w), 998 (w), 890 (w), 851 (w), 746 (m), 720 (w), 694 (s), 670 (w), 594 (w), 515 (m), 501 (m), 491 (m).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms attached to carbon atoms and atom H1 attached to nitro­gen atom N1 were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 Å and N1—H1 = 0.88 Å. The other nitro­gen-bound H atoms were located in difference-Fourier maps and were refined with an N—H distance restraint of 0.88 (2) Å. Uiso(H) values were set to 1.2Ueq(C/N). Reflections 1 1 0, [\overline{1}] 1 1, 0 2 0, 1 2 0, 0 4 0, [\overline{1}] 2 1, 0 2 1, 0 1 1, 1 0 0, −5 11, 13 8 1, 6 15 10, 12 10 4, [\overline{5}] 15 13, [\overline{12}] 20 2, 0 22 11, 12 1 5, [\overline{3}] 23 11, [\overline{2}] 26 10, 4 9 12, 10 14 6, [\overline{10}] 20 9, 7 22 7, [\overline{14}] 8 5, 10 10 7, 0 5 14, 7 5 10, [\overline{14}] 8 4, [\overline{5}] 25 10, [\overline{2}] 20 12 and [\overline{12}] 14 9 were affected by the beam stop and were omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula [AgCl(C7H7N3O2S)(C18H15P)2]
Mr 865.07
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.8581 (2), 28.5087 (4), 12.0272 (2)
β (°) 104.9338 (17)
V3) 3928.57 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.33
Crystal size (mm) 0.25 × 0.23 × 0.18
 
Data collection
Diffractometer Rigaku RAPID II curved image plate diffractometer
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.253, 0.395
No. of measured, independent and observed [I > 2σ(I)] reflections 73254, 7590, 7495
Rint 0.051
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.08
No. of reflections 7590
No. of parameters 485
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.37
Computer programs: CrystalClear-SM Expert (Rigaku, 2014[Rigaku (2014). CrystalClear-SM Expert. Rigaku Corporation, The Woodlands, Texas, USA.]), HKL-3000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2014); cell refinement: HKL-3000 (Otwinowski & Minor, 1997); data reduction: HKL-3000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Chlorido[1-(4-nitrophenyl)thiourea-κS]bis(triphenylphosphane-κP)silver(I) top
Crystal data top
[AgCl(C7H7N3O2S)(C18H15P)2]F(000) = 1768
Mr = 865.07Dx = 1.463 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 11.8581 (2) ÅCell parameters from 73254 reflections
b = 28.5087 (4) Åθ = 6.0–72.3°
c = 12.0272 (2) ŵ = 6.33 mm1
β = 104.9338 (17)°T = 100 K
V = 3928.57 (11) Å3Fragment, colourless
Z = 40.25 × 0.23 × 0.18 mm
Data collection top
