research communications
of a pyrazine-2,3-dicarboxamide ligand and of its silver(I) nitrate complex, a three-dimensional coordination polymer
aDebiopharm International S.A., Chemin Messidor 5-7, CP 5911, CH-1002 Lausanne, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The title ligand, C18H16N6O2·2H2O (L1) [N2,N3-bis(pyridin-4-ylmethyl)pyrazine-2,3-dicarboxamide], crystallized as a dihydrate. The molecule is U-shaped with the carboxamide groups being cis to one another, making a dihedral angle of 81.6 (5)°. The terminal pyridine rings are inclined to one another by 58.5 (4)°. There is an intramolecular N—H⋯Npyrazine hydrogen bond present, forming an S(5) ring motif. In the crystal, adjacent molecules are linked by N—H⋯Ocarboxamide hydrogen bonds, forming a chain along [001]. A chain of hydrogen-bonded water molecules is linked to the chain of (L1) molecules by O—H⋯N hydrogen bonds, forming columns propagating along the c axis. The columns are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional supramolecular structure. The reaction of ligand (L1) with silver(I) nitrate led to the formation of a new three-dimensional coordination polymer, {[Ag(C18H16N6O2)]NO3}n, poly[[[μ4-N2,N3-bis(pyridin-4-ylmethyl)pyrazine-2,3-dicarboxamide]silver(I)] nitrate] (I). The is composed of half of one silver ion, located on a twofold rotation axis, half a ligand molecule and half a positionally disordered nitrate anion located about a twofold rotation axis. The full molecule of the ligand is generated by twofold rotational symmetry, with this twofold axis bisecting the Car—Car bonds of the pyrazine ring and the Ag—Ag bond. The carboxamide groups are now trans to one another, making a dihedral angle of 65.8 (4)°. The two terminal pyridine rings are inclined to one another by 6.6 (3)°. Two ligands wrap around an Ag—Ag bond of 3.1638 (11) Å, forming a figure-of-eight-shaped complex molecule. Each silver ion is coordinated by two pyridine N atoms and by two carboxamide O atoms of neighbouring molecules, hence forming a three-dimensional framework. The nitrate anion is linked to the framework by N—H⋯O and C—H⋯O hydrogen bonds.
1. Chemical context
The title ligand, N2,N3-bis(pyridin-4-ylmethyl)pyrazine-2,3-dicarboxamide (L1), is one of a series of ligands synthesized in order to study the superexchange in supramolecular complexes formed using pyrazine carboxamide derivatives and first row transition metal ions (Cati, 2002; Cati et al., 2004). To the best of our knowledge, neither the synthesis nor the of (L1) have been described previously. It is very similar to the ligand N2,N3-bis(pyridin-2-ylmethyl)pyrazine-2,3-dicarboxamide (L2), for which a number of transition metal complexes have been described, including some interesting tetranuclear 2×2 grid-like and square complexes (Hausmann et al., 2003; Klingele et al., 2007). Two such complexes, {[Cu4(L2)4](ClO4)4}·5CH3OH·4H2O and {[Ni4(L2)4]Cl4}·5CH3CN·13H2O (Cati et al., 2004), exhibit anion encapsulation, and measurements indicate that they are weakly anti-ferromagnetic, with J values of −5.87 and −2.64 cm−1, respectively.
A search of the Cambridge Structural Database (CSD; Groom et al., 2016), indicated that silver nitrate is an excellent metal salt for the formation of multi-dimensional coordination polymers. The silver ion can have multiple coordination geometries and modes, and the nitrate anion has been shown to coordinate to metal ions in a number of different modes, many of which involve bridging metal ions. The properties of the complexes formed are extremely varied. For example, with the tetradendate ligand 1,6-bis(2H-1,2,3-triazol-2-yl)hexane, Huo et al. (2016) synthesized the three-dimensional coordination polymer, catena-[[μ-2,2′-(butane-1,4-diyl)bis(2H-1,2,3-triazole)]bis(μ-nitrato)disilver]. They showed that it exhibits highly selective and sensitive luminescence sensing of Cr2O72− ions in aqueous solution. With the rigid tripodal arene-core-based nitrogen ligand, 1,3,5-tris(pyrazol-1-yl)benzene, Shu et al. (2006) formed a porous metal–organic framework, viz. catena-[bis(μ3-nitrato-O,O′,O′′)bis(μ3-1,3,5-tris(pyrazol-1-yl)benzene-N,N′,N′′)trisilver(I) nitrate]. The nitrate counter-anions located in the cationic framework can be exchanged reversibly without destruction of the structure. Hence, this compound can act as a zeolite-like porous material for anion exchange.
The title ligand has potentially two bidentate (N,N) and two monodentate (Npyridine) coordination sites. It is therefore an interesting ligand to study its coordination behaviour with silver nitrate, and herein, we describe the solid state structures of ligand (L1), and the new three-dimensional coordination polymer, poly[[[μ4-N2,N3-bis(pyridin-4-ylmethyl)pyrazine-2,3-dicarboxamide]silver(I)]nitrate] (I).
2. Structural commentary
The title ligand (L1) crystallized as a dihydrate, and its molecular structure is illustrated in Fig. 1. The molecule is U-shaped with the carboxamide groups (C6/N3/C5/O1) being cis to one another, making a dihedral angle of 81.6 (5)°. The terminal pyridine rings (N4/C7–C11) are inclined to one another by 58.5 (4)°. There is an intramolecular N—H⋯N hydrogen bond present, forming an S(5) ring motif (Fig. 1 and Table 1).
