research communications
An infinite two-dimensional hybrid water–chloride network in a 4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine nickel(II) matrix
aKey Laboratory of Functional Organometallic Materials of General Colleges and Universities in Hunan Province, Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China
*Correspondence e-mail: w.w.fu@hotmail.com
A new complex, namely bis[4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine]nickel(II) dichloride decahydrate, [Ni(C19H13N3O)2]Cl2·10H2O, has been crystallized by solvent evaporation and characterized by single-crystal X-ray diffraction. The coordination environment of the NiII cation is distorted octahedral with slight deviations from an idealized geometry. The most intriguing structural feature is an infinite two-dimensional hybrid water–chloride network parallel to (011) constructed by O—H⋯O and O—H⋯Cl hydrogen bonds involving two independent chloride ions and ten independent solvent water molecules with an L-shaped pattern. One of the furyl rings is disordered with a refined occupancy ratio of 0.786 (13):0.214 (13)
Keywords: crystal structure; terpyridine; NiII; water cluster; water–chloride network; hydrogen bonds.
CCDC reference: 1498201
1. Chemical context
Water has received much scientific interest as it is a major chemical constituent on the earth's surface and it is also the source of life. Many discrete water clusters and polymeric water aggregates, with different types of hydrogen bonds and in diverse sizes and shapes, captured in the et al., 2015; Ganguly & Mondal, 2015; Han et al., 2014; Hundal et al., 2014; Pati et al., 2014).
of an organic or metal coordination complex during crystallization have been found and investigated experimentally and theoretically (DuttaHybrid water–chloride associates incorporated in various crystal matrixes are one of the most interesting combinations in water clusters research due to their fundamental importance for understanding water–halide interactions in the atmosphere, the ocean and in biological systems (Inumaru et al., 2008; Kumar et al., 2011; Lakshminarayanan et al., 2006; Li et al., 2008). According to a search of the Cambridge Structural Database (CSD Version 5.37, May 2016; Groom et al., 2016), there are about nine examples with water–chloride hydrogen bonds forming one-dimensional tapes (Boyer et al., 2011; van Holst et al., 2008; Kepert et al., 1999; Jitsukawa et al., 1994), two-dimensional (Kepert et al., 1994; Chowdhury et al., 2011; Duan et al., 2016) and three-dimensional (Figgis et al., 1983; Pruchnik et al., 1996) networks from 2,2′:6′,2′′-terpyridine ligands. When 4′-substituted terpyridines with phenyl, pyridyl, imidazolyl rings were considered, two-dimensional and three-dimensional water–chloride networks with two chloride ions and at least six water molecules were found (Constable et al., 1990; Kou et al., 2008; Chen et al., 2013; Fernandes et al., 2008; McMurtrie & Dance, 2010; Padhi et al., 2010; Indumathy et al., 2008; Mahendiran et al., 2016). The hydrophobic and hydrophilic layers are further linked by two kinds of C—H⋯O hydrogen bonds into three-dimensional networks. In this context, a ftpy–NiII complex [ftpy = 4′-(furan-2-yl)-2,2′:6′,2′′-terpyridine] (Fig. 1) with two chlorides as counter-ions and ten solvent water molecules (1) is described herein.
2. Structural commentary
The 1 is composed of a cationic [Ni(ftpy)2]2+ part, two chloride anions, and ten water molecules of crystallization. The distances between Ni1 and the N atoms of the central pyridyl rings [1.974 (3) and 1.977 (3) Å] are slightly shorter than those between Ni1 and the N atoms of outer pyridyl rings [2.093 (3) −2.099 (3) Å; Table 1]. The angles involving Ni1 can be divided into two sets, viz. three transoid angles [178.36 (10), 155.38 (11) and 155.89 (11)°] and 12 cisoid angles, which range from 77.74 (11) to 103.80 (10)°. The differences in the bond lengths and angles indicate a distorted octahedral geometry (Constable et al., 1990; Logacheva et al., 2009; Padhi et al., 2010; Fu et al., 2013). The terpyridyl ring systems [maximum deviations of ±0.058 (4) Å for C27/C31 and 0.192 (4) Å for C17] are almost perpendicular to each other, subtending a dihedral angle of 87.35 (6)°. The furyl rings are almost coplanar with the terpyridyl ring systems, making dihedral angles of 8.1 (2) and 3.2 (3)° for the O1- and O2-containing rings, respectively.
of
|
3. Supramolecular features
In the crystal, there are hydrophobic layers composed of [Ni(ftpy)2]2+ dications and hydrophilic layers composed of water molecules and chloride anions (Fig. 2). In the hydrophobic layers, shown in Fig. 3, [Ni(ftpy)2]2+ dications are linked by two kinds of face-to-face π–π interactions with centroid–centroid distances of 3.530 (4) and 3.760 (4) Å between the furyl and outer pyridyl rings, forming one-dimensional (1D) chains. These 1D chains are linked by further π–π interactions with centroid distances of 4.367 (4) Å between furyl rings and 4.405 (4) Å between furyl and central pyridyl rings, forming two-dimensional networks. The water molecules and chloride anions form a two-dimensional network parallel to (011) via O—H⋯O and O—H⋯Cl hydrogen bonds (Table 2), as shown in Fig. 4.
The multicyclic {[(H2O)10Cl2]2−}n fragments in the hydrophilic layers are constructed by means of 11 non-equivalent O—H⋯O hydrogen bonds with O⋯O distances ranging from 2.756 (6) to 3.134 (7) Å and nine O—H⋯Cl hydrogen bonds with O⋯Cl distances ranging from 3.079 (4) to 3.225 (4) Å (Table 2, Fig. 4). Both the O⋯O and O⋯Cl distances are comparable with those found in various types of water clusters and water–chloride associates (Safin et al., 2015; Bhat & Revankar, 2016; Ris et al., 2016). The resulting two-dimensional network can be considered as a set of alternating cyclic fragments with three tetranuclear, three pentanuclear, one hexanuclear and two octanuclear fragments, as shown in Fig. 5a. Two of these fragments are composed only of water molecules, whereas the other seven rings are water–chloride hybrids with one or two Cl− anions. Most of the rings are non-planar, contributing to the formation of an intricate relief geometry of the water–chloride layer. Using the method described by Infantes and co-workers (Infantes & Motherwell, 2002; Infantes et al., 2003), this two-dimensional water–chloride network can be described as having an L4(6)4(6)4(6)5(5)5(6)5(6)6(8)8(8)8(10) pattern.