Rigaku RAPID II curved image plate
diffractometer
7590 independent reflections
Radiation source: microfocus X-ray tube7495 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.051
ω scansθmax = 72.3°, θmin = 6.0°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1314
Tmin = 0.253, Tmax = 0.395k = 3434
73254 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0286P)2 + 4.5052P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
7590 reflectionsΔρmax = 0.43 e Å3
485 parametersΔρmin = 0.37 e Å3
2 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00032 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. NH2 hydrogen positions were refined with an N-H distance restraint of 0.88 (2) Angstrom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.82775 (17)0.17354 (7)0.72805 (16)0.0133 (4)
C20.96312 (17)0.14219 (7)0.61654 (16)0.0139 (4)
C31.03535 (18)0.16067 (7)0.55233 (18)0.0165 (4)
H31.03320.19330.53610.020*
C41.10993 (18)0.13194 (7)0.51217 (18)0.0190 (4)
H41.15780.14440.46700.023*
C51.11381 (18)0.08464 (7)0.53871 (17)0.0174 (4)
C61.04603 (19)0.06567 (7)0.60585 (18)0.0194 (4)
H61.05140.03330.62490.023*
C70.97043 (19)0.09454 (7)0.64472 (18)0.0187 (4)
H70.92350.08190.69060.022*
C80.74747 (17)0.13044 (7)1.26846 (16)0.0138 (4)
C90.65144 (19)0.15917 (7)1.26283 (18)0.0179 (4)
H90.62700.18061.20070.022*
C100.5909 (2)0.15680 (7)1.3476 (2)0.0210 (5)
H100.52640.17701.34420.025*
C110.62485 (18)0.12492 (7)1.43677 (18)0.0189 (4)
H110.58310.12301.49430.023*
C120.71971 (18)0.09583 (7)1.44220 (17)0.0190 (4)
H120.74220.07371.50300.023*
C130.78211 (18)0.09879 (7)1.35929 (17)0.0166 (4)
H130.84820.07931.36440.020*
C140.93770 (17)0.17768 (6)1.20401 (16)0.0136 (4)
C150.93999 (18)0.20815 (7)1.29504 (17)0.0164 (4)
H150.88190.20591.33640.020*
C161.02734 (19)0.24204 (7)1.32554 (18)0.0205 (4)
H161.02830.26291.38730.025*
C171.11251 (19)0.24539 (7)1.26628 (19)0.0225 (5)
H171.17310.26801.28860.027*
C181.10938 (19)0.21572 (8)1.17397 (19)0.0235 (5)
H181.16750.21821.13260.028*
C191.02183 (18)0.18265 (8)1.14223 (18)0.0192 (4)
H191.01880.16311.07760.023*
C200.89340 (19)0.07855 (7)1.15416 (17)0.0181 (4)
C211.0099 (2)0.06968 (8)1.21129 (18)0.0233 (5)
H211.05650.09361.25580.028*
C221.0570 (3)0.02535 (9)1.2023 (2)0.0361 (6)
H221.13650.01931.23990.043*
C230.9895 (3)0.00974 (9)1.1395 (2)0.0416 (7)
H231.02250.03971.13360.050*
C240.8739 (3)0.00123 (8)1.0852 (2)0.0399 (7)
H240.82680.02561.04350.048*
C250.8263 (2)0.04271 (8)1.0911 (2)0.0294 (5)