The reaction of the ligand with silver(I) nitrate led to the formation of a three-dimensional coordination polymer (I). The coordination of the ligand to the silver ions is illustrated in Fig. 2. Selected bond lengths and angles in (I) are given in Table 2. The is composed of a silver ion, located on a twofold rotation axis, half a ligand molecule and half a nitrate anion. The full molecule of the ligand is generated by twofold rotational symmetry, with this twofold axis bisecting the C4—C4i bonds of the pyrazine ring and the Ag1—Ag1i bond (Table 2). The carboxamide groups (C6/N3/C5/O1) are now trans to one another, making a dihedral angle of 65.8 (4)°. The terminal pyridine rings (N4/C7–C11) are inclined to one another by 6.6 (3)°. Two ligands effectively wrap around a Ag—Ag bond of 3.1638 (11) Å, forming a figure-of-eight-shaped molecule, with each silver ion being coordinated by two pyridine N atoms. The silver ions are each further coordinated by the carboxamide O atom, O1, of neighbouring molecules, hence forming a three-dimensional framework, illustrated in Fig. 3. If one considers that the silver ion, Ag1, is fivefold coordinate (N2O2Agi) then its coordination sphere can be described as distorted trigonal–bipyramidal, with a τ5 value of 0.8 (τ5 = 1 for perfect trigonal–pyramidal geometry and 0 for perfect square-pyramidal geometry; Addison et al., 1984). However, if one considers the Ag1 ion to be fourfold coordinate, N2O2, with a τ4 value of 0.55, its coordination sphere can be described as intermediate between trigonal–pyramidal and seesaw (τ4 = 1 for a perfect tetrahedral geometry and 0 for a perfect square-planar geometry. For intermediate structures, including trigonal–pyramidal and seesaw, τ4 falls within the range of 0 to 1; Yang et al., 2007). The nitrate anion that does not coordinate to the silver(I) ion is positionally disordered, and also located about a twofold rotation axis.
3. Supramolecular features
In the crystal of ligand (L1), molecules are linked by N—H⋯O(water) hydrogen bonds forming chains propagating along the c-axis direction (Table 1 and Fig. 4). Parallel to this chain of molecules is a chain of hydrogen-bonded water molecules (Table 1 and Fig. 4), which is linked to the chain of (L1) molecules by O—H⋯N hydrogen bonds, forming columns propagating along the c axis. The columns are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional supramolecular structure (Table 1 and Fig. 5).
In (I), the nitrate anion is situated in the cavities of the three-dimensional framework and is linked to the framework by N—H⋯O and C—H⋯O hydrogen bonds (Table 3 and Fig. 6). The nitrate anion in (I) is not essential for forming the three-dimensional structure, although it may act as a template for the formation of the framework (Batten et al., 2009). This is in contrast to the MOF catena-[bis(μ3-nitrato-O,O′,O′′)bis(μ3-1,3,5-tris(pyrazol-1-yl)benzene-N,N′,N′′)trisilver(I) nitrate] mentioned above (Shu et al., 2006), in which there are nitrate anions coordinating the silver ions in a μ3 fashion and present also in the framework cavities. There are, of course, other examples reported in the Cambridge Structural Database (Groom et al., 2016).
|
In describing compound (I) as a three-dimensional coordination polymer, we make here the distinction between a coordination polymer and a metal–organic framework. Both have a three-dimensional framework but there are no cavities, even small ones, in the structure of (I). Hence, it should be classed as a three-dimensional coordination polymer according to the IUPAC recommendations on the `Terminology of metal–organic frameworks and coordination polymers' (Batten et al., 2013).
4. Database survey
A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016) for Ag–Ag complexes, excluding silver ion clusters of any kind, gave 321 hits. Limiting the search to Ag–Ag complexes with each silver ion coordinated by two pyridine N atoms, gave 95 hits. The Ag—Ag distances vary between ca 2.6–3.6 Å. One compound, bis[μ2-2,7-di-tert-butyl-9,9-dimethyl-N,N′-bis[(3-pyridyl)methyl]xanthene-4,5-dicarboxamide]disilver bis(trifluoromethanesulfonate) chloroform solvate (HIFKUD; Yue et al., 2007), is particularly interesting because it too involves a dicarboxamide ligand, viz. N,N′-bis[(3-pyridyl)methy]xanthene-4,5-dicarboxamide), that wraps around an Ag—Ag bond forming a similar figure-of-eight-shaped complex. Here the Ag—Ag bond length is 3.134 (1) Å, slightly shorter than the value of 3.1638 (11) Å observed in (I); Table 2. A search for the benzene analogue of ligand (L1), N-(4-pyridylmethyl)carbamoyl)benzene, gave only two hits. Both of them are mercury(II) complexes, viz. the binuclear complex bis{μ2-1,2-bis[N-(4-pyridylmethyl)carbamoyl]benzene}tetrakis(trifluoroacetato)dimercury(II) methanol solvate (XAHSIJ; Burchell et al., 2004) and the two-dimensional network catena-[bis{μ2-1,2-bis[N-(4-pyridylmethyl)carbamoyl]benzene}dichloridomercury(II) 1,2-dichloroethane solvate] (XAHSOP; Burchell et al., 2004). A search for the benzene analogue of ligand (L2), [N-(2-pyridylmethyl)carbamoyl]benzene, gave zero hits, while that for [N-(3-pyridylmethyl)carbamoyl]benzene gave eight hits. The latter includes the of the dihydrate of the ligand itself (PANROM; Ge et al., 2005) and the structures of seven first-row transition metal one-, two- and three-dimensional coordination polymers.
5. Synthesis and crystallization
Ligand (L1) was prepared using the same procedure as for ligand (L2) (Cati et al., 2004). Dimethyl pyrazine-2,3-dicarboxylate (1.96 g, 10 mmol; Alvarez-Ibarra et al., 1994) and an excess of 4-(aminomethyl)pyridine (3.24 g, 30 mmol) in 35 ml of methanol were heated to reflux and heating was continued for 72 h in a two-necked flask (100 ml). The brown solution that formed was concentrated and 15 ml of water were added, which precipitated quantitatively ligand (L1). The solid was collected by filtration, washed with 10 ml of water and dried in air. Recrystallization in ethanol gave colourless plate-like crystals (yield is quantitative; m.p. 474 K). Spectroscopic data: 1H NMR (400 MHz, DMSO-d6): 9.33 (t, 1H, Jhg = 6.1, Hh); 8.86 (s, 1H, Hn = Hm); 8.49 (dd, 2H, Jba = 4.5, Jbe = 1.5, Hb = Hd); 7.39 (dd, 2H, Jab = 4.5, Jeb = 1.5, Ha = He); 4.52 (d, 2H, Jgh = 6.1, Hg). 13C NMR (400 MHz, DMSO-d6): 165.8, 150.3, 148.9, 147.6, 145.6, 123.0, 42.2. IR (KBr pellet, cm−1): 3273 (s), 3031 (s), 1675 (vs), 1602 (vs), 1564 (vs), 1520 (vs), 1416 (vs), 1364 (s), 1311 (s), 1292 (s), 1220 (s), 1185 (m), 1164 (m), 1124 (s), 1069 (m), 995 (s), 871 (w), 830 (m), 787 (m), 745 (m), 715 (m), 611 (m), 575 (w), 504 (m), 495 (m), 475 (m). Elemental analysis for [C18H16N6O2]·H2O (Mr = 366.39 g mol−1): calculated: C: 59.01 H: 4.95 N: 22.94%; found: C: 59.10 H: 5.05 N: 23.10%.