4. Comparison with other terpyridine complexes possessing 10 solvent water molecules
It is interesting to make a comparison of the two-dimensional water–chloride networks in 1 and those found in other terpyridine complexes possessing 10 solvent water molecules, viz. [Fe(phtpy)2]Cl2·10H2O (2; refcode: VOBKON; Fernandes et al., 2008), [Ni(phtpy)2]Cl2·10H2O, (3; refcode: SIXLIU01; Chen et al., 2013), [Ru(phtpy)2]Cl2·10H2O (4; refcode: FAFFID; McMurtrie & Dance, 2010) and [Ru(pytpy)2]Cl2·10H2O (5; refcode: TUXGUP; Padhi et al., 2010) [phtpy = 4′-phenyl-2,2′:6′,2′′-terpyridine and pytpy = 4′-(2-pyridyl)-2,2′:6′,2′′-terpyridine]. In spite of the differences in the metal ions and terpyridine ligands, the crystal parameters are almost the same for compounds 2–5. Where a five-membered furyl ring is involved instead of a six-membered phenyl or pyridyl ring, the size of the crystal cell decreases with reduction in the cell volume of about 4.5% from 2200 to 2100 Å3. Considering the O⋯O and O⋯Cl distances within the two-dimensional water–chloride networks, a different number of trinuclear, tetranuclear, pentanuclear, hexanuclear and octanuclear rings have been determined, giving an L4(6)4(6)4(6)4(6)4(6)5(6)5(6)5(6)6(8)8(12) pattern for 2, an L4(6)4(6)4(6)5(7)5(7)5(8)5(8)6(7)6(9)6(9)8(12) pattern for 3, an L4(6)4(6)4(6)4(6)4(6)4(6)5(6)5(6)5(7)6(7)8(12) pattern for 4 and an L3(6)4(6)5(5)5(6)5(6)6(8)6(8)8(8)8(10) pattern for 5 (Fig. 5b–e). These results illustrate how a water–chloride assembly could be fine-tuned by adopting diverse ligands and different metal ions. It is potentially useful for future studies of water–water or water–chloride interactions for chemists as well as theoreticians.
5. Synthesis and crystallization
4′-Furyl-2,2′:6′,2′′-terpyridine was prepared by a literature method (Wang & Hanan, 2005). Other reagents and solvents used in reactions were purchased from Aladdin Chemical and used without purification, unless otherwise indicated.
NiCl2·6H2O (0.1 mmol, 0.024g) and ftpy (0.2 mmol, 0.060 g) were dissolved in 10 ml distilled water and 10 ml methanol. The solution was left alone for slow evaporation without disturbance for about one month and reddish brown crystals of (1) suitable for X-ray analysis were obtained.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms except those of water molecules were generated geometrically and refined isotropically using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atoms of solvent water molecules were located in difference-Fourier maps, refined with DFIX restraints of O—H distances and finally fixed at those positions using AFIX 3 in SHELXL (Sheldrick, 2015b). Atoms C36, C37, C38 and O2 were found to be disordered over two sets of sites with a refined occupancy ratio of 0.786 (13):0.214 (13) for C36/C36A, C37/C37A, C38/C38A, and O2/O2A. In order to model the disorder of this furyl ring, various restraints (DFIX, FLAT, ISOR, DELU, EADP) were applied in the refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1498201
https://doi.org/10.1107/S2056989017007095/lh5845sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017007095/lh5845Isup2.hkl
Data collection: SMART (Bruker, 2012); cell
SMART (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a) and OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and OLEX2(Dolomanov et al., 2009); molecular graphics: DIAMOND (Brandenburg & Putz, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(C19H13N3O)2]Cl2·10H2O | Z = 2 |
Mr = 908.42 | F(000) = 948 |
Triclinic, P1 | Dx = 1.440 Mg m−3 |
a = 10.351 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.894 (8) Å | Cell parameters from 3615 reflections |
c = 19.070 (13) Å | θ = 2.2–24.0° |
α = 76.33 (1)° | µ = 0.66 mm−1 |
β = 88.582 (12)° | T = 296 K |
γ = 67.077 (11)° | Block, brown |
V = 2095 (2) Å3 | 0.23 × 0.18 × 0.15 mm |
Bruker SMART CCD area-detector diffractometer | 5322 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
phi and ω scans | θmax = 25.1°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −12→8 |
Tmin = 0.864, Tmax = 0.908 | k = −14→13 |
10779 measured reflections | l = −22→19 |
7382 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: mixed |
wR(F2) = 0.144 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0689P)2] where P = (Fo2 + 2Fc2)/3 |
7382 reflections | (Δ/σ)max < 0.001 |
546 parameters | Δρmax = 0.42 e Å−3 |
75 restraints | Δρmin = −0.53 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.97894 (4) | 0.78241 (4) | 0.74747 (2) | 0.03697 (15) | |
Cl1 | 0.30308 (10) | 0.17463 (10) | 0.94851 (6) | 0.0626 (3) | |
Cl2 | 0.28593 (15) | 0.70315 (14) | 0.37352 (7) | 0.0975 (4) | |
N1 | 0.9435 (3) | 0.6158 (2) | 0.77056 (14) | 0.0395 (6) | |
N2 | 1.0808 (3) | 0.6936 (2) | 0.84370 (14) | 0.0371 (6) | |
N3 | 1.0524 (3) | 0.9124 (2) | 0.76977 (14) | 0.0402 (6) | |
N4 | 1.1361 (3) | 0.7137 (2) | 0.67860 (15) | 0.0404 (6) | |
N5 | 0.8802 (3) | 0.8743 (2) | 0.65098 (14) | 0.0363 (6) | |
N6 | 0.7778 (3) | 0.8893 (3) | 0.77339 (14) | 0.0399 (6) | |
O1W | 0.0399 (3) | 0.1312 (3) | 1.0094 (2) | 0.1017 (12) | |
H1WA | 0.1069 | 0.1479 | 0.9865 | 0.153* | |
H1WB | −0.0184 | 0.1283 | 0.9785 | 0.153* | |
O1 | 1.3786 (3) | 0.5497 (3) | 1.07455 (16) | 0.0771 (8) | |
O2W | 0.3405 (4) | 0.3554 (3) | 0.8020 (2) | 0.1191 (14) | |
H2WB | 0.4256 | 0.3390 | 0.7997 | 0.179* | |
H2WA | 0.3280 | 0.3179 | 0.8431 | 0.179* | |
O2 | 0.7323 (4) | 1.0325 (5) | 0.38766 (18) | 0.0652 (12) | 0.786 (13) |
O2A | 0.5318 (13) | 1.1546 (17) | 0.4459 (8) | 0.0652 (12) | 0.214 (13) |
O3W | 0.0344 (6) | 0.4187 (5) | 0.4364 (3) | 0.161 (2) | |
H3WC | 0.1242 | 0.3849 | 0.4377 | 0.241* | |
H3WA | −0.0004 | 0.4792 | 0.3967 | 0.241* | |
O4W | 0.2936 (5) | 0.4343 (4) | 0.4358 (2) | 0.1321 (15) | |
H4WB | 0.2366 | 0.5098 | 0.4401 | 0.198* | |
H4WA | 0.3534 | 0.4658 | 0.4168 | 0.198* | |
O5W | 0.3714 (4) | 0.7092 (4) | 0.21731 (19) | 0.1075 (12) | |
H5WA | 0.3229 | 0.7484 | 0.2484 | 0.161* | |
H5WB | 0.3079 | 0.7751 | 0.1866 | 0.161* | |
O6W | 0.8002 (4) | 0.6442 (4) | 0.3295 (2) | 0.1187 (14) | |
H6WC | 0.7594 | 0.6559 | 0.2898 | 0.178* | |
H6WA | 0.7339 | 0.6982 | 0.3442 | 0.178* | |
O7W | 0.5809 (3) | 0.6957 (3) | 0.42459 (18) | 0.0892 (10) | |
H7WA | 0.5069 | 0.6842 | 0.4137 | 0.134* | |
H7WB | 0.6169 | 0.6500 | 0.4680 | 0.134* | |
O8W | 0.9848 (5) | 0.7051 (5) | 0.4183 (3) | 0.165 (2) | |
H8WC | 0.9741 | 0.6910 | 0.4634 | 0.247* | |
H8WD | 1.0541 | 0.7266 | 0.4086 | 0.247* | |
O9W | 0.1697 (4) | 0.8720 (3) | 0.08918 (18) | 0.0972 (11) | |
H9WA | 0.2328 | 0.8596 | 0.0583 | 0.146* | |
H9WB | 0.1381 | 0.9527 | 0.0824 | 0.146* | |
O10W | 0.6127 (3) | 0.1247 (3) | −0.00361 (17) | 0.0790 (9) | |
H10A | 0.5244 | 0.1474 | −0.0182 | 0.119* | |
H10B | 0.6177 | 0.0479 | 0.0111 | 0.119* | |
C1 | 1.4491 (5) | 0.4603 (6) | 1.1365 (3) | 0.0893 (16) | |
H1A | 1.4970 | 0.4732 | 1.1724 | 0.107* | |
C2 | 1.4381 (5) | 0.3551 (6) | 1.1366 (2) | 0.0892 (16) | |
H2A | 1.4785 | 0.2800 | 1.1719 | 0.107* | |
C3 | 1.3555 (4) | 0.3735 (4) | 1.0750 (2) | 0.0629 (10) | |
H3A | 1.3284 | 0.3149 | 1.0618 | 0.075* | |
C4 | 1.3234 (4) | 0.4928 (4) | 1.03888 (19) | 0.0502 (8) | |
C5 | 1.2401 (3) | 0.5626 (3) | 0.97208 (18) | 0.0439 (8) | |
C6 | 1.2338 (3) | 0.6820 (3) | 0.93761 (18) | 0.0450 (8) | |
H6 | 1.2842 | 0.7184 | 0.9575 | 0.054* | |
C7 | 1.1634 (3) | 0.5118 (3) | 0.93943 (18) | 0.0435 (8) | |
H7 | 1.1657 | 0.4322 | 0.9610 | 0.052* | |
C8 | 1.0858 (3) | 0.5796 (3) | 0.87613 (17) | 0.0400 (7) | |
C9 | 1.1521 (3) | 0.7449 (3) | 0.87409 (17) | 0.0386 (7) | |
C10 | 1.1305 (3) | 0.8734 (3) | 0.83215 (18) | 0.0405 (8) | |
C11 | 1.1802 (4) | 0.9497 (4) | 0.8570 (2) | 0.0519 (9) | |
H11 | 1.2359 | 0.9201 | 0.9003 | 0.062* | |
C12 | 1.1457 (4) | 1.0711 (4) | 0.8163 (2) | 0.0591 (10) | |
H12 | 1.1772 | 1.1250 | 0.8319 | 0.071* | |
C13 | 1.0652 (4) | 1.1115 (4) | 0.7531 (2) | 0.0574 (10) | |
H13 | 1.0410 | 1.1932 | 0.7251 | 0.069* | |
C14 | 1.0200 (4) | 1.0298 (3) | 0.7311 (2) | 0.0506 (9) | |
H14 | 0.9649 | 1.0577 | 0.6877 | 0.061* | |
C15 | 0.9995 (3) | 0.5383 (3) | 0.83507 (18) | 0.0384 (7) | |
C16 | 0.9774 (4) | 0.4297 (3) | 0.8607 (2) | 0.0485 (9) | |
H16 | 1.0166 | 0.3774 | 0.9060 | 0.058* | |
C17 | 0.8971 (4) | 0.3996 (4) | 0.8187 (2) | 0.0568 (10) | |
H17 | 0.8794 | 0.3274 | 0.8356 | 0.068* | |
C18 | 0.8430 (4) | 0.4757 (4) | 0.7518 (2) | 0.0557 (10) | |
H18 | 0.7900 | 0.4550 | 0.7223 | 0.067* | |
C19 | 0.8678 (4) | 0.5830 (3) | 0.7287 (2) | 0.0491 (9) | |
H19 | 0.8315 | 0.6347 | 0.6828 | 0.059* | |
C20 | 1.2646 (4) | 0.6268 (3) | 0.6978 (2) | 0.0507 (9) | |
H20 | 1.2924 | 0.5921 | 0.7468 | 0.061* | |
C21 | 1.3586 (4) | 0.5861 (4) | 0.6483 (2) | 0.0624 (11) | |
H21 | 1.4483 | 0.5246 | 0.6635 | 0.075* | |
C22 | 1.3193 (4) | 0.6362 (4) | 0.5779 (2) | 0.0605 (10) | |
H22 | 1.3821 | 0.6104 | 0.5435 | 0.073* | |
C23 | 1.1853 (4) | 0.7262 (4) | 0.5561 (2) | 0.0515 (9) | |
H23 | 1.1565 | 0.7615 | 0.5073 | 0.062* | |
C24 | 1.0956 (3) | 0.7623 (3) | 0.60840 (18) | 0.0389 (7) | |
C25 | 0.9482 (3) | 0.8536 (3) | 0.59157 (17) | 0.0383 (7) | |
C26 | 0.8800 (4) | 0.9120 (3) | 0.52461 (18) | 0.0438 (8) | |
H26 | 0.9271 | 0.8958 | 0.4836 | 0.053* | |
C27 | 0.7407 (4) | 0.9953 (3) | 0.51755 (18) | 0.0421 (8) | |
C28 | 0.6734 (4) | 1.0179 (3) | 0.57974 (18) | 0.0423 (8) | |
H28 | 0.5803 | 1.0746 | 0.5767 | 0.051* | |
C29 | 0.7472 (3) | 0.9549 (3) | 0.64582 (17) | 0.0367 (7) | |
C30 | 0.6892 (3) | 0.9652 (3) | 0.71648 (17) | 0.0378 (7) | |
C31 | 0.5555 (4) | 1.0467 (3) | 0.7236 (2) | 0.0488 (8) | |
H31 | 0.4960 | 1.0997 | 0.6831 | 0.059* | |
C32 | 0.5115 (4) | 1.0483 (4) | 0.7922 (2) | 0.0551 (10) | |
H32 | 0.4211 | 1.1021 | 0.7987 | 0.066* | |
C33 | 0.6021 (4) | 0.9698 (4) | 0.8509 (2) | 0.0549 (10) | |
H33 | 0.5743 | 0.9694 | 0.8977 | 0.066* | |
C34 | 0.7340 (4) | 0.8921 (3) | 0.83933 (19) | 0.0499 (9) | |
H34 | 0.7956 | 0.8391 | 0.8791 | 0.060* | |
C35 | 0.6651 (4) | 1.0581 (3) | 0.44799 (17) | 0.0473 (8) | |
C36 | 0.5368 (6) | 1.1455 (5) | 0.4263 (4) | 0.0530 (14) | 0.786 (13) |
H36 | 0.4693 | 1.1807 | 0.4566 | 0.064* | 0.786 (13) |
C36A | 0.695 (2) | 1.046 (2) | 0.3801 (7) | 0.0530 (14) | 0.214 (13) |
H36A | 0.7779 | 0.9894 | 0.3672 | 0.064* | 0.214 (13) |
C37 | 0.5193 (7) | 1.1758 (6) | 0.3518 (4) | 0.0582 (16) | 0.786 (13) |
H37 | 0.4390 | 1.2338 | 0.3231 | 0.070* | 0.786 (13) |
C37A | 0.585 (3) | 1.130 (2) | 0.3344 (7) | 0.0582 (16) | 0.214 (13) |
H37A | 0.5793 | 1.1393 | 0.2846 | 0.070* | 0.214 (13) |
C38 | 0.6383 (8) | 1.1068 (6) | 0.3293 (2) | 0.0593 (15) | 0.786 (13) |
H38 | 0.6561 | 1.1081 | 0.2811 | 0.071* | 0.786 (13) |
C38A | 0.4838 (19) | 1.198 (2) | 0.3714 (10) | 0.0593 (15) | 0.214 (13) |
H38A | 0.3980 | 1.2620 | 0.3516 | 0.071* | 0.214 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0399 (3) | 0.0386 (3) | 0.0332 (2) | −0.01552 (19) | 0.00434 (16) | −0.01032 (18) |
Cl1 | 0.0538 (6) | 0.0650 (6) | 0.0640 (6) | −0.0216 (5) | −0.0007 (4) | −0.0095 (5) |
Cl2 | 0.1043 (10) | 0.1146 (11) | 0.0714 (9) | −0.0447 (9) | 0.0106 (7) | −0.0168 (8) |
N1 | 0.0398 (15) | 0.0438 (16) | 0.0373 (16) | −0.0172 (13) | 0.0044 (12) | −0.0131 (13) |
N2 | 0.0400 (15) | 0.0369 (15) | 0.0358 (15) | −0.0158 (12) | 0.0047 (11) | −0.0110 (12) |
N3 | 0.0430 (16) | 0.0411 (16) | 0.0405 (16) | −0.0189 (13) | 0.0082 (12) | −0.0138 (13) |
N4 | 0.0399 (16) | 0.0407 (15) | 0.0411 (17) | −0.0147 (13) | 0.0069 (12) | −0.0136 (13) |
N5 | 0.0383 (15) | 0.0357 (14) | 0.0361 (15) | −0.0151 (12) | 0.0085 (11) | −0.0106 (12) |
N6 | 0.0434 (15) | 0.0457 (16) | 0.0337 (15) | −0.0192 (13) | 0.0088 (12) | −0.0132 (13) |
O1W | 0.075 (2) | 0.106 (3) | 0.121 (3) | −0.032 (2) | 0.034 (2) | −0.033 (2) |
O1 | 0.080 (2) | 0.091 (2) | 0.0604 (19) | −0.0284 (18) | −0.0039 (15) | −0.0255 (17) |
O2W | 0.153 (4) | 0.072 (2) | 0.096 (3) | −0.015 (2) | 0.047 (3) | −0.008 (2) |
O2 | 0.054 (2) | 0.083 (3) | 0.0378 (19) | −0.010 (2) | −0.0021 (15) | −0.0050 (18) |
O2A | 0.054 (2) | 0.083 (3) | 0.0378 (19) | −0.010 (2) | −0.0021 (15) | −0.0050 (18) |
O3W | 0.202 (5) | 0.220 (6) | 0.127 (4) | −0.143 (5) | 0.047 (4) | −0.068 (4) |
O4W | 0.120 (3) | 0.150 (4) | 0.113 (4) | −0.051 (3) | −0.009 (3) | −0.011 (3) |
O5W | 0.149 (4) | 0.128 (3) | 0.073 (2) | −0.083 (3) | 0.012 (2) | −0.025 (2) |
O6W | 0.114 (3) | 0.157 (4) | 0.141 (4) | −0.090 (3) | 0.056 (3) | −0.079 (3) |
O7W | 0.085 (2) | 0.081 (2) | 0.084 (2) | −0.0156 (18) | −0.0003 (17) | −0.0184 (18) |
O8W | 0.163 (5) | 0.214 (6) | 0.121 (4) | −0.081 (4) | 0.011 (3) | −0.034 (4) |
O9W | 0.097 (2) | 0.104 (3) | 0.092 (3) | −0.049 (2) | 0.031 (2) | −0.015 (2) |
O10W | 0.0620 (18) | 0.094 (2) | 0.085 (2) | −0.0325 (17) | −0.0038 (15) | −0.0244 (18) |
C1 | 0.064 (3) | 0.129 (5) | 0.055 (3) | −0.010 (3) | −0.018 (2) | −0.034 (3) |
C2 | 0.089 (4) | 0.093 (4) | 0.042 (2) | 0.003 (3) | −0.0113 (18) | −0.003 (2) |
C3 | 0.075 (3) | 0.0587 (19) | 0.050 (2) | −0.022 (2) | 0.0019 (17) | −0.0116 (17) |
C4 | 0.047 (2) | 0.0585 (18) | 0.0374 (19) | −0.0128 (18) | 0.0000 (14) | −0.0124 (14) |
C5 | 0.0400 (19) | 0.048 (2) | 0.0362 (19) | −0.0093 (16) | 0.0054 (14) | −0.0112 (16) |
C6 | 0.0435 (19) | 0.051 (2) | 0.044 (2) | −0.0188 (17) | 0.0034 (15) | −0.0183 (17) |
C7 | 0.050 (2) | 0.0385 (19) | 0.0375 (19) | −0.0151 (16) | 0.0043 (15) | −0.0055 (15) |
C8 | 0.0401 (18) | 0.0429 (19) | 0.0377 (19) | −0.0152 (16) | 0.0080 (14) | −0.0135 (16) |
C9 | 0.0388 (18) | 0.0428 (19) | 0.0337 (18) | −0.0132 (15) | 0.0066 (13) | −0.0141 (15) |
C10 | 0.0414 (18) | 0.0447 (19) | 0.042 (2) | −0.0201 (16) | 0.0089 (14) | −0.0181 (16) |
C11 | 0.055 (2) | 0.058 (2) | 0.052 (2) | −0.0278 (19) | 0.0027 (17) | −0.0200 (19) |
C12 | 0.064 (3) | 0.056 (2) | 0.073 (3) | −0.034 (2) | 0.014 (2) | −0.028 (2) |
C13 | 0.071 (3) | 0.043 (2) | 0.063 (3) | −0.027 (2) | 0.007 (2) | −0.0150 (19) |
C14 | 0.055 (2) | 0.045 (2) | 0.048 (2) | −0.0179 (18) | 0.0037 (16) | −0.0072 (17) |
C15 | 0.0359 (17) | 0.0386 (18) | 0.0415 (19) | −0.0134 (15) | 0.0070 (14) | −0.0139 (15) |
C16 | 0.048 (2) | 0.041 (2) | 0.054 (2) | −0.0163 (17) | 0.0054 (16) | −0.0071 (17) |
C17 | 0.059 (2) | 0.046 (2) | 0.073 (3) | −0.0288 (19) | 0.007 (2) | −0.016 (2) |
C18 | 0.054 (2) | 0.055 (2) | 0.068 (3) | −0.029 (2) | 0.0026 (19) | −0.022 (2) |
C19 | 0.051 (2) | 0.053 (2) | 0.047 (2) | −0.0222 (18) | −0.0010 (16) | −0.0158 (18) |
C20 | 0.044 (2) | 0.049 (2) | 0.056 (2) | −0.0134 (18) | 0.0049 (17) | −0.0156 (18) |
C21 | 0.038 (2) | 0.064 (3) | 0.077 (3) | −0.0086 (19) | 0.0091 (19) | −0.023 (2) |
C22 | 0.050 (2) | 0.067 (3) | 0.066 (3) | −0.018 (2) | 0.024 (2) | −0.030 (2) |
C23 | 0.050 (2) | 0.059 (2) | 0.047 (2) | −0.0196 (19) | 0.0147 (16) | −0.0205 (18) |
C24 | 0.0402 (18) | 0.0378 (18) | 0.043 (2) | −0.0171 (15) | 0.0103 (14) | −0.0145 (15) |
C25 | 0.0433 (19) | 0.0414 (18) | 0.0358 (18) | −0.0197 (16) | 0.0114 (14) | −0.0154 (15) |
C26 | 0.051 (2) | 0.049 (2) | 0.0360 (19) | −0.0231 (18) | 0.0153 (15) | −0.0148 (16) |
C27 | 0.050 (2) | 0.0430 (19) | 0.0353 (19) | −0.0212 (17) | 0.0044 (14) | −0.0087 (15) |
C28 | 0.0429 (19) | 0.0409 (19) | 0.040 (2) | −0.0133 (16) | 0.0039 (14) | −0.0102 (15) |
C29 | 0.0415 (19) | 0.0349 (17) | 0.0358 (18) | −0.0157 (15) | 0.0086 (14) | −0.0121 (14) |
C30 | 0.0422 (19) | 0.0366 (18) | 0.0377 (19) | −0.0169 (15) | 0.0076 (14) | −0.0128 (15) |
C31 | 0.047 (2) | 0.047 (2) | 0.048 (2) | −0.0144 (17) | 0.0088 (16) | −0.0121 (17) |
C32 | 0.051 (2) | 0.059 (2) | 0.060 (3) | −0.0197 (19) | 0.0225 (19) | −0.027 (2) |
C33 | 0.063 (2) | 0.063 (2) | 0.044 (2) | −0.025 (2) | 0.0233 (18) | −0.023 (2) |
C34 | 0.061 (2) | 0.056 (2) | 0.0343 (19) | −0.0238 (19) | 0.0103 (16) | −0.0136 (17) |
C35 | 0.058 (2) | 0.057 (2) | 0.0349 (19) | −0.029 (2) | 0.0046 (16) | −0.0142 (17) |
C36 | 0.057 (3) | 0.050 (3) | 0.049 (3) | −0.016 (2) | 0.016 (3) | −0.019 (3) |
C36A | 0.057 (3) | 0.050 (3) | 0.049 (3) | −0.016 (2) | 0.016 (3) | −0.019 (3) |
C37 | 0.045 (3) | 0.057 (3) | 0.060 (3) | −0.010 (3) | −0.003 (3) | −0.010 (3) |
C37A | 0.045 (3) | 0.057 (3) | 0.060 (3) | −0.010 (3) | −0.003 (3) | −0.010 (3) |
C38 | 0.056 (3) | 0.074 (4) | 0.033 (2) | −0.014 (3) | −0.004 (2) | −0.005 (2) |
C38A | 0.056 (3) | 0.074 (4) | 0.033 (2) | −0.014 (3) | −0.004 (2) | −0.005 (2) |
Ni1—N5 | 1.974 (3) | C7—H7 | 0.9300 |
Ni1—N2 | 1.977 (3) | C8—C15 | 1.487 (4) |
Ni1—N6 | 2.093 (3) | C9—C10 | 1.480 (4) |
Ni1—N3 | 2.096 (3) | C10—C11 | 1.376 (5) |
Ni1—N1 | 2.098 (3) | C11—C12 | 1.378 (5) |
Ni1—N4 | 2.099 (3) | C11—H11 | 0.9300 |
N1—C15 | 1.335 (4) | C12—C13 | 1.356 (6) |
N1—C19 | 1.350 (4) | C12—H12 | 0.9300 |
N2—C8 | 1.331 (4) | C13—C14 | 1.377 (5) |
N2—C9 | 1.339 (4) | C13—H13 | 0.9300 |
N3—C14 | 1.329 (4) | C14—H14 | 0.9300 |
N3—C10 | 1.333 (4) | C15—C16 | 1.373 (5) |
N4—C20 | 1.322 (4) | C16—C17 | 1.364 (5) |
N4—C24 | 1.332 (4) | C16—H16 | 0.9300 |
N5—C29 | 1.326 (4) | C17—C18 | 1.361 (5) |
N5—C25 | 1.340 (4) | C17—H17 | 0.9300 |
N6—C34 | 1.329 (4) | C18—C19 | 1.368 (5) |
N6—C30 | 1.332 (4) | C18—H18 | 0.9300 |
O1W—H1WA | 0.8732 | C19—H19 | 0.9300 |
O1W—H1WB | 0.8701 | C20—C21 | 1.370 (5) |
O1—C4 | 1.336 (4) | C20—H20 | 0.9300 |
O1—C1 | 1.379 (6) | C21—C22 | 1.336 (6) |
O2W—H2WB | 0.8275 | C21—H21 | 0.9300 |
O2W—H2WA | 0.8393 | C22—C23 | 1.379 (5) |
O2—C35 | 1.364 (4) | C22—H22 | 0.9300 |
O2—C38 | 1.373 (5) | C23—C24 | 1.373 (4) |
O2A—C35 | 1.404 (9) | C23—H23 | 0.9300 |
O2A—C38A | 1.421 (9) | C24—C25 | 1.476 (5) |
O3W—H3WC | 0.8556 | C25—C26 | 1.362 (5) |
O3W—H3WA | 0.8797 | C26—C27 | 1.383 (5) |
O4W—H4WB | 0.8839 | C26—H26 | 0.9300 |
O4W—H4WA | 0.8729 | C27—C28 | 1.389 (4) |
O5W—H5WA | 0.8692 | C27—C35 | 1.435 (5) |
O5W—H5WB | 0.8890 | C28—C29 | 1.374 (5) |
O6W—H6WC | 0.8315 | C28—H28 | 0.9300 |
O6W—H6WA | 0.8339 | C29—C30 | 1.474 (4) |
O7W—H7WA | 0.8667 | C30—C31 | 1.372 (5) |
O7W—H7WB | 0.8744 | C31—C32 | 1.375 (5) |
O8W—H8WC | 0.8502 | C31—H31 | 0.9300 |
O8W—H8WD | 0.8528 | C32—C33 | 1.372 (5) |
O9W—H9WA | 0.8616 | C32—H32 | 0.9300 |
O9W—H9WB | 0.8629 | C33—C34 | 1.365 (5) |
O10W—H10A | 0.8785 | C33—H33 | 0.9300 |
O10W—H10B | 0.8705 | C34—H34 | 0.9300 |
C1—C2 | 1.299 (7) | C35—C36 | 1.328 (6) |
C1—H1A | 0.9300 | C35—C36A | 1.352 (9) |
C2—C3 | 1.394 (6) | C36—C37 | 1.378 (6) |
C2—H2A | 0.9300 | C36—H36 | 0.9300 |
C3—C4 | 1.334 (5) | C36A—C37A | 1.344 (10) |
C3—H3A | 0.9300 | C36A—H36A | 0.9300 |
C4—C5 | 1.432 (5) | C37—C38 | 1.315 (6) |
C5—C6 | 1.394 (5) | C37—H37 | 0.9300 |
C5—C7 | 1.400 (5) | C37A—C38A | 1.351 (9) |
C6—C9 | 1.368 (5) | C37A—H37A | 0.9300 |
C6—H6 | 0.9300 | C38—H38 | 0.9300 |
C7—C8 | 1.355 (5) | C38A—H38A | 0.9300 |
N5—Ni1—N2 | 178.36 (10) | N3—C14—H14 | 118.9 |
N5—Ni1—N6 | 77.81 (11) | C13—C14—H14 | 118.9 |
N2—Ni1—N6 | 102.65 (11) | N1—C15—C16 | 121.9 (3) |
N5—Ni1—N3 | 100.71 (11) | N1—C15—C8 | 114.7 (3) |
N2—Ni1—N3 | 77.74 (11) | C16—C15—C8 | 123.5 (3) |
N6—Ni1—N3 | 89.84 (11) | C17—C16—C15 | 119.0 (4) |
N5—Ni1—N1 | 103.80 (10) | C17—C16—H16 | 120.5 |
N2—Ni1—N1 | 77.77 (11) | C15—C16—H16 | 120.5 |
N6—Ni1—N1 | 93.13 (11) | C18—C17—C16 | 119.8 (3) |
N3—Ni1—N1 | 155.38 (11) | C18—C17—H17 | 120.1 |
N5—Ni1—N4 | 78.10 (11) | C16—C17—H17 | 120.1 |
N2—Ni1—N4 | 101.46 (12) | C17—C18—C19 | 119.1 (3) |
N6—Ni1—N4 | 155.89 (11) | C17—C18—H18 | 120.5 |
N3—Ni1—N4 | 95.46 (11) | C19—C18—H18 | 120.5 |
N1—Ni1—N4 | 91.74 (10) | N1—C19—C18 | 121.7 (4) |
C15—N1—C19 | 118.5 (3) | N1—C19—H19 | 119.1 |
C15—N1—Ni1 | 114.5 (2) | C18—C19—H19 | 119.1 |
C19—N1—Ni1 | 126.9 (2) | N4—C20—C21 | 122.5 (4) |
C8—N2—C9 | 120.0 (3) | N4—C20—H20 | 118.8 |
C8—N2—Ni1 | 120.1 (2) | C21—C20—H20 | 118.8 |
C9—N2—Ni1 | 119.7 (2) | C22—C21—C20 | 118.9 (4) |
C14—N3—C10 | 118.6 (3) | C22—C21—H21 | 120.6 |
C14—N3—Ni1 | 126.4 (2) | C20—C21—H21 | 120.6 |
C10—N3—Ni1 | 114.8 (2) | C21—C22—C23 | 119.9 (4) |
C20—N4—C24 | 118.8 (3) | C21—C22—H22 | 120.0 |
C20—N4—Ni1 | 127.0 (3) | C23—C22—H22 | 120.0 |
C24—N4—Ni1 | 114.1 (2) | C24—C23—C22 | 118.4 (4) |
C29—N5—C25 | 120.9 (3) | C24—C23—H23 | 120.8 |
C29—N5—Ni1 | 119.5 (2) | C22—C23—H23 | 120.8 |
C25—N5—Ni1 | 119.6 (2) | N4—C24—C23 | 121.5 (3) |
C34—N6—C30 | 118.6 (3) | N4—C24—C25 | 115.4 (3) |
C34—N6—Ni1 | 126.8 (2) | C23—C24—C25 | 123.1 (3) |
C30—N6—Ni1 | 114.5 (2) | N5—C25—C26 | 120.4 (3) |
H1WA—O1W—H1WB | 109.3 | N5—C25—C24 | 112.8 (3) |
C4—O1—C1 | 105.9 (4) | C26—C25—C24 | 126.8 (3) |
H2WB—O2W—H2WA | 108.4 | C25—C26—C27 | 120.0 (3) |
C35—O2—C38 | 106.7 (4) | C25—C26—H26 | 120.0 |
C35—O2A—C38A | 104.3 (8) | C27—C26—H26 | 120.0 |
H3WC—O3W—H3WA | 110.8 | C26—C27—C28 | 118.7 (3) |
H4WB—O4W—H4WA | 89.3 | C26—C27—C35 | 121.7 (3) |
H5WA—O5W—H5WB | 81.1 | C28—C27—C35 | 119.7 (3) |
H6WC—O6W—H6WA | 96.0 | C29—C28—C27 | 118.6 (3) |
H7WA—O7W—H7WB | 110.0 | C29—C28—H28 | 120.7 |
H8WC—O8W—H8WD | 111.3 | C27—C28—H28 | 120.7 |
H9WA—O9W—H9WB | 101.0 | N5—C29—C28 | 121.4 (3) |
H10A—O10W—H10B | 87.7 | N5—C29—C30 | 113.5 (3) |
C2—C1—O1 | 109.2 (4) | C28—C29—C30 | 125.1 (3) |
C2—C1—H1A | 125.4 | N6—C30—C31 | 122.3 (3) |
O1—C1—H1A | 125.4 | N6—C30—C29 | 114.5 (3) |
C1—C2—C3 | 108.6 (5) | C31—C30—C29 | 123.1 (3) |
C1—C2—H2A | 125.7 | C30—C31—C32 | 118.4 (3) |
C3—C2—H2A | 125.7 | C30—C31—H31 | 120.8 |
C4—C3—C2 | 105.5 (4) | C32—C31—H31 | 120.8 |
C4—C3—H3A | 127.3 | C33—C32—C31 | 119.4 (3) |
C2—C3—H3A | 127.3 | C33—C32—H32 | 120.3 |
C3—C4—O1 | 110.8 (3) | C31—C32—H32 | 120.3 |
C3—C4—C5 | 129.7 (4) | C34—C33—C32 | 118.7 (3) |
O1—C4—C5 | 119.5 (3) | C34—C33—H33 | 120.7 |
C6—C5—C7 | 118.2 (3) | C32—C33—H33 | 120.7 |
C6—C5—C4 | 121.2 (3) | N6—C34—C33 | 122.6 (3) |
C7—C5—C4 | 120.6 (3) | N6—C34—H34 | 118.7 |
C9—C6—C5 | 118.8 (3) | C33—C34—H34 | 118.7 |
C9—C6—H6 | 120.6 | C36—C35—O2 | 107.6 (4) |
C5—C6—H6 | 120.6 | C36A—C35—O2A | 109.5 (8) |
C8—C7—C5 | 119.4 (3) | C36—C35—C27 | 133.6 (4) |
C8—C7—H7 | 120.3 | C36A—C35—C27 | 133.4 (8) |
C5—C7—H7 | 120.3 | O2—C35—C27 | 118.8 (3) |
N2—C8—C7 | 121.8 (3) | O2A—C35—C27 | 117.1 (7) |
N2—C8—C15 | 112.6 (3) | C35—C36—C37 | 109.4 (4) |
C7—C8—C15 | 125.6 (3) | C35—C36—H36 | 125.3 |
N2—C9—C6 | 121.7 (3) | C37—C36—H36 | 125.3 |
N2—C9—C10 | 112.7 (3) | C37A—C36A—C35 | 108.2 (9) |
C6—C9—C10 | 125.5 (3) | C37A—C36A—H36A | 125.9 |
N3—C10—C11 | 122.2 (3) | C35—C36A—H36A | 125.9 |
N3—C10—C9 | 114.7 (3) | C38—C37—C36 | 106.7 (4) |
C11—C10—C9 | 122.9 (3) | C38—C37—H37 | 126.7 |
C10—C11—C12 | 118.4 (4) | C36—C37—H37 | 126.7 |
C10—C11—H11 | 120.8 | C36A—C37A—C38A | 110.1 (10) |
C12—C11—H11 | 120.8 | C36A—C37A—H37A | 124.9 |
C13—C12—C11 | 119.5 (3) | C38A—C37A—H37A | 124.9 |
C13—C12—H12 | 120.3 | C37—C38—O2 | 109.6 (4) |
C11—C12—H12 | 120.3 | C37—C38—H38 | 125.2 |
C12—C13—C14 | 119.1 (4) | O2—C38—H38 | 125.2 |
C12—C13—H13 | 120.4 | C37A—C38A—O2A | 107.8 (9) |
C14—C13—H13 | 120.4 | C37A—C38A—H38A | 126.1 |
N3—C14—C13 | 122.1 (4) | O2A—C38A—H38A | 126.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···Cl1 | 0.87 | 2.25 | 3.113 (4) | 169 |
O1W—H1WB···O9Wi | 0.87 | 2.06 | 2.923 (6) | 175 |
O2W—H2WB···O5Wii | 0.83 | 1.99 | 2.813 (7) | 172 |
O2W—H2WA···Cl1 | 0.84 | 2.39 | 3.215 (4) | 168 |
O3W—H3WC···O4W | 0.86 | 2.05 | 2.760 (9) | 140 |
O3W—H3WA···O6Wiii | 0.88 | 2.35 | 3.134 (7) | 148 |
O4W—H4WB···Cl2 | 0.88 | 2.58 | 3.107 (5) | 119 |
O4W—H4WA···Cl2 | 0.87 | 2.56 | 3.107 (5) | 122 |
O5W—H5WA···Cl2 | 0.87 | 2.37 | 3.079 (4) | 138 |
O5W—H5WB···O9W | 0.89 | 2.16 | 2.991 (6) | 156 |
O6W—H6WC···O2Wii | 0.83 | 2.11 | 2.929 (6) | 167 |
O6W—H6WA···O7W | 0.83 | 2.18 | 2.838 (6) | 136 |
O7W—H7WA···Cl2 | 0.87 | 2.34 | 3.190 (4) | 167 |
O7W—H7WB···O4Wii | 0.87 | 1.93 | 2.798 (5) | 172 |
O8W—H8WC···O3Wii | 0.85 | 2.06 | 2.856 (8) | 155 |
O8W—H8WD···Cl2iv | 0.85 | 2.40 | 3.204 (6) | 157 |
O9W—H9WA···O10Wv | 0.86 | 1.93 | 2.756 (6) | 159 |
O9W—H9WB···O1Wvi | 0.86 | 2.11 | 2.878 (5) | 147 |
O10W—H10A···Cl1vii | 0.88 | 2.27 | 3.141 (4) | 171 |
O10W—H10B···Cl1viii | 0.87 | 2.38 | 3.225 (4) | 165 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) x+1, y, z; (v) −x+1, −y+1, −z; (vi) x, y+1, z−1; (vii) x, y, z−1; (viii) −x+1, −y, −z+1. |
Acknowledgements
Financial support by the Key Discipline Project of Hunan Province, the Open Fund of the Key Laboratory of Functional Organometallic Materials of Hunan Province College (GN14K02), the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and the Scientific Research Fund of Hunan Provincial Education Department (16B037) and Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education (CHCL16002) are gratefully acknowledged.
References
Bhat, S. S. & Revankar, V. K. (2016). J. Chem. Crystallogr. 46, 9–14. CSD CrossRef CAS Google Scholar
Boyer, J. L., Polyansky, D. E., Szalda, D. J., Zong, R., Thummel, R. P. & Fujita, E. (2011). Angew. Chem. Int. Ed. 50, 12600–12604. CSD CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2012). SMART, SAINT and SADABS. Bruker AXS inc., Madison, Wisconsin, USA. Google Scholar
Chen, G.-J., Wang, Z.-G., Kou, Y.-Y., Tian, J.-L. & Yan, S.-P. (2013). J. Inorg. Biochem. 122, 49–56. CSD CrossRef CAS PubMed Google Scholar
Chowdhury, A. D., Das, A. K. I., Mobin, S. M. & Lahiri, G. K. (2011). Inorg. Chem. 50, 1775–1785. CSD CrossRef PubMed Google Scholar
Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54. CSD CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duan, L., Manbeck, G. F., Kowalczyk, M., Szalda, D. J., Muckerman, J. T., Himeda, Y. & Fujita, E. (2016). Inorg. Chem. 55, 4582–4594. CSD CrossRef CAS PubMed Google Scholar
Dutta, R., Akhuli, B. & Ghosh, P. (2015). Dalton Trans. 44, 15075–15078. CSD CrossRef CAS PubMed Google Scholar
Fernandes, R. R., Kirillov, A. M., da Silva, M. F. C. G., Ma, Z., da Silva, J. A. L., da Silva, J. J. R. F. & Pombeiro, A. J. L. (2008). Cryst. Growth Des. 8, 782–785. CSD CrossRef CAS Google Scholar
Figgis, B., Kucharski, E. & White, A. (1983). Aust. J. Chem. 36, 1563–1571. CSD CrossRef CAS Google Scholar
Fu, W.-W., Kuang, D.-Z., Zhang, F.-X., Liu, Y., Li, W. & Kuang, Y.-F. (2013). Chin. J. Inorg. Chem. 29, 654–658. CAS Google Scholar
Ganguly, S. & Mondal, R. (2015). Cryst. Growth Des. 15, 2211–2222. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Han, L.-L., Hu, T.-P., Chen, J.-S., Li, Z.-H., Wang, X.-P., Zhao, Y.-Q., Li, X.-Y. & Sun, D. (2014). Dalton Trans. 43, 8774–8780. CSD CrossRef CAS PubMed Google Scholar
Holst, M. van, Le Pevelen, D. & Aldrich-Wright, J. (2008). Eur. J. Inorg. Chem. pp. 4608–4615. Google Scholar
Hundal, G., Hundal, M. S., Hwang, Y. K. & Chang, J. S. (2014). Cryst. Growth Des. 14, 172–176. CSD CrossRef CAS Google Scholar
Indumathy, R., Kanthimathi, M., Weyhermuller, T. & Nair, B. U. (2008). Polyhedron, 27, 3443–3450. CSD CrossRef CAS Google Scholar
Infantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480–486. Web of Science CSD CrossRef CAS Google Scholar
Infantes, L. & Motherwell, S. (2002). CrystEngComm, 4, 454–461. Web of Science CSD CrossRef CAS Google Scholar
Inumaru, K., Kikudome, T., Fukuoka, H. & Yamanaka, S. (2008). J. Am. Chem. Soc. 130, 10038–10039. CSD CrossRef PubMed CAS Google Scholar
Jitsukawa, K., Hata, T., Yamamoto, T., Kano, K., Masuda, H. & Einaga, H. (1994). Chem. Lett. 23, 1169–1172. CSD CrossRef Google Scholar
Kepert, C., Lu, W., Skelton, B. & White, A. (1994). Aust. J. Chem. 47, 365–384. CSD CrossRef CAS Google Scholar
Kepert, C. J., Semenova, L. I., Wei-Min, L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 481–496. CSD CrossRef CAS Google Scholar
Kou, Y.-Y., Gu, W., Liu, H., Ma, X.-F., Li, D.-D. & Yan, S.-P. (2008). Acta Sci. Nat. Univ. Nankaiensis, 41, 19–25. CAS Google Scholar
Kumar, R., Pandey, A. K., Sharma, M. K., Panicker, L. V., Sodaye, S., Suresh, G., Ramagiri, S. V., Bellare, J. R. & Goswami, A. (2011). J. Phys. Chem. B, 115, 5856–5867. CrossRef CAS PubMed Google Scholar
Lakshminarayanan, P. S., Suresh, E. & Ghosh, P. (2006). Angew. Chem. Int. Ed. 45, 3807–3811. Web of Science CSD CrossRef CAS Google Scholar
Li, Y., Jiang, L., Feng, X.-L. & Lu, T.-B. (2008). Cryst. Growth Des. 8, 3689–3694. CSD CrossRef CAS Google Scholar
Logacheva, N. M., Baulin, V. E., Tsivadze, A. Y., Pyatova, E. N., Ivanova, I. S., Velikodny, Y. A. & Chernyshev, V. V. (2009). Dalton Trans. pp. 2482–2489. Web of Science CSD CrossRef Google Scholar
Mahendiran, D., Kumar, R. S., Viswanathan, V., Velmurugan, D. & Rahiman, A. K. (2016). Dalton Trans. 45, 7794–7814. CSD CrossRef CAS PubMed Google Scholar
McMurtrie, J. & Dance, I. (2010). CrystEngComm, 12, 3207–3217. CSD CrossRef CAS Google Scholar
Padhi, S. K., Sahu, R. & Manivannan, V. (2010). Polyhedron, 29, 709–714. CSD CrossRef CAS Google Scholar
Pati, A., Athilakshmi, J., Ramkumar, V. & Chand, D. K. (2014). CrystEngComm, 16, 6827–6830. CSD CrossRef CAS Google Scholar
Pruchnik, F. P., Robert, F., Jeannin, Y. & Jeannin, S. (1996). Inorg. Chem. 35, 4261–4263. CSD CrossRef PubMed CAS Google Scholar
Ris, D. P., Schneider, G. E., Ertl, C. D., Kohler, E., Müntener, T., Neuburger, M., Constable, E. C. & Housecroft, C. E. (2016). J. Organomet. Chem. 812, 272–279. CSD CrossRef CAS Google Scholar
Safin, D. A., Szell, P. M. J., Keller, A., Korobkov, I., Bryce, D. L. & Murugesu, M. (2015). New J. Chem. 39, 7147–7152. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, J. & Hanan, G. S. (2005). Synlett, pp. 1251–1254. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.