H250.74720.04851.05180.035*
C260.40317 (17)0.12920 (7)0.91747 (17)0.0144 (4)
C270.43678 (19)0.11373 (8)1.03101 (18)0.0211 (4)
H270.51680.10761.06610.025*
C280.3548 (2)0.10713 (8)1.0934 (2)0.0258 (5)
H280.37840.09621.17050.031*
C290.2380 (2)0.11659 (8)1.0429 (2)0.0251 (5)
H290.18170.11221.08550.030*
C300.20359 (19)0.13244 (8)0.9305 (2)0.0236 (5)
H300.12370.13930.89660.028*
C310.28542 (18)0.13847 (7)0.86665 (19)0.0189 (4)
H310.26130.14880.78910.023*
C320.45452 (17)0.17405 (7)0.72094 (17)0.0145 (4)
C330.45617 (18)0.22199 (7)0.74552 (19)0.0190 (4)
H330.48620.23260.82240.023*
C340.41417 (19)0.25422 (7)0.6582 (2)0.0229 (5)
H340.41370.28670.67580.028*
C350.37279 (19)0.23917 (8)0.5452 (2)0.0237 (5)
H350.34530.26130.48530.028*
C360.37170 (19)0.19174 (8)0.52005 (19)0.0225 (4)
H360.34380.18140.44270.027*
C370.41126 (18)0.15910 (7)0.60767 (18)0.0178 (4)
H370.40870.12660.59010.021*
C380.51237 (17)0.07648 (7)0.77110 (17)0.0151 (4)
C390.4272 (2)0.04295 (8)0.7711 (2)0.0248 (5)
H390.36690.04950.80770.030*
C400.4301 (2)0.00014 (8)0.7180 (2)0.0308 (5)
H400.37190.02290.71870.037*
C410.5173 (2)0.01007 (7)0.66374 (19)0.0252 (5)
H410.51860.03950.62700.030*
C420.60271 (19)0.02319 (7)0.66335 (18)0.0212 (4)
H420.66240.01660.62590.025*
C430.60110 (19)0.06598 (7)0.71745 (18)0.0186 (4)
H430.66060.08840.71820.022*
N10.88013 (15)0.17306 (6)0.64028 (14)0.0148 (3)
H10.85850.19580.58990.018*
N20.74178 (15)0.20477 (6)0.71595 (15)0.0162 (3)
H2A0.727 (2)0.2227 (8)0.6547 (17)0.019*
H2B0.721 (2)0.2127 (8)0.7774 (17)0.019*
N31.18951 (16)0.05374 (6)0.49253 (16)0.0226 (4)
O11.25615 (14)0.07175 (6)0.44157 (15)0.0309 (4)
O21.18095 (15)0.01114 (6)0.50467 (15)0.0314 (4)
S10.86821 (4)0.13848 (2)0.84576 (4)0.01445 (10)
Cl10.73410 (4)0.24665 (2)0.97189 (4)0.01787 (10)
Ag10.70884 (2)0.15453 (2)0.95816 (2)0.01254 (6)
P10.51614 (4)0.13383 (2)0.83979 (4)0.01185 (10)
P20.82115 (4)0.13508 (2)1.15318 (4)0.01158 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0103 (9)0.0120 (9)0.0179 (9)0.0021 (7)0.0045 (7)0.0016 (7)
C20.0143 (10)0.0136 (9)0.0140 (9)0.0017 (7)0.0042 (7)0.0015 (7)
C30.0171 (11)0.0123 (9)0.0214 (10)0.0012 (7)0.0072 (8)0.0011 (7)
C40.0163 (11)0.0192 (10)0.0233 (10)0.0021 (8)0.0082 (8)0.0030 (8)
C50.0146 (10)0.0176 (10)0.0202 (10)0.0040 (8)0.0049 (8)0.0038 (8)
C60.0235 (11)0.0126 (9)0.0230 (10)0.0048 (8)0.0076 (9)0.0022 (8)
C70.0222 (11)0.0156 (10)0.0214 (10)0.0022 (8)0.0113 (8)0.0022 (8)
C80.0136 (10)0.0127 (9)0.0157 (9)0.0030 (7)0.0047 (7)0.0008 (7)