Complex (I): A solution of (L1) (46 mg; 0.126 mmol) in 6 ml CHCl3 was introduced into a 13 mm diameter glass tube. It was layered with methanol (ca 2 ml) used as a buffer zone. A solution of AgNO3 (21 mg, 0.126 mmol) in MeOH (6 ml) was then added gently to avoid possible mixing. The glass tube was sealed with a perforated parafilm and left at room temperature. Colourless block-like crystals were obtained after a few days (yield 60 mg, 92%). Elemental analysis for AgC18H16N7O5: (Mr = 518.25 g mol−1): calculated: C: 41.72 H: 3.11 N: 18.92%; found: C: 41.65 H: 3.09 N: 18.85%.
6. Refinement
Crystal data, data collection and structure . For the ligand (L1), the NH and water H atoms were located in difference-Fourier maps and refined with distance restraints: O—H = 0.85 (2) Å, N—H = 0.88 (2) Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). In the final cycles of the water H atoms were treated as riding atoms. For complex (I), the NH H atoms were included in calculated positions and treated as riding: N—H = 0.88 Å with Uiso(H) = 1.2Ueq(N). For both compounds, the C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C). The nitrate anion is positionally disordered about a twofold rotation axis and was refined with fixed occupancies (N10A and N10B = 0.5, O11 and O13 = 0.5, O12 and O14 = 0.25), and all their ADP's were made equal to that of atom O11. Using a one-circle image-plate diffraction system it is not possible to measure 100% of the particularly for triclinic or monoclinic systems. This is the case for ligand (L1), which crystallized in the monoclinic Pc and for which only 94.7% of the was accessible.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989017006387/pj2044sup1.cif
contains datablocks L1, I, Global. DOI:Structure factors: contains datablock L1. DOI: https://doi.org/10.1107/S2056989017006387/pj2044L1sup2.hkl
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017006387/pj2044Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017006387/pj2044L1sup4.cml
For both compounds, data collection: EXPOSE in IPDS-I (Stoe & Cie, 2004); cell
CELL in IPDS-I (Stoe & Cie, 2004); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).C18H16N6O2·2H2O | F(000) = 404 |
Mr = 384.40 | Dx = 1.381 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
a = 4.3677 (6) Å | Cell parameters from 3264 reflections |
b = 14.0232 (12) Å | θ = 2.0–25.9° |
c = 15.1816 (18) Å | µ = 0.10 mm−1 |
β = 96.153 (16)° | T = 153 K |
V = 924.50 (19) Å3 | Plate, colourless |
Z = 2 | 0.50 × 0.15 × 0.05 mm |
Stoe IPDS 1 diffractometer | 3388 independent reflections |
Radiation source: fine-focus sealed tube | 1693 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.107 |
φ rotation scans | θmax = 25.9°, θmin = 2.0° |
Absorption correction: multi-scan (MULABS; Spek, 2009) | h = −5→5 |
Tmin = 0.763, Tmax = 1.000 | k = −17→16 |
7134 measured reflections | l = −18→18 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.0453P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.77 | (Δ/σ)max < 0.001 |
3388 reflections | Δρmax = 0.21 e Å−3 |
260 parameters | Δρmin = −0.25 e Å−3 |
8 restraints | Extinction correction: (SHELXL2016; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.036 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.7750 (11) | 0.9108 (3) | 0.4491 (3) | 0.0358 (13) | |
O2 | 0.5478 (11) | 0.9994 (3) | 0.2578 (3) | 0.0351 (12) | |
N1 | 0.4263 (14) | 1.1135 (3) | 0.5363 (4) | 0.0321 (15) | |
N2 | 0.1716 (14) | 1.1331 (4) | 0.3588 (4) | 0.0330 (15) | |
N3 | 0.7147 (13) | 0.9491 (3) | 0.5921 (3) | 0.0258 (14) | |
H3N | 0.612 (13) | 0.998 (3) | 0.609 (4) | 0.031* | |
N4 | 0.4923 (14) | 0.5966 (4) | 0.6225 (4) | 0.0403 (16) | |