C90.0188 (11)0.0146 (10)0.0213 (10)0.0012 (8)0.0068 (8)0.0018 (8)
C100.0192 (12)0.0178 (10)0.0293 (12)0.0029 (8)0.0118 (9)0.0001 (8)
C110.0185 (11)0.0180 (10)0.0234 (10)0.0045 (8)0.0113 (8)0.0033 (8)
C120.0207 (11)0.0178 (10)0.0192 (10)0.0020 (8)0.0064 (8)0.0031 (8)
C130.0140 (10)0.0152 (9)0.0208 (10)0.0011 (7)0.0052 (8)0.0019 (8)
C140.0120 (10)0.0103 (9)0.0179 (9)0.0008 (7)0.0028 (7)0.0028 (7)
C150.0173 (10)0.0130 (9)0.0192 (10)0.0013 (7)0.0056 (8)0.0005 (7)
C160.0251 (12)0.0116 (9)0.0219 (10)0.0014 (8)0.0009 (9)0.0014 (8)
C170.0177 (11)0.0165 (10)0.0289 (11)0.0052 (8)0.0020 (9)0.0039 (8)
C180.0150 (11)0.0290 (12)0.0278 (11)0.0047 (9)0.0077 (9)0.0037 (9)
C190.0136 (10)0.0227 (11)0.0215 (10)0.0018 (8)0.0050 (8)0.0021 (8)
C200.0256 (11)0.0145 (10)0.0177 (9)0.0016 (8)0.0116 (8)0.0019 (8)
C210.0290 (12)0.0211 (11)0.0218 (10)0.0117 (9)0.0105 (9)0.0064 (8)
C220.0482 (16)0.0373 (14)0.0283 (12)0.0303 (12)0.0197 (11)0.0134 (11)
C230.085 (2)0.0183 (12)0.0312 (13)0.0258 (13)0.0327 (14)0.0094 (10)
C240.076 (2)0.0108 (11)0.0357 (14)0.0014 (12)0.0192 (14)0.0020 (9)
C250.0399 (15)0.0176 (11)0.0316 (12)0.0019 (10)0.0110 (11)0.0044 (9)
C260.0130 (10)0.0102 (9)0.0215 (10)0.0009 (7)0.0072 (8)0.0034 (7)
C270.0159 (11)0.0244 (11)0.0234 (10)0.0003 (8)0.0061 (8)0.0003 (8)
C280.0268 (12)0.0283 (12)0.0262 (11)0.0029 (9)0.0137 (9)0.0009 (9)
C290.0224 (12)0.0209 (11)0.0390 (13)0.0035 (9)0.0208 (10)0.0038 (9)
C300.0125 (11)0.0210 (11)0.0400 (13)0.0005 (8)0.0115 (9)0.0033 (9)
C310.0152 (10)0.0157 (10)0.0255 (10)0.0003 (8)0.0049 (8)0.0028 (8)
C320.0082 (9)0.0146 (9)0.0218 (10)0.0002 (7)0.0056 (7)0.0013 (7)
C330.0131 (10)0.0168 (10)0.0262 (10)0.0000 (8)0.0034 (8)0.0000 (8)
C340.0152 (11)0.0150 (10)0.0380 (12)0.0000 (8)0.0059 (9)0.0027 (9)
C350.0147 (11)0.0254 (11)0.0299 (11)0.0012 (8)0.0041 (9)0.0124 (9)
C360.0159 (11)0.0321 (12)0.0201 (10)0.0002 (9)0.0054 (8)0.0043 (9)
C370.0121 (10)0.0200 (10)0.0224 (10)0.0012 (7)0.0064 (8)0.0004 (8)
C380.0147 (10)0.0120 (9)0.0177 (9)0.0017 (7)0.0027 (8)0.0005 (7)
C390.0241 (12)0.0201 (11)0.0333 (12)0.0063 (9)0.0131 (10)0.0074 (9)
C400.0374 (14)0.0161 (11)0.0423 (14)0.0132 (10)0.0165 (11)0.0091 (10)
C410.0345 (13)0.0134 (10)0.0283 (11)0.0011 (9)0.0089 (10)0.0050 (8)
C420.0228 (11)0.0169 (10)0.0252 (10)0.0034 (8)0.0088 (9)0.0027 (8)
C430.0185 (11)0.0142 (10)0.0242 (10)0.0020 (8)0.0073 (8)0.0027 (8)
N10.0176 (9)0.0113 (8)0.0181 (8)0.0044 (6)0.0091 (7)0.0038 (6)
N20.0171 (9)0.0159 (8)0.0181 (8)0.0049 (6)0.0090 (7)0.0037 (7)
N30.0205 (10)0.0211 (9)0.0262 (9)0.0052 (7)0.0063 (8)0.0058 (7)
O10.0248 (9)0.0320 (9)0.0425 (10)0.0001 (7)0.0205 (8)0.0101 (7)
O20.0366 (10)0.0196 (8)0.0410 (10)0.0112 (7)0.0158 (8)0.0010 (7)
S10.0120 (2)0.0160 (2)0.0164 (2)0.00335 (17)0.00569 (17)0.00330 (17)
Cl10.0236 (3)0.0121 (2)0.0184 (2)0.00173 (17)0.00615 (18)0.00192 (16)
Ag10.00999 (9)0.01314 (8)0.01461 (8)0.00147 (4)0.00338 (6)0.00063 (5)
P10.0085 (2)0.0110 (2)0.0165 (2)0.00051 (16)0.00401 (18)0.00144 (17)
P20.0108 (2)0.0098 (2)0.0145 (2)0.00040 (17)0.00404 (18)0.00016 (17)
Geometric parameters (Å, º) top
C1—N21.333 (3)C24—C251.384 (3)
C1—N11.356 (2)C24—H240.9500
C1—S11.698 (2)C25—H250.9500
C2—C31.396 (3)C26—C271.392 (3)
C2—C71.397 (3)C26—C311.398 (3)
C2—N11.403 (2)C26—P11.825 (2)
C3—C41.381 (3)C27—C281.386 (3)
C3—H30.9500C27—H270.9500
C4—C51.384 (3)C28—C291.387 (3)
C4—H40.9500C28—H280.9500
C5—C61.388 (3)C29—C301.384 (3)
C5—N31.465 (3)C29—H290.9500
C6—C71.384 (3)C30—C311.394 (3)
C6—H60.9500C30—H300.9500
C7—H70.9500C31—H310.9500
C8—C91.390 (3)C32—C371.393 (3)
C8—C131.395 (3)C32—C331.398 (3)
C8—P21.824 (2)C32—P11.831 (2)
C9—C101.391 (3)C33—C341.388 (3)
C9—H90.9500C33—H330.9500
C10—C111.385 (3)C34—C351.389 (3)
C10—H100.9500C34—H340.9500
C11—C121.385 (3)C35—C361.385 (3)
C11—H110.9500C35—H350.9500
C12—C131.389 (3)C36—C371.393 (3)
C12—H120.9500C36—H360.9500
C13—H130.9500C37—H370.9500
C14—C151.392 (3)C38—C391.391 (3)
C14—C191.396 (3)C38—C431.401 (3)
C14—P21.823 (2)C38—P11.827 (2)
C15—C161.395 (3)C39—C401.389 (3)
C15—H150.9500C39—H390.9500
C16—C171.381 (3)C40—C411.387 (3)
C16—H160.9500C40—H400.9500
C17—C181.389 (3)C41—C421.388 (3)
C17—H170.9500C41—H410.9500
C18—C191.381 (3)C42—C431.385 (3)
C18—H180.9500C42—H420.9500
C19—H190.9500C43—H430.9500
C20—C251.394 (3)N1—H10.8800
C20—C211.398 (3)N2—H2A0.877 (16)
C20—P21.824 (2)N2—H2B0.870 (16)
C21—C221.397 (3)N3—O11.230 (3)
C21—H210.9500N3—O21.231 (2)
C22—C231.379 (4)S1—Ag12.6316 (5)
C22—H220.9500Cl1—Ag12.6435 (5)
C23—C241.379 (4)Ag1—P12.4330 (5)
C23—H230.9500Ag1—P22.4440 (5)
N2—C1—N1114.37 (17)C28—C27—H27119.6
N2—C1—S1121.88 (15)C26—C27—H27119.6
N1—C1—S1123.74 (15)C27—C28—C29119.8 (2)
C3—C2—C7119.50 (18)C27—C28—H28120.1
C3—C2—N1116.00 (17)C29—C28—H28120.1
C7—C2—N1124.28 (18)C30—C29—C28120.1 (2)
C4—C3—C2120.63 (19)C30—C29—H29120.0
C4—C3—H3119.7C28—C29—H29120.0
C2—C3—H3119.7C29—C30—C31120.4 (2)
C3—C4—C5118.92 (19)C29—C30—H30119.8
C3—C4—H4120.5C31—C30—H30119.8
C5—C4—H4120.5C30—C31—C26119.6 (2)