N5 | 0.1699 (14) | 0.9119 (4) | 0.3107 (4) | 0.0313 (14) | |
H5N | 0.002 (11) | 0.906 (5) | 0.337 (4) | 0.038* | |
N6 | −0.0999 (16) | 0.5615 (4) | 0.3180 (4) | 0.0436 (17) | |
C1 | 0.4668 (15) | 1.0457 (4) | 0.4743 (4) | 0.0267 (17) | |
C2 | 0.3401 (16) | 1.0564 (4) | 0.3878 (4) | 0.0258 (16) | |
C3 | 0.1396 (19) | 1.1999 (5) | 0.4209 (5) | 0.043 (2) | |
H3 | 0.030625 | 1.256737 | 0.403978 | 0.051* | |
C4 | 0.2586 (18) | 1.1888 (4) | 0.5079 (5) | 0.0360 (19) | |
H4 | 0.219526 | 1.236935 | 0.549295 | 0.043* | |
C5 | 0.6613 (15) | 0.9624 (4) | 0.5039 (4) | 0.0280 (16) | |
C6 | 0.9192 (16) | 0.8748 (4) | 0.6312 (5) | 0.0290 (17) | |
H6A | 0.985533 | 0.891453 | 0.693707 | 0.035* | |
H6B | 1.105193 | 0.872221 | 0.599314 | 0.035* | |
C7 | 0.7688 (16) | 0.7778 (4) | 0.6278 (5) | 0.0307 (17) | |
C8 | 0.8016 (18) | 0.7151 (4) | 0.5602 (5) | 0.0376 (19) | |
H8 | 0.917205 | 0.733033 | 0.513344 | 0.045* | |
C9 | 0.669 (2) | 0.6270 (5) | 0.5600 (5) | 0.046 (2) | |
H9 | 0.702062 | 0.584555 | 0.513239 | 0.056* | |
C10 | 0.4698 (19) | 0.6573 (5) | 0.6889 (5) | 0.044 (2) | |
H10 | 0.357252 | 0.636975 | 0.735668 | 0.053* | |
C11 | 0.5967 (17) | 0.7473 (5) | 0.6950 (5) | 0.0374 (19) | |
H11 | 0.568042 | 0.787610 | 0.743743 | 0.045* | |
C12 | 0.3639 (17) | 0.9848 (4) | 0.3138 (4) | 0.0297 (17) | |
C13 | 0.1367 (17) | 0.8444 (4) | 0.2372 (5) | 0.0337 (18) | |
H13A | 0.332934 | 0.841179 | 0.210178 | 0.040* | |
H13B | −0.024426 | 0.867753 | 0.191430 | 0.040* | |
C14 | 0.0529 (17) | 0.7469 (4) | 0.2655 (4) | 0.0303 (17) | |
C15 | −0.1501 (17) | 0.6908 (5) | 0.2141 (5) | 0.0362 (18) | |
H15 | −0.242090 | 0.714271 | 0.158778 | 0.043* | |
C16 | −0.224 (2) | 0.6001 (5) | 0.2413 (5) | 0.049 (2) | |
H16 | −0.368187 | 0.563552 | 0.204091 | 0.058* | |
C17 | 0.1048 (19) | 0.6151 (5) | 0.3680 (6) | 0.042 (2) | |
H17 | 0.200289 | 0.589113 | 0.421904 | 0.050* | |
C18 | 0.1843 (19) | 0.7075 (5) | 0.3446 (5) | 0.0389 (18) | |
H18 | 0.327922 | 0.743333 | 0.382699 | 0.047* | |
O1W | 0.7645 (12) | 0.5986 (3) | 0.9268 (3) | 0.0503 (15) | |
H1WA | 0.624209 | 0.595327 | 0.962023 | 0.075* | |
H1WB | 0.768245 | 0.545186 | 0.889768 | 0.075* | |
O2W | 0.3065 (12) | 0.4183 (3) | 0.5379 (3) | 0.0478 (14) | |
H2WA | 0.133161 | 0.418283 | 0.504471 | 0.072* | |
H2WB | 0.327355 | 0.474826 | 0.557396 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.051 (3) | 0.039 (3) | 0.021 (3) | 0.009 (2) | 0.019 (3) | 0.000 (2) |
O2 | 0.052 (3) | 0.040 (2) | 0.015 (3) | −0.005 (2) | 0.015 (2) | −0.0003 (19) |
N1 | 0.055 (4) | 0.024 (3) | 0.018 (3) | 0.001 (3) | 0.007 (3) | −0.002 (2) |
N2 | 0.050 (4) | 0.030 (3) | 0.019 (3) | 0.006 (3) | 0.004 (3) | 0.003 (2) |
N3 | 0.041 (4) | 0.025 (3) | 0.012 (3) | 0.004 (3) | 0.009 (3) | −0.001 (2) |
N4 | 0.047 (4) | 0.032 (3) | 0.041 (4) | 0.001 (3) | 0.001 (4) | 0.007 (3) |
N5 | 0.038 (4) | 0.034 (3) | 0.023 (3) | −0.010 (3) | 0.006 (3) | −0.006 (2) |
N6 | 0.054 (4) | 0.033 (3) | 0.044 (4) | −0.005 (3) | 0.007 (4) | −0.003 (3) |
C1 | 0.035 (5) | 0.029 (3) | 0.018 (4) | −0.002 (3) | 0.009 (3) | 0.001 (3) |
C2 | 0.034 (4) | 0.025 (3) | 0.020 (4) | 0.000 (3) | 0.008 (3) | 0.000 (3) |
C3 | 0.061 (6) | 0.027 (4) | 0.040 (5) | 0.011 (4) | 0.003 (4) | 0.003 (3) |
C4 | 0.060 (5) | 0.025 (4) | 0.023 (4) | 0.007 (4) | 0.009 (4) | −0.003 (3) |
C5 | 0.037 (4) | 0.031 (4) | 0.017 (4) | −0.001 (3) | 0.006 (3) | 0.008 (3) |
C6 | 0.036 (4) | 0.031 (4) | 0.020 (4) | 0.006 (3) | 0.001 (3) | 0.000 (3) |
C7 | 0.032 (5) | 0.030 (4) | 0.027 (4) | 0.013 (3) | −0.007 (4) | −0.002 (3) |
C8 | 0.056 (5) | 0.034 (4) | 0.022 (5) | 0.001 (4) | 0.001 (4) | −0.001 (3) |
C9 | 0.066 (6) | 0.031 (4) | 0.040 (5) | 0.005 (4) | 0.001 (5) | −0.005 (3) |
C10 | 0.057 (6) | 0.037 (4) | 0.039 (5) | 0.007 (4) | 0.009 (4) | 0.007 (4) |