C4—C5—C6121.62 (19)C30—C31—H31120.2
C4—C5—N3119.05 (19)C26—C31—H31120.2
C6—C5—N3119.31 (18)C37—C32—C33119.18 (19)
C7—C6—C5119.18 (19)C37—C32—P1122.97 (15)
C7—C6—H6120.4C33—C32—P1117.79 (15)
C5—C6—H6120.4C34—C33—C32120.3 (2)
C6—C7—C2120.08 (19)C34—C33—H33119.8
C6—C7—H7120.0C32—C33—H33119.8
C2—C7—H7120.0C33—C34—C35120.2 (2)
C9—C8—C13119.44 (18)C33—C34—H34119.9
C9—C8—P2117.84 (15)C35—C34—H34119.9
C13—C8—P2122.70 (15)C36—C35—C34119.7 (2)
C8—C9—C10120.44 (19)C36—C35—H35120.1
C8—C9—H9119.8C34—C35—H35120.1
C10—C9—H9119.8C35—C36—C37120.3 (2)
C11—C10—C9119.8 (2)C35—C36—H36119.8
C11—C10—H10120.1C37—C36—H36119.8
C9—C10—H10120.1C32—C37—C36120.2 (2)
C10—C11—C12120.00 (19)C32—C37—H37119.9
C10—C11—H11120.0C36—C37—H37119.9
C12—C11—H11120.0C39—C38—C43118.99 (18)
C11—C12—C13120.40 (19)C39—C38—P1123.24 (16)
C11—C12—H12119.8C43—C38—P1117.76 (15)
C13—C12—H12119.8C40—C39—C38120.3 (2)
C12—C13—C8119.86 (19)C40—C39—H39119.9
C12—C13—H13120.1C38—C39—H39119.9
C8—C13—H13120.1C41—C40—C39120.4 (2)
C15—C14—C19118.90 (18)C41—C40—H40119.8
C15—C14—P2122.60 (15)C39—C40—H40119.8
C19—C14—P2118.24 (15)C40—C41—C42119.7 (2)
C14—C15—C16120.11 (19)C40—C41—H41120.2
C14—C15—H15119.9C42—C41—H41120.2
C16—C15—H15119.9C43—C42—C41120.1 (2)
C17—C16—C15120.3 (2)C43—C42—H42119.9
C17—C16—H16119.9C41—C42—H42119.9
C15—C16—H16119.9C42—C43—C38120.50 (19)
C16—C17—C18119.86 (19)C42—C43—H43119.7
C16—C17—H17120.1C38—C43—H43119.7
C18—C17—H17120.1C1—N1—C2130.59 (17)
C19—C18—C17120.0 (2)C1—N1—H1114.7
C19—C18—H18120.0C2—N1—H1114.7
C17—C18—H18120.0C1—N2—H2A117.7 (16)
C18—C19—C14120.8 (2)C1—N2—H2B117.4 (16)
C18—C19—H19119.6H2A—N2—H2B122 (2)
C14—C19—H19119.6O1—N3—O2123.66 (18)
C25—C20—C21119.2 (2)O1—N3—C5118.22 (18)
C25—C20—P2116.29 (17)O2—N3—C5118.10 (18)
C21—C20—P2124.46 (17)C1—S1—Ag1103.88 (7)
C22—C21—C20119.3 (2)P1—Ag1—P2134.741 (17)
C22—C21—H21120.3P1—Ag1—S1110.349 (16)
C20—C21—H21120.3P2—Ag1—S199.654 (16)
C23—C22—C21120.8 (3)P1—Ag1—Cl1110.591 (16)
C23—C22—H22119.6P2—Ag1—Cl198.075 (15)
C21—C22—H22119.6S1—Ag1—Cl196.894 (15)
C22—C23—C24119.8 (2)C26—P1—C38103.36 (9)
C22—C23—H23120.1C26—P1—C32104.31 (9)
C24—C23—H23120.1C38—P1—C32104.41 (9)
C23—C24—C25120.3 (3)C26—P1—Ag1114.88 (7)
C23—C24—H24119.9C38—P1—Ag1113.04 (7)
C25—C24—H24119.9C32—P1—Ag1115.51 (6)
C24—C25—C20120.5 (3)C14—P2—C20105.80 (9)
C24—C25—H25119.7C14—P2—C8105.29 (9)
C20—C25—H25119.7C20—P2—C8104.31 (9)
C27—C26—C31119.35 (19)C14—P2—Ag1110.44 (6)
C27—C26—P1117.57 (15)C20—P2—Ag1110.21 (7)
C31—C26—P1123.02 (16)C8—P2—Ag1119.78 (7)
C28—C27—C26120.7 (2)
C7—C2—C3—C42.9 (3)C38—C39—C40—C410.4 (4)
N1—C2—C3—C4171.96 (18)C39—C40—C41—C420.4 (4)
C2—C3—C4—C51.4 (3)C40—C41—C42—C430.4 (3)
C3—C4—C5—C61.0 (3)C41—C42—C43—C381.2 (3)
C3—C4—C5—N3177.66 (18)C39—C38—C43—C421.2 (3)
C4—C5—C6—C71.7 (3)P1—C38—C43—C42179.65 (16)
N3—C5—C6—C7176.90 (19)N2—C1—N1—C2171.97 (19)
C5—C6—C7—C20.1 (3)S1—C1—N1—C29.2 (3)
C3—C2—C7—C62.1 (3)C3—C2—N1—C1153.6 (2)
N1—C2—C7—C6172.30 (19)C7—C2—N1—C131.8 (3)
C13—C8—C9—C100.6 (3)C4—C5—N3—O17.4 (3)
P2—C8—C9—C10179.24 (16)C6—C5—N3—O1173.91 (19)
C8—C9—C10—C111.4 (3)C4—C5—N3—O2171.0 (2)
C9—C10—C11—C120.7 (3)C6—C5—N3—O27.7 (3)
C10—C11—C12—C130.8 (3)N2—C1—S1—Ag17.68 (17)
C11—C12—C13—C81.5 (3)N1—C1—S1—Ag1173.58 (15)
C9—C8—C13—C120.8 (3)C27—C26—P1—C3891.38 (17)
P2—C8—C13—C12177.71 (15)C31—C26—P1—C3885.81 (18)
C19—C14—C15—C161.9 (3)C27—C26—P1—C32159.69 (16)
P2—C14—C15—C16175.92 (15)C31—C26—P1—C3223.13 (19)
C14—C15—C16—C170.5 (3)C27—C26—P1—Ag132.24 (18)
C15—C16—C17—C181.7 (3)C31—C26—P1—Ag1150.58 (15)
C16—C17—C18—C190.6 (3)C39—C38—P1—C268.1 (2)
C17—C18—C19—C141.8 (3)C43—C38—P1—C26170.92 (16)
C15—C14—C19—C183.1 (3)C39—C38—P1—C32100.71 (19)
P2—C14—C19—C18177.33 (17)C43—C38—P1—C3280.22 (17)
C25—C20—C21—C221.1 (3)C39—C38—P1—Ag1132.96 (17)
P2—C20—C21—C22177.62 (17)C43—C38—P1—Ag146.11 (17)
C20—C21—C22—C231.0 (3)C37—C32—P1—C26104.98 (18)
C21—C22—C23—C240.3 (4)C33—C32—P1—C2677.84 (17)
C22—C23—C24—C251.6 (4)C37—C32—P1—C383.18 (19)
C23—C24—C25—C201.6 (4)C33—C32—P1—C38174.00 (16)
C21—C20—C25—C240.2 (3)C37—C32—P1—Ag1127.96 (16)
P2—C20—C25—C24179.03 (19)C33—C32—P1—Ag149.22 (17)
C31—C26—C27—C280.5 (3)C15—C14—P2—C20126.80 (16)
P1—C26—C27—C28176.77 (17)C19—C14—P2—C2059.16 (17)
C26—C27—C28—C290.8 (3)C15—C14—P2—C816.70 (18)
C27—C28—C29—C300.2 (3)C19—C14—P2—C8169.26 (16)
C28—C29—C30—C310.8 (3)C15—C14—P2—Ag1113.94 (15)
C29—C30—C31—C261.1 (3)C19—C14—P2—Ag160.09 (16)
C27—C26—C31—C300.5 (3)C25—C20—P2—C14163.63 (17)
P1—C26—C31—C30177.59 (16)C21—C20—P2—C1415.1 (2)
C37—C32—C33—C340.6 (3)C25—C20—P2—C885.58 (18)
P1—C32—C33—C34177.89 (16)C21—C20—P2—C895.71 (19)
C32—C33—C34—C351.6 (3)C25—C20—P2—Ag144.22 (18)
C33—C34—C35—C361.1 (3)C21—C20—P2—Ag1134.49 (16)
C34—C35—C36—C370.4 (3)C9—C8—P2—C1492.78 (17)
C33—C32—C37—C360.9 (3)C13—C8—P2—C1488.67 (17)
P1—C32—C37—C36176.27 (16)C9—C8—P2—C20156.06 (16)
C35—C36—C37—C321.4 (3)C13—C8—P2—C2022.50 (19)
C43—C38—C39—C400.4 (3)C9—C8—P2—Ag132.22 (18)
P1—C38—C39—C40179.50 (19)C13—C8—P2—Ag1146.34 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.882.413.2454 (17)159