C11 | 0.053 (5) | 0.035 (4) | 0.024 (4) | 0.002 (4) | 0.006 (4) | −0.001 (3) |
C12 | 0.047 (5) | 0.027 (4) | 0.015 (4) | 0.007 (3) | −0.002 (4) | 0.001 (3) |
C13 | 0.047 (5) | 0.029 (3) | 0.025 (4) | −0.003 (3) | 0.003 (4) | −0.007 (3) |
C14 | 0.038 (5) | 0.029 (3) | 0.025 (5) | 0.005 (3) | 0.006 (4) | −0.005 (3) |
C15 | 0.047 (5) | 0.035 (4) | 0.028 (4) | 0.005 (4) | 0.007 (4) | −0.003 (3) |
C16 | 0.063 (6) | 0.040 (4) | 0.042 (5) | −0.008 (4) | 0.000 (5) | −0.004 (4) |
C17 | 0.052 (5) | 0.038 (4) | 0.038 (5) | 0.001 (4) | 0.012 (4) | 0.003 (4) |
C18 | 0.041 (5) | 0.040 (4) | 0.036 (5) | −0.003 (4) | 0.002 (4) | −0.006 (3) |
O1W | 0.066 (4) | 0.036 (3) | 0.051 (4) | −0.006 (3) | 0.013 (3) | −0.001 (2) |
O2W | 0.061 (4) | 0.036 (3) | 0.047 (3) | 0.000 (2) | 0.007 (3) | 0.001 (2) |
O1—C5 | 1.245 (7) | C6—H6B | 0.9900 |
O2—C12 | 1.248 (7) | C7—C8 | 1.370 (9) |
N1—C4 | 1.331 (8) | C7—C11 | 1.398 (9) |
N1—C1 | 1.364 (8) | C8—C9 | 1.364 (10) |
N2—C3 | 1.346 (9) | C8—H8 | 0.9500 |
N2—C2 | 1.351 (8) | C9—H9 | 0.9500 |
N3—C5 | 1.347 (8) | C10—C11 | 1.378 (10) |
N3—C6 | 1.456 (8) | C10—H10 | 0.9500 |
N3—H3N | 0.88 (3) | C11—H11 | 0.9500 |
N4—C10 | 1.330 (9) | C13—C14 | 1.491 (8) |
N4—C9 | 1.354 (10) | C13—H13A | 0.9900 |
N5—C12 | 1.325 (8) | C13—H13B | 0.9900 |
N5—C13 | 1.458 (8) | C14—C15 | 1.366 (10) |
N5—H5N | 0.88 (3) | C14—C18 | 1.389 (10) |
N6—C17 | 1.340 (10) | C15—C16 | 1.386 (9) |
N6—C16 | 1.344 (10) | C15—H15 | 0.9500 |
C1—C2 | 1.377 (9) | C16—H16 | 0.9500 |
C1—C5 | 1.485 (8) | C17—C18 | 1.397 (10) |
C2—C12 | 1.518 (9) | C17—H17 | 0.9500 |
C3—C4 | 1.375 (10) | C18—H18 | 0.9500 |
C3—H3 | 0.9500 | O1W—H1WA | 0.8569 |
C4—H4 | 0.9500 | O1W—H1WB | 0.9371 |
C6—C7 | 1.510 (9) | O2W—H2WA | 0.8649 |
C6—H6A | 0.9900 | O2W—H2WB | 0.8483 |
C4—N1—C1 | 115.9 (6) | C7—C8—H8 | 119.9 |
C3—N2—C2 | 114.8 (6) | N4—C9—C8 | 123.9 (7) |
C5—N3—C6 | 122.5 (5) | N4—C9—H9 | 118.1 |
C5—N3—H3N | 99 (4) | C8—C9—H9 | 118.1 |
C6—N3—H3N | 139 (5) | N4—C10—C11 | 125.2 (7) |
C10—N4—C9 | 115.0 (6) | N4—C10—H10 | 117.4 |
C12—N5—C13 | 122.6 (6) | C11—C10—H10 | 117.4 |
C12—N5—H5N | 128 (4) | C10—C11—C7 | 118.3 (6) |
C13—N5—H5N | 106 (4) | C10—C11—H11 | 120.8 |
C17—N6—C16 | 116.6 (6) | C7—C11—H11 | 120.8 |
N1—C1—C2 | 120.9 (6) | O2—C12—N5 | 123.9 (6) |
N1—C1—C5 | 116.8 (6) | O2—C12—C2 | 119.7 (6) |
C2—C1—C5 | 122.2 (5) | N5—C12—C2 | 116.2 (6) |
N2—C2—C1 | 123.1 (5) | N5—C13—C14 | 112.5 (6) |
N2—C2—C12 | 111.4 (6) | N5—C13—H13A | 109.1 |
C1—C2—C12 | 125.5 (6) | C14—C13—H13A | 109.1 |
N2—C3—C4 | 122.5 (7) | N5—C13—H13B | 109.1 |
N2—C3—H3 | 118.7 | C14—C13—H13B | 109.1 |
C4—C3—H3 | 118.7 | H13A—C13—H13B | 107.8 |
N1—C4—C3 | 122.6 (6) | C15—C14—C18 | 116.6 (6) |
N1—C4—H4 | 118.7 | C15—C14—C13 | 121.9 (6) |
C3—C4—H4 | 118.7 | C18—C14—C13 | 121.5 (6) |
O1—C5—N3 | 123.0 (6) | C14—C15—C16 | 121.0 (7) |
O1—C5—C1 | 120.7 (6) | C14—C15—H15 | 119.5 |
N3—C5—C1 | 116.3 (5) | C16—C15—H15 | 119.5 |
N3—C6—C7 | 112.7 (6) | N6—C16—C15 | 122.9 (7) |
N3—C6—H6A | 109.1 | N6—C16—H16 | 118.6 |
C7—C6—H6A | 109.1 | C15—C16—H16 | 118.6 |
N3—C6—H6B | 109.1 | N6—C17—C18 | 123.0 (8) |
C7—C6—H6B | 109.1 | N6—C17—H17 | 118.5 |
H6A—C6—H6B | 107.8 | C18—C17—H17 | 118.5 |
C8—C7—C11 | 117.3 (6) | C14—C18—C17 | 119.9 (7) |
C8—C7—C6 | 121.6 (6) | C14—C18—H18 | 120.1 |
C11—C7—C6 | 121.1 (6) | C17—C18—H18 | 120.1 |
C9—C8—C7 | 120.3 (7) | H1WA—O1W—H1WB | 113.1 |
C9—C8—H8 | 119.9 | H2WA—O2W—H2WB | 105.0 |
C4—N1—C1—C2 | 0.2 (9) | C7—C8—C9—N4 | 2.1 (12) |
C4—N1—C1—C5 | 178.1 (6) | C9—N4—C10—C11 | 3.4 (12) |
C3—N2—C2—C1 | 0.9 (10) | N4—C10—C11—C7 | −1.4 (12) |
C3—N2—C2—C12 | 179.9 (6) | C8—C7—C11—C10 | −0.5 (11) |
N1—C1—C2—N2 | 0.3 (10) | C6—C7—C11—C10 | −178.9 (6) |
C5—C1—C2—N2 | −177.6 (6) | C13—N5—C12—O2 | −4.5 (10) |
N1—C1—C2—C12 | −178.5 (6) | C13—N5—C12—C2 | 171.7 (6) |
C5—C1—C2—C12 | 3.6 (10) | N2—C2—C12—O2 | 78.2 (8) |
C2—N2—C3—C4 | −2.5 (11) | C1—C2—C12—O2 | −102.8 (8) |
C1—N1—C4—C3 | −1.8 (10) | N2—C2—C12—N5 | −98.1 (7) |
N2—C3—C4—N1 | 3.2 (12) | C1—C2—C12—N5 | 80.8 (9) |
C6—N3—C5—O1 | 2.1 (10) | C12—N5—C13—C14 | 148.9 (6) |
C6—N3—C5—C1 | −175.4 (5) | N5—C13—C14—C15 | 141.5 (7) |
N1—C1—C5—O1 | −161.3 (6) | N5—C13—C14—C18 | −40.3 (9) |
C2—C1—C5—O1 | 16.6 (9) | C18—C14—C15—C16 | 1.4 (10) |
N1—C1—C5—N3 | 16.2 (8) | C13—C14—C15—C16 | 179.6 (6) |
C2—C1—C5—N3 | −165.8 (6) | C17—N6—C16—C15 | −0.6 (11) |
C5—N3—C6—C7 | −79.3 (7) | C14—C15—C16—N6 | −0.9 (12) |
N3—C6—C7—C8 | 94.4 (7) | C16—N6—C17—C18 | 1.6 (11) |
N3—C6—C7—C11 | −87.3 (8) | C15—C14—C18—C17 | −0.4 (10) |
C11—C7—C8—C9 | 0.1 (11) | C13—C14—C18—C17 | −178.7 (6) |
C6—C7—C8—C9 | 178.5 (7) | N6—C17—C18—C14 | −1.2 (11) |
C10—N4—C9—C8 | −3.8 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···N1 | 0.88 (3) | 2.08 (5) | 2.718 (7) | 129 (5) |
N5—H5N···O1i | 0.88 (3) | 2.05 (4) | 2.858 (7) | 151 (6) |
O1W—H1WA···O2Wii | 0.86 | 1.91 | 2.762 (7) | 177 |
O1W—H1WB···N6iii | 0.94 | 1.97 | 2.886 (7) | 164 |
O2W—H2WA···O1Wiv | 0.86 | 1.91 | 2.765 (8) | 172 |
O2W—H2WB···N4 | 0.85 | 2.06 | 2.888 (7) | 164 |
C3—H3···O1Wv | 0.95 | 2.38 | 3.273 (8) | 156 |
C4—H4···O2Wvi | 0.95 | 2.58 | 3.253 (8) | 128 |
C6—H6A···N2vii | 0.99 | 2.57 | 3.515 (8) | 159 |
C16—H16···N4iv | 0.95 | 2.60 | 3.451 (9) | 149 |
Symmetry codes: (i) x−1, y, z; (ii) x, −y+1, z+1/2; (iii) x+1, −y+1, z+1/2; (iv) x−1, −y+1, z−1/2; (v) x−1, −y+2, z−1/2; (vi) x, y+1, z; (vii) x+1, −y+2, z+1/2. |
[Ag(C18H16N6O2)]NO3 | Dx = 1.795 Mg m−3 |
Mr = 518.25 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Fddd | Cell parameters from 6115 reflections |
a = 14.9776 (16) Å | θ = 1.9–25.9° |
b = 17.3228 (12) Å | µ = 1.10 mm−1 |
c = 29.570 (4) Å | T = 153 K |
V = 7672.1 (14) Å3 | Block, colourless |
Z = 16 | 0.40 × 0.30 × 0.20 mm |
F(000) = 4160 |
Stoe IPDS 1 diffractometer | 1721 independent reflections |
Radiation source: fine-focus sealed tube | 1038 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.096 |
φ rotation scans | θmax = 25.3°, θmin = 2.7° |
Absorption correction: multi-scan (MULABS; Spek, 2009) | h = −17→17 |
Tmin = 0.985, Tmax = 1.000 | k = −20→20 |
13548 measured reflections | l = −35→35 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 0.90 | w = 1/[σ2(Fo2) + (0.0575P)2] where P = (Fo2 + 2Fc2)/3 |
1721 reflections | (Δ/σ)max = 0.003 |
141 parameters | Δρmax = 0.68 e Å−3 |
0 restraints | Δρmin = −0.65 e Å−3 |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.87500 | 0.96632 (4) | 0.37500 | 0.0464 (2) | |
O1 | 0.9796 (3) | 0.8101 (3) | 0.14979 (13) | 0.0483 (14) | |
N1 | 0.9673 (3) | 0.8836 (3) | 0.04722 (14) | 0.0447 (18) | |
N3 | 1.0135 (3) | 0.9361 (3) | 0.14261 (16) | 0.050 (2) | |
N4 | 0.9359 (3) | 0.9589 (3) | 0.31086 (16) | 0.0427 (17) | |
C1 | 0.9207 (3) | 0.8777 (4) | 0.08584 (15) | 0.0337 (16) | |
C4 | 0.9204 (4) | 0.8805 (4) | 0.00937 (17) | 0.0453 (19) | |
C5 | 0.9745 (3) | 0.8715 (4) | 0.12935 (16) | 0.0340 (18) | |
C6 | 1.0689 (4) | 0.9393 (4) | 0.18277 (18) | 0.051 (2) | |
C7 | 1.0197 (4) | 0.9446 (3) | 0.22692 (19) | 0.0437 (19) | |
C8 | 1.0640 (4) | 0.9276 (4) | 0.26675 (19) | 0.045 (2) | |
C9 | 1.0221 (4) | 0.9354 (4) | 0.3075 (2) | 0.046 (2) | |
C10 | 0.8921 (3) | 0.9745 (3) | 0.27201 (19) | 0.043 (2) | |
C11 | 0.9302 (4) | 0.9686 (4) | 0.23033 (19) | 0.0447 (19) | |
O11 | 0.9918 (8) | 0.0666 (8) | 0.0912 (4) | 0.089 (3) | 0.500 |
O12 | 1.0655 (16) | 0.1323 (15) | 0.1063 (6) | 0.089 (3) | 0.250 |
O13 | 0.9326 (9) | 0.0862 (7) | 0.1489 (4) | 0.089 (3) | 0.500 |
O14 | 0.9869 (18) | 0.1233 (19) | 0.1570 (7) | 0.089 (3) | 0.250 |
N10A | 0.9614 (15) | 0.12500 | 0.12500 | 0.089 (3) | 0.500 |
N10B | 0.9960 (16) | 0.12500 | 0.12500 | 0.089 (3) | 0.500 |
H4 | 0.95046 | 0.88600 | −0.01873 | 0.0540* | |
H3N | 1.00563 | 0.97838 | 0.12661 | 0.0600* | |
H6A | 1.10904 | 0.98449 | 0.18023 | 0.0610* | |
H6B | 1.10697 | 0.89253 | 0.18345 | 0.0610* | |
H8 | 1.12416 | 0.91024 | 0.26574 | 0.0540* | |
H9 | 1.05428 | 0.92399 | 0.33436 | 0.0560* | |
H10 | 0.83154 | 0.99047 | 0.27385 | 0.0520* | |
H11 | 0.89687 | 0.98062 | 0.20392 | 0.0530* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0474 (4) | 0.0397 (4) | 0.0521 (4) | 0.0000 | 0.0035 (4) | 0.0000 |
O1 | 0.048 (2) | 0.054 (3) | 0.043 (2) | 0.000 (2) | −0.005 (2) | 0.010 (2) |
N1 | 0.047 (3) | 0.057 (4) | 0.030 (2) | 0.003 (3) | 0.004 (2) | −0.004 (2) |
N3 | 0.078 (4) | 0.035 (4) | 0.037 (3) | 0.002 (3) | −0.015 (3) | −0.006 (2) |
N4 | 0.042 (3) | 0.039 (3) | 0.047 (3) | 0.001 (2) | −0.009 (2) | −0.006 (2) |
C1 | 0.037 (2) | 0.035 (3) | 0.029 (3) | 0.005 (3) | 0.002 (2) | −0.010 (3) |
C4 | 0.059 (3) | 0.047 (4) | 0.030 (3) | 0.009 (4) | 0.006 (2) | 0.000 (3) |
C5 | 0.030 (2) | 0.046 (4) | 0.026 (3) | 0.005 (2) | 0.010 (2) | −0.007 (4) |
C6 | 0.062 (4) | 0.057 (5) | 0.033 (3) | −0.003 (3) | −0.008 (3) | −0.006 (3) |
C7 | 0.051 (3) | 0.036 (4) | 0.044 (3) | −0.004 (3) | −0.012 (3) | −0.008 (3) |
C8 | 0.046 (3) | 0.044 (4) | 0.045 (4) | 0.007 (3) | −0.006 (3) | −0.004 (3) |
C9 | 0.051 (4) | 0.051 (4) | 0.037 (3) | 0.009 (3) | −0.008 (3) | 0.000 (3) |
C10 | 0.037 (4) | 0.041 (4) | 0.052 (3) | −0.004 (3) | −0.010 (3) | −0.006 (3) |
C11 | 0.050 (3) | 0.045 (4) | 0.039 (3) | −0.001 (3) | −0.015 (3) | −0.008 (3) |
O11 | 0.112 (6) | 0.088 (6) | 0.067 (4) | 0.0000 | 0.0000 | 0.028 (4) |
O12 | 0.112 (6) | 0.088 (6) | 0.067 (4) | 0.0000 | 0.0000 | 0.028 (4) |
O13 | 0.112 (6) | 0.088 (6) | 0.067 (4) | 0.0000 | 0.0000 | 0.028 (4) |
O14 | 0.112 (6) | 0.088 (6) | 0.067 (4) | 0.0000 | 0.0000 | 0.028 (4) |
N10A | 0.112 (6) | 0.088 (6) | 0.067 (4) | 0.0000 | 0.0000 | 0.028 (4) |
N10B | 0.112 (6) | 0.088 (6) | 0.067 (4) | 0.0000 | 0.0000 | 0.028 (4) |
Ag1—Ag1i | 3.1638 (11) | C8—C9 | 1.365 (8) |
Ag1—N4 | 2.109 (5) | C10—C11 | 1.362 (8) |
Ag1—O1ii | 2.814 (5) | O11—N10A | 1.493 (14) |
Ag1—O1iii | 2.814 (5) | O11—N10B | 1.424 (13) |
Ag1—N4iv | 2.109 (5) | O11—O12 | 1.65 (3) |
O1—C5 | 1.226 (8) | O12—N10B | 1.19 (3) |
N1—C1 | 1.342 (6) | O12—N10A | 1.66 (3) |
N1—C4 | 1.323 (7) | O13—N10A | 1.066 (15) |
N3—C5 | 1.322 (8) | O13—N10B | 1.36 (2) |
N3—C6 | 1.450 (7) | O13—O14 | 1.06 (3) |
N4—C9 | 1.357 (8) | O14—N10B | 0.96 (2) |
N4—C10 | 1.350 (7) | O14—N10A | 1.02 (2) |
C1—C5 | 1.522 (6) | C4—H4 | 0.9500 |
C1—C1v | 1.372 (6) | C6—H6B | 0.9900 |
C4—C4v | 1.373 (9) | C6—H6A | 0.9900 |
N3—H3N | 0.8800 | C8—H8 | 0.9500 |
C6—C7 | 1.502 (8) | C9—H9 | 0.9500 |
C7—C8 | 1.384 (8) | C10—H10 | 0.9500 |
C7—C11 | 1.407 (8) | C11—H11 | 0.9500 |
N4—Ag1—N4iv | 173.0 (2) | C6—C7—C8 | 119.5 (5) |
O1ii—Ag1—O1iii | 109.48 (14) | C6—C7—C11 | 123.2 (5) |
Ag1i—Ag1—N4 | 86.51 (14) | C7—C8—C9 | 120.7 (6) |
O1ii—Ag1—N4 | 97.80 (15) | N4—C9—C8 | 122.1 (5) |
O1iii—Ag1—N4 | 86.26 (15) | N4—C10—C11 | 123.5 (5) |
Ag1i—Ag1—O1ii | 125.26 (10) | C7—C11—C10 | 119.1 (5) |
Ag1i—Ag1—O1iii | 125.26 (10) | C4v—C4—H4 | 119.00 |
Ag1i—Ag1—N4iv | 86.51 (14) | N1—C4—H4 | 119.00 |
O1ii—Ag1—N4iv | 86.26 (15) | N3—C6—H6B | 108.00 |
O1iii—Ag1—N4iv | 97.80 (15) | C7—C6—H6A | 108.00 |
Ag1vi—O1—C5 | 114.9 (3) | H6A—C6—H6B | 107.00 |
C1—N1—C4 | 116.2 (5) | C7—C6—H6B | 108.00 |
C5—N3—C6 | 121.9 (5) | N3—C6—H6A | 108.00 |
Ag1—N4—C9 | 119.7 (4) | C7—C8—H8 | 120.00 |
Ag1—N4—C10 | 122.9 (3) | C9—C8—H8 | 120.00 |
C9—N4—C10 | 117.4 (5) | C8—C9—H9 | 119.00 |
N1—C1—C5 | 116.7 (4) | N4—C9—H9 | 119.00 |
N1—C1—C1v | 121.6 (4) | N4—C10—H10 | 118.00 |
C1v—C1—C5 | 121.6 (4) | C11—C10—H10 | 118.00 |
N1—C4—C4v | 122.1 (5) | O11—N10A—O13 | 98.0 (8) |
C5—N3—H3N | 119.00 | O13—N10A—N10B | 113.9 (13) |
C6—N3—H3N | 119.00 | O11—N10A—N10B | 72.3 (9) |
O1—C5—N3 | 124.1 (5) | O11—N10B—N10A | 87.5 (11) |
O1—C5—C1 | 120.7 (6) | O11—N10B—O13 | 89.0 (10) |
N3—C5—C1 | 115.2 (5) | O13—N10B—N10A | 45.8 (9) |
N3—C6—C7 | 115.7 (5) | C7—C11—H11 | 120.00 |
C8—C7—C11 | 117.3 (5) | C10—C11—H11 | 120.00 |
Ag1i—Ag1—N4—C9 | −71.9 (5) | N1—C1—C5—O1 | −106.9 (6) |
Ag1i—Ag1—N4—C10 | 106.2 (4) | N1—C1—C5—N3 | 73.3 (7) |
O1ii—Ag1—N4—C9 | 163.0 (5) | C1v—C1—C5—O1 | 68.8 (8) |
O1ii—Ag1—N4—C10 | −19.0 (5) | C1v—C1—C5—N3 | −111.0 (7) |
O1iii—Ag1—N4—C9 | 53.8 (5) | N1—C1—C1v—N1v | 5.5 (11) |
O1iii—Ag1—N4—C10 | −128.1 (5) | N1—C1—C1v—C5v | −170.1 (6) |
Ag1vi—O1—C5—N3 | −89.1 (5) | C5—C1—C1v—N1v | −170.1 (6) |
Ag1vi—O1—C5—C1 | 91.1 (5) | C5—C1—C1v—C5v | 14.4 (10) |
C4—N1—C1—C5 | 172.9 (6) | N1—C4—C4v—N1v | 4.5 (11) |
C4—N1—C1—C1v | −2.9 (10) | N3—C6—C7—C8 | 163.0 (6) |
C1—N1—C4—C4v | −1.9 (10) | N3—C6—C7—C11 | −19.0 (9) |
C6—N3—C5—O1 | 1.7 (8) | C6—C7—C8—C9 | 177.0 (6) |
C6—N3—C5—C1 | −178.5 (4) | C11—C7—C8—C9 | −1.1 (9) |
C5—N3—C6—C7 | −79.7 (7) | C6—C7—C11—C10 | −177.5 (6) |
Ag1—N4—C9—C8 | 178.2 (5) | C8—C7—C11—C10 | 0.5 (9) |
C10—N4—C9—C8 | 0.1 (9) | C7—C8—C9—N4 | 0.9 (10) |
Ag1—N4—C10—C11 | −178.8 (5) | N4—C10—C11—C7 | 0.4 (9) |
C9—N4—C10—C11 | −0.7 (9) |
Symmetry codes: (i) x, −y+7/4, −z+3/4; (ii) x−1/4, y+1/4, −z+1/2; (iii) −x+2, y+1/4, z+1/4; (iv) −x+7/4, y, −z+3/4; (v) −x+7/4, −y+7/4, z; (vi) −x+2, y−1/4, z−1/4. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···O11vii | 0.88 | 1.86 | 2.744 (14) | 178 |
N3—H3N···O13vii | 0.88 | 2.26 | 2.875 (13) | 127 |
C4—H4···O11viii | 0.95 | 2.45 | 3.378 (13) | 165 |
C4—H4···O14ix | 0.95 | 2.40 | 3.33 (2) | 168 |
C9—H9···O13x | 0.95 | 2.50 | 3.224 (14) | 133 |
C11—H11···O13vii | 0.95 | 2.51 | 3.154 (13) | 126 |
Symmetry codes: (vii) x, y+1, z; (viii) −x+2, −y+1, −z; (ix) −x+2, y+3/4, z−1/4; (x) x+1/4, y+3/4, −z+1/2. |
Funding information
Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel..
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Alvarez-Ibarra, C., Cuervo-Rodríguez, R., Fernández-Monreal, M. C. & Ruiz, M. P. (1994). J. Org. Chem. 59, 7284–7291. CAS Google Scholar
Batten, S. R., Champness, N. R., Chen, X. M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Suh, M. P. & Reedijk, J. (2013). Pure Appl. Chem. 5, 1715–1724. Google Scholar
Batten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers, Design, Analysis and Applications. Cambridge: Royal Society of Chemistry. Google Scholar
Burchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2004). Inorg. Chem. 43, 5550–5557. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cati, D. (2002). PhD thesis, University of Neuchâtel, Switzerland. Google Scholar
Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ge, C.-H., Kou, H.-Z., Wang, R.-J., Jiang, Y.-B. & Cui, A.-L. (2005). Acta Cryst. E61, o2024–o2026. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992–2993. Web of Science CSD CrossRef Google Scholar
Huo, J. Z., Su, X. M., Wu, X. X., Liu, Y. Y. & Ding, B. (2016). CrystEngComm, 18, 6640–6652. Web of Science CSD CrossRef CAS Google Scholar
Klingele (née Hausmann), J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633–645. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shu, M., Tu, C., Xu, W., Jin, H. & Sun, J. (2006). Cryst. Growth Des. 6, 1890–1896. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yue, N. L. S., Jennings, M. C. & Puddephatt, R. J. (2007). Eur. J. Inorg. Chem. pp. 1690–1697. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.