N2—H2A···Cl1i0.88 (2)2.39 (2)3.2257 (18)160 (2)
N2—H2B···Cl10.87 (2)2.50 (2)3.3247 (18)159 (2)
C12—H12···O2ii0.952.603.272 (3)129
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y, z+2.
 

Acknowledgements

Financial support from the Department of Chemistry, Faculty of Science, Prince of Songkla University, is gratefully acknowledged. We would like to thank Dr Matthias Zeller and Purdue University for assistance with the X-ray structure determination and use of structure refinement programs based on funding by the National Science Foundation of the United States (CHE-1625543).

References

First citationBielenica, A., Stefańska, J., Stępień, K., Napiórkowska, A., Augustynowicz-Kopeć, E., Sanna, G., Madeddu, S., Boi, S., Giliberti, G., Wrzosek, M. & Struga, M. (2015). Eur. J. Med. Chem. 101, 111–125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCordwell, S. C. & Thingholm, T. E. (2010). Proteomics, 10, 611–627.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMekarat, S., Pakawatchai, C. & Saithong, S. (2014). Acta Cryst. E70, m281–m282.  CSD CrossRef IUCr Journals Google Scholar
First citationNimthong-Roldán, A., Promsuwhan, N., Puetpaiboon, W. & Wattanakanjana, Y. (2017). Acta Cryst. E73, 41–44.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNimthong-Roldán, A., Ratthiwal, J. & Wattanakanjana, Y. (2015a). Acta Cryst. E71, m133–m134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNimthong-Roldán, A., Wattanakanjana, Y. & Rodkeaw, J. (2015b). Acta Cryst. E71, m89–m90.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRigaku (2014). CrystalClear-SM Expert. Rigaku Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWattanakanjana, Y., Nimthong, A. & Darasuriyong, C. (2014). Acta Cryst. E70, m337–m338.  CSD CrossRef IUCr Journals Google Scholar
First citationWattanakanjana, Y., Nimthong-Roldán, A., Palavat, S. & Puetpaiboon, W. (2015). Acta Cryst. E71, m187–m188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWattanakanjana, Y., Pakawatchai, C., Kowittheeraphong, S. & Nimthong, R. (2012). Acta Cryst. E68, m1572–m1573.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J., Shi, Q., Chen, Z., He, M., Jin, L. & Hu, D. (2012). Molecules, 17, 5139–5150.  Web of Science CrossRef CAS PubMed Google Scholar
First citationXian, L., Wang, Y. & Zhang, B. (2008). Z. Kristallogr. New Cryst. Struct. 223, 411–412.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds