research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a pyrazine-2,3-dicarboxamide ligand and of its silver(I) nitrate complex, a three-dimensional coordination polymer

CROSSMARK_Color_square_no_text.svg

aDebiopharm International S.A., Chemin Messidor 5-7, CP 5911, CH-1002 Lausanne, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by T. J. Prior, University of Hull, England (Received 11 April 2017; accepted 27 April 2017; online 5 May 2017)

The title ligand, C18H16N6O2·2H2O (L1) [N2,N3-bis­(pyridin-4-ylmeth­yl)pyrazine-2,3-dicarboxamide], crystallized as a dihydrate. The mol­ecule is U-shaped with the carboxamide groups being cis to one another, making a dihedral angle of 81.6 (5)°. The terminal pyridine rings are inclined to one another by 58.5 (4)°. There is an intra­molecular N—H⋯Npyrazine hydrogen bond present, forming an S(5) ring motif. In the crystal, adjacent mol­ecules are linked by N—H⋯Ocarboxamide hydrogen bonds, forming a chain along [001]. A chain of hydrogen-bonded water mol­ecules is linked to the chain of (L1) mol­ecules by O—H⋯N hydrogen bonds, forming columns propagating along the c axis. The columns are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional supra­molecular structure. The reaction of ligand (L1) with silver(I) nitrate led to the formation of a new three-dimensional coordination polymer, {[Ag(C18H16N6O2)]NO3}n, poly[[[μ4-N2,N3-bis­(pyridin-4-ylmeth­yl)pyrazine-2,3-dicarboxamide]­silver(I)] nitrate] (I). The asymmetric unit is composed of half of one silver ion, located on a twofold rotation axis, half a ligand mol­ecule and half a positionally disordered nitrate anion located about a twofold rotation axis. The full mol­ecule of the ligand is generated by twofold rotational symmetry, with this twofold axis bis­ecting the Car—Car bonds of the pyrazine ring and the Ag—Ag bond. The carboxamide groups are now trans to one another, making a dihedral angle of 65.8 (4)°. The two terminal pyridine rings are inclined to one another by 6.6 (3)°. Two ligands wrap around an Ag—Ag bond of 3.1638 (11) Å, forming a figure-of-eight-shaped complex mol­ecule. Each silver ion is coordinated by two pyridine N atoms and by two carboxamide O atoms of neighbouring mol­ecules, hence forming a three-dimensional framework. The nitrate anion is linked to the framework by N—H⋯O and C—H⋯O hydrogen bonds.

1. Chemical context

The title ligand, N2,N3-bis­(pyridin-4-ylmeth­yl)pyrazine-2,3-dicarboxamide (L1), is one of a series of ligands synthesized in order to study the superexchange in supra­molecular complexes formed using pyrazine carboxamide derivatives and first row transition metal ions (Cati, 2002[Cati, D. (2002). PhD thesis, University of Neuchâtel, Switzerland.]; Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]). To the best of our knowledge, neither the synthesis nor the crystal structure of (L1) have been described previously. It is very similar to the ligand N2,N3-bis­(pyridin-2-ylmeth­yl)pyrazine-2,3-dicarboxamide (L2), for which a number of transition metal complexes have been described, including some inter­esting tetra­nuclear 2×2 grid-like and square complexes (Hausmann et al., 2003[Hausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992-2993.]; Klingele et al., 2007[Klingele (née Hausmann), J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633-645.]). Two such complexes, {[Cu4(L2)4](ClO4)4}·5CH3OH·4H2O and {[Ni4(L2)4]Cl4}·5CH3CN·13H2O (Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]), exhibit anion encapsulation, and magnetic susceptibility measurements indicate that they are weakly anti-ferromagnetic, with J values of −5.87 and −2.64 cm−1, respectively.

A search of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), indicated that silver nitrate is an excellent metal salt for the formation of multi-dimensional coordination polymers. The silver ion can have multiple coordination geometries and modes, and the nitrate anion has been shown to coordinate to metal ions in a number of different modes, many of which involve bridging metal ions. The properties of the complexes formed are extremely varied. For example, with the tetra­dendate ligand 1,6-bis­(2H-1,2,3-triazol-2-yl)hexane, Huo et al. (2016[Huo, J. Z., Su, X. M., Wu, X. X., Liu, Y. Y. & Ding, B. (2016). CrystEngComm, 18, 6640-6652.]) synthesized the three-dimensional coordin­ation polymer, catena-[[μ-2,2′-(butane-1,4-di­yl)bis­(2H-1,2,3-triazole)]bis­(μ-nitrato)disilver]. They showed that it exhibits highly selective and sensitive luminescence sensing of Cr2O72− ions in aqueous solution. With the rigid tripodal arene-core-based nitro­gen ligand, 1,3,5-tris­(pyrazol-1-yl)benzene, Shu et al. (2006[Shu, M., Tu, C., Xu, W., Jin, H. & Sun, J. (2006). Cryst. Growth Des. 6, 1890-1896.]) formed a porous metal–organic framework, viz. catena-[bis­(μ3-nitrato-O,O′,O′′)bis­(μ3-1,3,5-tris­(pyrazol-1-yl)benzene-N,N′,N′′)tris­ilver(I) nitrate]. The nitrate counter-anions located in the cationic framework can be exchanged reversibly without destruction of the structure. Hence, this compound can act as a zeolite-like porous material for anion exchange.

[Scheme 1]

The title ligand has potentially two bidentate (N,N) and two monodentate (Npyridine) coordination sites. It is therefore an inter­esting ligand to study its coordination behaviour with silver nitrate, and herein, we describe the solid state structures of ligand (L1), and the new three-dimensional coordination polymer, poly[[[μ4-N2,N3-bis­(pyridin-4-ylmeth­yl)pyrazine-2,3-dicarboxamide]­silver(I)]nitrate] (I).

2. Structural commentary

The title ligand (L1) crystallized as a dihydrate, and its mol­ecular structure is illustrated in Fig. 1[link]. The mol­ecule is U-shaped with the carboxamide groups (C6/N3/C5/O1) being cis to one another, making a dihedral angle of 81.6 (5)°. The terminal pyridine rings (N4/C7–C11) are inclined to one another by 58.5 (4)°. There is an intra­molecular N—H⋯N hydrogen bond present, forming an S(5) ring motif (Fig. 1[link] and Table 1[link]).

[Scheme 2]

Table 1
Hydrogen-bond geometry (Å, °) for (L1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N1 0.88 (3) 2.08 (5) 2.718 (7) 129 (5)
N5—H5N⋯O1i 0.88 (3) 2.05 (4) 2.858 (7) 151 (6)
O1W—H1WA⋯O2Wii 0.86 1.91 2.762 (7) 177
O1W—H1WB⋯N6iii 0.94 1.97 2.886 (7) 164
O2W—H2WA⋯O1Wiv 0.86 1.91 2.765 (8) 172
O2W—H2WB⋯N4 0.85 2.06 2.888 (7) 164
C3—H3⋯O1Wv 0.95 2.38 3.273 (8) 156
C4—H4⋯O2Wvi 0.95 2.58 3.253 (8) 128
C6—H6A⋯N2vii 0.99 2.57 3.515 (8) 159
C16—H16⋯N4iv 0.95 2.60 3.451 (9) 149
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x+1, -y+1, z+{\script{1\over 2}}]; (iv) [x-1, -y+1, z-{\script{1\over 2}}]; (v) [x-1, -y+2, z-{\script{1\over 2}}]; (vi) x, y+1, z; (vii) [x+1, -y+2, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of ligand (L1), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular N—H⋯N contact is shown as a dashed line (see Table 2[link]).

The reaction of the ligand with silver(I) nitrate led to the formation of a three-dimensional coordination polymer (I). The coordination of the ligand to the silver ions is illustrated in Fig. 2[link]. Selected bond lengths and angles in (I) are given in Table 2[link]. The asymmetric unit is composed of a silver ion, located on a twofold rotation axis, half a ligand mol­ecule and half a nitrate anion. The full mol­ecule of the ligand is generated by twofold rotational symmetry, with this twofold axis bis­ecting the C4—C4i bonds of the pyrazine ring and the Ag1—Ag1i bond (Table 2[link]). The carboxamide groups (C6/N3/C5/O1) are now trans to one another, making a dihedral angle of 65.8 (4)°. The terminal pyridine rings (N4/C7–C11) are inclined to one another by 6.6 (3)°. Two ligands effectively wrap around a Ag—Ag bond of 3.1638 (11) Å, forming a figure-of-eight-shaped mol­ecule, with each silver ion being coordinated by two pyridine N atoms. The silver ions are each further coordinated by the carboxamide O atom, O1, of neighbouring mol­ecules, hence forming a three-dimensional framework, illustrated in Fig. 3[link]. If one considers that the silver ion, Ag1, is fivefold coordinate (N2O2Agi) then its coordination sphere can be described as distorted trigonal–bipyramidal, with a τ5 value of 0.8 (τ5 = 1 for perfect trigonal–pyramidal geometry and 0 for perfect square-pyramidal geometry; Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). However, if one considers the Ag1 ion to be fourfold coordinate, N2O2, with a τ4 value of 0.55, its coordination sphere can be described as inter­mediate between trigonal–pyramidal and seesaw (τ4 = 1 for a perfect tetra­hedral geometry and 0 for a perfect square-planar geometry. For inter­mediate structures, including trigonal–pyramidal and seesaw, τ4 falls within the range of 0 to 1; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The nitrate anion that does not coordinate to the silver(I) ion is positionally disordered, and also located about a twofold rotation axis.

Table 2
Selected geometric parameters (Å, °) for (I)[link]

Ag1—Ag1i 3.1638 (11) Ag1—O1ii 2.814 (5)
Ag1—N4 2.109 (5)    
       
N4—Ag1—N4iii 173.0 (2) O1ii—Ag1—N4 97.80 (15)
O1ii—Ag1—O1iv 109.48 (14) O1iv—Ag1—N4 86.26 (15)
Ag1i—Ag1—N4 86.51 (14) Ag1i—Ag1—O1ii 125.26 (10)
Symmetry codes: (i) [x, -y+{\script{7\over 4}}, -z+{\script{3\over 4}}]; (ii) [x-{\script{1\over 4}}, y+{\script{1\over 4}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{7\over 4}}, y, -z+{\script{3\over 4}}]; (iv) [-x+2, y+{\script{1\over 4}}, z+{\script{1\over 4}}].
[Figure 2]
Figure 2
A view of the figure-eight arrangement of the title complex (I), with atom labelling for the asymmetric unit and some symmetry-related atoms (see Table 1[link] for details). The unlabelled atoms of the ligand on the left-hand-side of the figure are related to the labelled atoms by twofold rotational symmetry (symmetry operation: −x + [7\over4], −y + [7\over4], z). The nitrate anions have been omitted for clarity.
[Figure 3]
Figure 3
A view along the c axis of the three-dimensional framework of complex (I), showing the Ag⋯O bonds as dashed lines (see Table 2[link]). The nitrate anions and the C-bound H atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal of ligand (L1), mol­ecules are linked by N—H⋯O(water) hydrogen bonds forming chains propagating along the c-axis direction (Table 1[link] and Fig. 4[link]). Parallel to this chain of mol­ecules is a chain of hydrogen-bonded water mol­ecules (Table 1[link] and Fig. 4[link]), which is linked to the chain of (L1) mol­ecules by O—H⋯N hydrogen bonds, forming columns propagating along the c axis. The columns are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional supra­molecular structure (Table 1[link] and Fig. 5[link]).

[Figure 4]
Figure 4
A partial view along direction [111] of the crystal packing of ligand (L1). The hydrogen bonds are shown as dashed lines (see Table 1[link])
[Figure 5]
Figure 5
A view along the a axis of the crystal packing of ligand (L1). The columns of (L1) mol­ecules, linked by hydrogen bonds involving the water mol­ecules, are indicated by blue circles. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and for clarity, only the H atoms involved in hydrogen bonding have been included.

In (I), the nitrate anion is situated in the cavities of the three-dimensional framework and is linked to the framework by N—H⋯O and C—H⋯O hydrogen bonds (Table 3[link] and Fig. 6[link]). The nitrate anion in (I) is not essential for forming the three-dimensional structure, although it may act as a template for the formation of the framework (Batten et al., 2009[Batten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers, Design, Analysis and Applications. Cambridge: Royal Society of Chemistry.]). This is in contrast to the MOF catena-[bis­(μ3-nitrato-O,O′,O′′)bis(μ3-1,3,5-tris­(pyrazol-1-yl)benzene-N,N′,N′′)tris­ilver(I) nitrate] mentioned above (Shu et al., 2006[Shu, M., Tu, C., Xu, W., Jin, H. & Sun, J. (2006). Cryst. Growth Des. 6, 1890-1896.]), in which there are nitrate anions coordinating the silver ions in a μ3 fashion and present also in the framework cavities. There are, of course, other examples reported in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

Table 3
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O11v 0.88 1.86 2.744 (14) 178
N3—H3N⋯O13v 0.88 2.26 2.875 (13) 127
C4—H4⋯O11vi 0.95 2.45 3.378 (13) 165
C4—H4⋯O14vii 0.95 2.40 3.33 (2) 168
C9—H9⋯O13viii 0.95 2.50 3.224 (14) 133
C11—H11⋯O13v 0.95 2.51 3.154 (13) 126
Symmetry codes: (v) x, y+1, z; (vi) -x+2, -y+1, -z; (vii) [-x+2, y+{\script{3\over 4}}, z-{\script{1\over 4}}]; (viii) [x+{\script{1\over 4}}, y+{\script{3\over 4}}, -z+{\script{1\over 2}}].
[Figure 6]
Figure 6
A view along the a axis of the crystal packing of complex (I), showing the Ag⋯O bonds as dashed lines (see Table 2[link]). For clarity, all H atoms have been omitted.

In describing compound (I) as a three-dimensional coordination polymer, we make here the distinction between a coordination polymer and a metal–organic framework. Both have a three-dimensional framework but there are no cavities, even small ones, in the structure of (I). Hence, it should be classed as a three-dimensional coordination polymer according to the IUPAC recommendations on the `Terminology of metal–organic frameworks and coordination polymers' (Batten et al., 2013[Batten, S. R., Champness, N. R., Chen, X. M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Suh, M. P. & Reedijk, J. (2013). Pure Appl. Chem. 5, 1715-1724.]).

4. Database survey

A search of the Cambridge Structural Database (Version 5.38, update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for Ag–Ag complexes, excluding silver ion clusters of any kind, gave 321 hits. Limiting the search to Ag–Ag complexes with each silver ion coordinated by two pyridine N atoms, gave 95 hits. The Ag—Ag distances vary between ca 2.6–3.6 Å. One compound, bis­[μ2-2,7-di-tert-butyl-9,9-dimethyl-N,N′-bis­[(3-pyrid­yl)meth­yl]xanthene-4,5-dicarboxamide]­disilver bis­(tri­fluoro­methane­sulfonate) chloro­form solvate (HIFKUD; Yue et al., 2007[Yue, N. L. S., Jennings, M. C. & Puddephatt, R. J. (2007). Eur. J. Inorg. Chem. pp. 1690-1697.]), is particularly inter­esting because it too involves a dicarboxamide ligand, viz. N,N′-bis­[(3-pyrid­yl)methy]xanth­ene-4,5-dicarboxamide), that wraps around an Ag—Ag bond forming a similar figure-of-eight-shaped complex. Here the Ag—Ag bond length is 3.134 (1) Å, slightly shorter than the value of 3.1638 (11) Å observed in (I); Table 2[link]. A search for the benzene analogue of ligand (L1), N-(4-pyridyl­meth­yl)carbamo­yl)benzene, gave only two hits. Both of them are mercury(II) complexes, viz. the binuclear complex bis­{μ2-1,2-bis­[N-(4-pyridyl­meth­yl)carbamo­yl]benzene}­tetra­kis­(tri­fluoro­acetato)­dimercury(II) methanol solvate (XAHSIJ; Burchell et al., 2004[Burchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2004). Inorg. Chem. 43, 5550-5557.]) and the two-dimensional network catena-[bis­{μ2-1,2-bis­[N-(4-pyridyl­meth­yl)carbamo­yl]benzene}­dichlorido­mercury(II) 1,2-di­chloro­ethane solvate] (XAHSOP; Burchell et al., 2004[Burchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2004). Inorg. Chem. 43, 5550-5557.]). A search for the benzene analogue of ligand (L2), [N-(2-pyridyl­meth­yl)carbamo­yl]benzene, gave zero hits, while that for [N-(3-pyridyl­meth­yl)carbamo­yl]benzene gave eight hits. The latter includes the crystal structure of the dihydrate of the ligand itself (PANROM; Ge et al., 2005[Ge, C.-H., Kou, H.-Z., Wang, R.-J., Jiang, Y.-B. & Cui, A.-L. (2005). Acta Cryst. E61, o2024-o2026.]) and the structures of seven first-row transition metal one-, two- and three-dimensional coordination polymers.

5. Synthesis and crystallization

Ligand (L1) was prepared using the same procedure as for ligand (L2) (Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]). Dimethyl pyrazine-2,3-di­carboxyl­ate (1.96 g, 10 mmol; Alvarez-Ibarra et al., 1994[Alvarez-Ibarra, C., Cuervo-Rodríguez, R., Fernández-Monreal, M. C. & Ruiz, M. P. (1994). J. Org. Chem. 59, 7284-7291.]) and an excess of 4-(amino­meth­yl)pyridine (3.24 g, 30 mmol) in 35 ml of methanol were heated to reflux and heating was continued for 72 h in a two-necked flask (100 ml). The brown solution that formed was concentrated and 15 ml of water were added, which precipitated qu­anti­tatively ligand (L1). The solid was collected by filtration, washed with 10 ml of water and dried in air. Recrystallization in ethanol gave colourless plate-like crystals (yield is qu­anti­tative; m.p. 474 K). Spectroscopic data: 1H NMR (400 MHz, DMSO-d6): 9.33 (t, 1H, Jhg = 6.1, Hh); 8.86 (s, 1H, Hn = Hm); 8.49 (dd, 2H, Jba = 4.5, Jbe = 1.5, Hb = Hd); 7.39 (dd, 2H, Jab = 4.5, Jeb = 1.5, Ha = He); 4.52 (d, 2H, Jgh = 6.1, Hg). 13C NMR (400 MHz, DMSO-d6): 165.8, 150.3, 148.9, 147.6, 145.6, 123.0, 42.2. IR (KBr pellet, cm−1): 3273 (s), 3031 (s), 1675 (vs), 1602 (vs), 1564 (vs), 1520 (vs), 1416 (vs), 1364 (s), 1311 (s), 1292 (s), 1220 (s), 1185 (m), 1164 (m), 1124 (s), 1069 (m), 995 (s), 871 (w), 830 (m), 787 (m), 745 (m), 715 (m), 611 (m), 575 (w), 504 (m), 495 (m), 475 (m). Elemental analysis for [C18H16N6O2]·H2O (Mr = 366.39 g mol−1): calculated: C: 59.01 H: 4.95 N: 22.94%; found: C: 59.10 H: 5.05 N: 23.10%.

Complex (I): A solution of (L1) (46 mg; 0.126 mmol) in 6 ml CHCl3 was introduced into a 13 mm diameter glass tube. It was layered with methanol (ca 2 ml) used as a buffer zone. A solution of AgNO3 (21 mg, 0.126 mmol) in MeOH (6 ml) was then added gently to avoid possible mixing. The glass tube was sealed with a perforated parafilm and left at room temperature. Colourless block-like crystals were obtained after a few days (yield 60 mg, 92%). Elemental analysis for AgC18H16N7O5: (Mr = 518.25 g mol−1): calculated: C: 41.72 H: 3.11 N: 18.92%; found: C: 41.65 H: 3.09 N: 18.85%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. For the ligand (L1), the NH and water H atoms were located in difference-Fourier maps and refined with distance restraints: O—H = 0.85 (2) Å, N—H = 0.88 (2) Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). In the final cycles of refinement, the water H atoms were treated as riding atoms. For complex (I), the NH H atoms were included in calculated positions and treated as riding: N—H = 0.88 Å with Uiso(H) = 1.2Ueq(N). For both compounds, the C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C). The nitrate anion is positionally disordered about a twofold rotation axis and was refined with fixed occupancies (N10A and N10B = 0.5, O11 and O13 = 0.5, O12 and O14 = 0.25), and all their ADP's were made equal to that of atom O11. Using a one-circle image-plate diffraction system it is not possible to measure 100% of the Ewald sphere, particularly for triclinic or monoclinic systems. This is the case for ligand (L1), which crystallized in the monoclinic space group Pc and for which only 94.7% of the Ewald sphere was accessible.

Table 4
Experimental details

  (L1) (I)
Crystal data
Chemical formula C18H16N6O2·2H2O [Ag(C18H16N6O2)]NO3
Mr 384.40 518.25
Crystal system, space group Monoclinic, Pc Orthorhombic, Fddd
Temperature (K) 153 153
a, b, c (Å) 4.3677 (6), 14.0232 (12), 15.1816 (18) 14.9776 (16), 17.3228 (12), 29.570 (4)
α, β, γ (°) 90, 96.153 (16), 90 90, 90, 90
V3) 924.50 (19) 7672.1 (14)
Z 2 16
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 1.10
Crystal size (mm) 0.50 × 0.15 × 0.05 0.40 × 0.30 × 0.20
 
Data collection
Diffractometer Stoe IPDS 1 Stoe IPDS 1
Absorption correction Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.763, 1.000 0.985, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7134, 3388, 1693 13548, 1721, 1038
Rint 0.107 0.096
(sin θ/λ)max−1) 0.615 0.600
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.122, 0.77 0.045, 0.107, 0.90
No. of reflections 3388 1721
No. of parameters 260 141
No. of restraints 8 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.25 0.68, −0.65
Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: EXPOSE in IPDS-I (Stoe & Cie, 2004); cell refinement: CELL in IPDS-I (Stoe & Cie, 2004); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(L1) N2,N3-Bis(pyridin-4-ylmethyl)pyrazine-2,3-dicarboxamide top
Crystal data top
C18H16N6O2·2H2OF(000) = 404
Mr = 384.40Dx = 1.381 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 4.3677 (6) ÅCell parameters from 3264 reflections
b = 14.0232 (12) Åθ = 2.0–25.9°
c = 15.1816 (18) ŵ = 0.10 mm1
β = 96.153 (16)°T = 153 K
V = 924.50 (19) Å3Plate, colourless
Z = 20.50 × 0.15 × 0.05 mm
Data collection top
Stoe IPDS 1
diffractometer
3388 independent reflections
Radiation source: fine-focus sealed tube1693 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.107
φ rotation scansθmax = 25.9°, θmin = 2.0°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 55
Tmin = 0.763, Tmax = 1.000k = 1716
7134 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0453P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.77(Δ/σ)max < 0.001
3388 reflectionsΔρmax = 0.21 e Å3
260 parametersΔρmin = 0.25 e Å3
8 restraintsExtinction correction: (SHELXL2016; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7750 (11)0.9108 (3)0.4491 (3)0.0358 (13)
O20.5478 (11)0.9994 (3)0.2578 (3)0.0351 (12)
N10.4263 (14)1.1135 (3)0.5363 (4)0.0321 (15)
N20.1716 (14)1.1331 (4)0.3588 (4)0.0330 (15)
N30.7147 (13)0.9491 (3)0.5921 (3)0.0258 (14)
H3N0.612 (13)0.998 (3)0.609 (4)0.031*
N40.4923 (14)0.5966 (4)0.6225 (4)0.0403 (16)
N50.1699 (14)0.9119 (4)0.3107 (4)0.0313 (14)
H5N0.002 (11)0.906 (5)0.337 (4)0.038*
N60.0999 (16)0.5615 (4)0.3180 (4)0.0436 (17)
C10.4668 (15)1.0457 (4)0.4743 (4)0.0267 (17)
C20.3401 (16)1.0564 (4)0.3878 (4)0.0258 (16)
C30.1396 (19)1.1999 (5)0.4209 (5)0.043 (2)
H30.0306251.2567370.4039780.051*
C40.2586 (18)1.1888 (4)0.5079 (5)0.0360 (19)
H40.2195261.2369350.5492950.043*
C50.6613 (15)0.9624 (4)0.5039 (4)0.0280 (16)
C60.9192 (16)0.8748 (4)0.6312 (5)0.0290 (17)
H6A0.9855330.8914530.6937070.035*
H6B1.1051930.8722210.5993140.035*
C70.7688 (16)0.7778 (4)0.6278 (5)0.0307 (17)
C80.8016 (18)0.7151 (4)0.5602 (5)0.0376 (19)
H80.9172050.7330330.5133440.045*
C90.669 (2)0.6270 (5)0.5600 (5)0.046 (2)
H90.7020620.5845550.5132390.056*
C100.4698 (19)0.6573 (5)0.6889 (5)0.044 (2)
H100.3572520.6369750.7356680.053*
C110.5967 (17)0.7473 (5)0.6950 (5)0.0374 (19)
H110.5680420.7876100.7437430.045*
C120.3639 (17)0.9848 (4)0.3138 (4)0.0297 (17)
C130.1367 (17)0.8444 (4)0.2372 (5)0.0337 (18)
H13A0.3329340.8411790.2101780.040*
H13B0.0244260.8677530.1914300.040*
C140.0529 (17)0.7469 (4)0.2655 (4)0.0303 (17)
C150.1501 (17)0.6908 (5)0.2141 (5)0.0362 (18)
H150.2420900.7142710.1587780.043*
C160.224 (2)0.6001 (5)0.2413 (5)0.049 (2)
H160.3681870.5635520.2040910.058*
C170.1048 (19)0.6151 (5)0.3680 (6)0.042 (2)
H170.2002890.5891130.4219040.050*
C180.1843 (19)0.7075 (5)0.3446 (5)0.0389 (18)
H180.3279220.7433330.3826990.047*
O1W0.7645 (12)0.5986 (3)0.9268 (3)0.0503 (15)
H1WA0.6242090.5953270.9620230.075*
H1WB0.7682450.5451860.8897680.075*
O2W0.3065 (12)0.4183 (3)0.5379 (3)0.0478 (14)
H2WA0.1331610.4182830.5044710.072*
H2WB0.3273550.4748260.5573960.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.051 (3)0.039 (3)0.021 (3)0.009 (2)0.019 (3)0.000 (2)
O20.052 (3)0.040 (2)0.015 (3)0.005 (2)0.015 (2)0.0003 (19)
N10.055 (4)0.024 (3)0.018 (3)0.001 (3)0.007 (3)0.002 (2)
N20.050 (4)0.030 (3)0.019 (3)0.006 (3)0.004 (3)0.003 (2)
N30.041 (4)0.025 (3)0.012 (3)0.004 (3)0.009 (3)0.001 (2)
N40.047 (4)0.032 (3)0.041 (4)0.001 (3)0.001 (4)0.007 (3)
N50.038 (4)0.034 (3)0.023 (3)0.010 (3)0.006 (3)0.006 (2)
N60.054 (4)0.033 (3)0.044 (4)0.005 (3)0.007 (4)0.003 (3)
C10.035 (5)0.029 (3)0.018 (4)0.002 (3)0.009 (3)0.001 (3)
C20.034 (4)0.025 (3)0.020 (4)0.000 (3)0.008 (3)0.000 (3)
C30.061 (6)0.027 (4)0.040 (5)0.011 (4)0.003 (4)0.003 (3)
C40.060 (5)0.025 (4)0.023 (4)0.007 (4)0.009 (4)0.003 (3)
C50.037 (4)0.031 (4)0.017 (4)0.001 (3)0.006 (3)0.008 (3)
C60.036 (4)0.031 (4)0.020 (4)0.006 (3)0.001 (3)0.000 (3)
C70.032 (5)0.030 (4)0.027 (4)0.013 (3)0.007 (4)0.002 (3)
C80.056 (5)0.034 (4)0.022 (5)0.001 (4)0.001 (4)0.001 (3)
C90.066 (6)0.031 (4)0.040 (5)0.005 (4)0.001 (5)0.005 (3)
C100.057 (6)0.037 (4)0.039 (5)0.007 (4)0.009 (4)0.007 (4)
C110.053 (5)0.035 (4)0.024 (4)0.002 (4)0.006 (4)0.001 (3)
C120.047 (5)0.027 (4)0.015 (4)0.007 (3)0.002 (4)0.001 (3)
C130.047 (5)0.029 (3)0.025 (4)0.003 (3)0.003 (4)0.007 (3)
C140.038 (5)0.029 (3)0.025 (5)0.005 (3)0.006 (4)0.005 (3)
C150.047 (5)0.035 (4)0.028 (4)0.005 (4)0.007 (4)0.003 (3)
C160.063 (6)0.040 (4)0.042 (5)0.008 (4)0.000 (5)0.004 (4)
C170.052 (5)0.038 (4)0.038 (5)0.001 (4)0.012 (4)0.003 (4)
C180.041 (5)0.040 (4)0.036 (5)0.003 (4)0.002 (4)0.006 (3)
O1W0.066 (4)0.036 (3)0.051 (4)0.006 (3)0.013 (3)0.001 (2)
O2W0.061 (4)0.036 (3)0.047 (3)0.000 (2)0.007 (3)0.001 (2)
Geometric parameters (Å, º) top
O1—C51.245 (7)C6—H6B0.9900
O2—C121.248 (7)C7—C81.370 (9)
N1—C41.331 (8)C7—C111.398 (9)
N1—C11.364 (8)C8—C91.364 (10)
N2—C31.346 (9)C8—H80.9500
N2—C21.351 (8)C9—H90.9500
N3—C51.347 (8)C10—C111.378 (10)
N3—C61.456 (8)C10—H100.9500
N3—H3N0.88 (3)C11—H110.9500
N4—C101.330 (9)C13—C141.491 (8)
N4—C91.354 (10)C13—H13A0.9900
N5—C121.325 (8)C13—H13B0.9900
N5—C131.458 (8)C14—C151.366 (10)
N5—H5N0.88 (3)C14—C181.389 (10)
N6—C171.340 (10)C15—C161.386 (9)
N6—C161.344 (10)C15—H150.9500
C1—C21.377 (9)C16—H160.9500
C1—C51.485 (8)C17—C181.397 (10)
C2—C121.518 (9)C17—H170.9500
C3—C41.375 (10)C18—H180.9500
C3—H30.9500O1W—H1WA0.8569
C4—H40.9500O1W—H1WB0.9371
C6—C71.510 (9)O2W—H2WA0.8649
C6—H6A0.9900O2W—H2WB0.8483
C4—N1—C1115.9 (6)C7—C8—H8119.9
C3—N2—C2114.8 (6)N4—C9—C8123.9 (7)
C5—N3—C6122.5 (5)N4—C9—H9118.1
C5—N3—H3N99 (4)C8—C9—H9118.1
C6—N3—H3N139 (5)N4—C10—C11125.2 (7)
C10—N4—C9115.0 (6)N4—C10—H10117.4
C12—N5—C13122.6 (6)C11—C10—H10117.4
C12—N5—H5N128 (4)C10—C11—C7118.3 (6)
C13—N5—H5N106 (4)C10—C11—H11120.8
C17—N6—C16116.6 (6)C7—C11—H11120.8
N1—C1—C2120.9 (6)O2—C12—N5123.9 (6)
N1—C1—C5116.8 (6)O2—C12—C2119.7 (6)
C2—C1—C5122.2 (5)N5—C12—C2116.2 (6)
N2—C2—C1123.1 (5)N5—C13—C14112.5 (6)
N2—C2—C12111.4 (6)N5—C13—H13A109.1
C1—C2—C12125.5 (6)C14—C13—H13A109.1
N2—C3—C4122.5 (7)N5—C13—H13B109.1
N2—C3—H3118.7C14—C13—H13B109.1
C4—C3—H3118.7H13A—C13—H13B107.8
N1—C4—C3122.6 (6)C15—C14—C18116.6 (6)
N1—C4—H4118.7C15—C14—C13121.9 (6)
C3—C4—H4118.7C18—C14—C13121.5 (6)
O1—C5—N3123.0 (6)C14—C15—C16121.0 (7)
O1—C5—C1120.7 (6)C14—C15—H15119.5
N3—C5—C1116.3 (5)C16—C15—H15119.5
N3—C6—C7112.7 (6)N6—C16—C15122.9 (7)
N3—C6—H6A109.1N6—C16—H16118.6
C7—C6—H6A109.1C15—C16—H16118.6
N3—C6—H6B109.1N6—C17—C18123.0 (8)
C7—C6—H6B109.1N6—C17—H17118.5
H6A—C6—H6B107.8C18—C17—H17118.5
C8—C7—C11117.3 (6)C14—C18—C17119.9 (7)
C8—C7—C6121.6 (6)C14—C18—H18120.1
C11—C7—C6121.1 (6)C17—C18—H18120.1
C9—C8—C7120.3 (7)H1WA—O1W—H1WB113.1
C9—C8—H8119.9H2WA—O2W—H2WB105.0
C4—N1—C1—C20.2 (9)C7—C8—C9—N42.1 (12)
C4—N1—C1—C5178.1 (6)C9—N4—C10—C113.4 (12)
C3—N2—C2—C10.9 (10)N4—C10—C11—C71.4 (12)
C3—N2—C2—C12179.9 (6)C8—C7—C11—C100.5 (11)
N1—C1—C2—N20.3 (10)C6—C7—C11—C10178.9 (6)
C5—C1—C2—N2177.6 (6)C13—N5—C12—O24.5 (10)
N1—C1—C2—C12178.5 (6)C13—N5—C12—C2171.7 (6)
C5—C1—C2—C123.6 (10)N2—C2—C12—O278.2 (8)
C2—N2—C3—C42.5 (11)C1—C2—C12—O2102.8 (8)
C1—N1—C4—C31.8 (10)N2—C2—C12—N598.1 (7)
N2—C3—C4—N13.2 (12)C1—C2—C12—N580.8 (9)
C6—N3—C5—O12.1 (10)C12—N5—C13—C14148.9 (6)
C6—N3—C5—C1175.4 (5)N5—C13—C14—C15141.5 (7)
N1—C1—C5—O1161.3 (6)N5—C13—C14—C1840.3 (9)
C2—C1—C5—O116.6 (9)C18—C14—C15—C161.4 (10)
N1—C1—C5—N316.2 (8)C13—C14—C15—C16179.6 (6)
C2—C1—C5—N3165.8 (6)C17—N6—C16—C150.6 (11)
C5—N3—C6—C779.3 (7)C14—C15—C16—N60.9 (12)
N3—C6—C7—C894.4 (7)C16—N6—C17—C181.6 (11)
N3—C6—C7—C1187.3 (8)C15—C14—C18—C170.4 (10)
C11—C7—C8—C90.1 (11)C13—C14—C18—C17178.7 (6)
C6—C7—C8—C9178.5 (7)N6—C17—C18—C141.2 (11)
C10—N4—C9—C83.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···N10.88 (3)2.08 (5)2.718 (7)129 (5)
N5—H5N···O1i0.88 (3)2.05 (4)2.858 (7)151 (6)
O1W—H1WA···O2Wii0.861.912.762 (7)177
O1W—H1WB···N6iii0.941.972.886 (7)164
O2W—H2WA···O1Wiv0.861.912.765 (8)172
O2W—H2WB···N40.852.062.888 (7)164
C3—H3···O1Wv0.952.383.273 (8)156
C4—H4···O2Wvi0.952.583.253 (8)128
C6—H6A···N2vii0.992.573.515 (8)159
C16—H16···N4iv0.952.603.451 (9)149
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1/2; (iii) x+1, y+1, z+1/2; (iv) x1, y+1, z1/2; (v) x1, y+2, z1/2; (vi) x, y+1, z; (vii) x+1, y+2, z+1/2.
(I) Poly[[[µ4-N2,N3-bis(pyridin-4-ylmethyl)pyrazine-2,3-dicarboxamide]silver(I)] nitrate] top
Crystal data top
[Ag(C18H16N6O2)]NO3Dx = 1.795 Mg m3
Mr = 518.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, FdddCell parameters from 6115 reflections
a = 14.9776 (16) Åθ = 1.9–25.9°
b = 17.3228 (12) ŵ = 1.10 mm1
c = 29.570 (4) ÅT = 153 K
V = 7672.1 (14) Å3Block, colourless
Z = 160.40 × 0.30 × 0.20 mm
F(000) = 4160
Data collection top
Stoe IPDS 1
diffractometer
1721 independent reflections
Radiation source: fine-focus sealed tube1038 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.096
φ rotation scansθmax = 25.3°, θmin = 2.7°
Absorption correction: multi-scan
(MULABS; Spek, 2009)
h = 1717
Tmin = 0.985, Tmax = 1.000k = 2020
13548 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0575P)2]
where P = (Fo2 + 2Fc2)/3
1721 reflections(Δ/σ)max = 0.003
141 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.65 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.875000.96632 (4)0.375000.0464 (2)
O10.9796 (3)0.8101 (3)0.14979 (13)0.0483 (14)
N10.9673 (3)0.8836 (3)0.04722 (14)0.0447 (18)
N31.0135 (3)0.9361 (3)0.14261 (16)0.050 (2)
N40.9359 (3)0.9589 (3)0.31086 (16)0.0427 (17)
C10.9207 (3)0.8777 (4)0.08584 (15)0.0337 (16)
C40.9204 (4)0.8805 (4)0.00937 (17)0.0453 (19)
C50.9745 (3)0.8715 (4)0.12935 (16)0.0340 (18)
C61.0689 (4)0.9393 (4)0.18277 (18)0.051 (2)
C71.0197 (4)0.9446 (3)0.22692 (19)0.0437 (19)
C81.0640 (4)0.9276 (4)0.26675 (19)0.045 (2)
C91.0221 (4)0.9354 (4)0.3075 (2)0.046 (2)
C100.8921 (3)0.9745 (3)0.27201 (19)0.043 (2)
C110.9302 (4)0.9686 (4)0.23033 (19)0.0447 (19)
O110.9918 (8)0.0666 (8)0.0912 (4)0.089 (3)0.500
O121.0655 (16)0.1323 (15)0.1063 (6)0.089 (3)0.250
O130.9326 (9)0.0862 (7)0.1489 (4)0.089 (3)0.500
O140.9869 (18)0.1233 (19)0.1570 (7)0.089 (3)0.250
N10A0.9614 (15)0.125000.125000.089 (3)0.500
N10B0.9960 (16)0.125000.125000.089 (3)0.500
H40.950460.886000.018730.0540*
H3N1.005630.978380.126610.0600*
H6A1.109040.984490.180230.0610*
H6B1.106970.892530.183450.0610*
H81.124160.910240.265740.0540*
H91.054280.923990.334360.0560*
H100.831540.990470.273850.0520*
H110.896870.980620.203920.0530*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0474 (4)0.0397 (4)0.0521 (4)0.00000.0035 (4)0.0000
O10.048 (2)0.054 (3)0.043 (2)0.000 (2)0.005 (2)0.010 (2)
N10.047 (3)0.057 (4)0.030 (2)0.003 (3)0.004 (2)0.004 (2)
N30.078 (4)0.035 (4)0.037 (3)0.002 (3)0.015 (3)0.006 (2)
N40.042 (3)0.039 (3)0.047 (3)0.001 (2)0.009 (2)0.006 (2)
C10.037 (2)0.035 (3)0.029 (3)0.005 (3)0.002 (2)0.010 (3)
C40.059 (3)0.047 (4)0.030 (3)0.009 (4)0.006 (2)0.000 (3)
C50.030 (2)0.046 (4)0.026 (3)0.005 (2)0.010 (2)0.007 (4)
C60.062 (4)0.057 (5)0.033 (3)0.003 (3)0.008 (3)0.006 (3)
C70.051 (3)0.036 (4)0.044 (3)0.004 (3)0.012 (3)0.008 (3)
C80.046 (3)0.044 (4)0.045 (4)0.007 (3)0.006 (3)0.004 (3)
C90.051 (4)0.051 (4)0.037 (3)0.009 (3)0.008 (3)0.000 (3)
C100.037 (4)0.041 (4)0.052 (3)0.004 (3)0.010 (3)0.006 (3)
C110.050 (3)0.045 (4)0.039 (3)0.001 (3)0.015 (3)0.008 (3)
O110.112 (6)0.088 (6)0.067 (4)0.00000.00000.028 (4)
O120.112 (6)0.088 (6)0.067 (4)0.00000.00000.028 (4)
O130.112 (6)0.088 (6)0.067 (4)0.00000.00000.028 (4)
O140.112 (6)0.088 (6)0.067 (4)0.00000.00000.028 (4)
N10A0.112 (6)0.088 (6)0.067 (4)0.00000.00000.028 (4)
N10B0.112 (6)0.088 (6)0.067 (4)0.00000.00000.028 (4)
Geometric parameters (Å, º) top
Ag1—Ag1i3.1638 (11)C8—C91.365 (8)
Ag1—N42.109 (5)C10—C111.362 (8)
Ag1—O1ii2.814 (5)O11—N10A1.493 (14)
Ag1—O1iii2.814 (5)O11—N10B1.424 (13)
Ag1—N4iv2.109 (5)O11—O121.65 (3)
O1—C51.226 (8)O12—N10B1.19 (3)
N1—C11.342 (6)O12—N10A1.66 (3)
N1—C41.323 (7)O13—N10A1.066 (15)
N3—C51.322 (8)O13—N10B1.36 (2)
N3—C61.450 (7)O13—O141.06 (3)
N4—C91.357 (8)O14—N10B0.96 (2)
N4—C101.350 (7)O14—N10A1.02 (2)
C1—C51.522 (6)C4—H40.9500
C1—C1v1.372 (6)C6—H6B0.9900
C4—C4v1.373 (9)C6—H6A0.9900
N3—H3N0.8800C8—H80.9500
C6—C71.502 (8)C9—H90.9500
C7—C81.384 (8)C10—H100.9500
C7—C111.407 (8)C11—H110.9500
N4—Ag1—N4iv173.0 (2)C6—C7—C8119.5 (5)
O1ii—Ag1—O1iii109.48 (14)C6—C7—C11123.2 (5)
Ag1i—Ag1—N486.51 (14)C7—C8—C9120.7 (6)
O1ii—Ag1—N497.80 (15)N4—C9—C8122.1 (5)
O1iii—Ag1—N486.26 (15)N4—C10—C11123.5 (5)
Ag1i—Ag1—O1ii125.26 (10)C7—C11—C10119.1 (5)
Ag1i—Ag1—O1iii125.26 (10)C4v—C4—H4119.00
Ag1i—Ag1—N4iv86.51 (14)N1—C4—H4119.00
O1ii—Ag1—N4iv86.26 (15)N3—C6—H6B108.00
O1iii—Ag1—N4iv97.80 (15)C7—C6—H6A108.00
Ag1vi—O1—C5114.9 (3)H6A—C6—H6B107.00
C1—N1—C4116.2 (5)C7—C6—H6B108.00
C5—N3—C6121.9 (5)N3—C6—H6A108.00
Ag1—N4—C9119.7 (4)C7—C8—H8120.00
Ag1—N4—C10122.9 (3)C9—C8—H8120.00
C9—N4—C10117.4 (5)C8—C9—H9119.00
N1—C1—C5116.7 (4)N4—C9—H9119.00
N1—C1—C1v121.6 (4)N4—C10—H10118.00
C1v—C1—C5121.6 (4)C11—C10—H10118.00
N1—C4—C4v122.1 (5)O11—N10A—O1398.0 (8)
C5—N3—H3N119.00O13—N10A—N10B113.9 (13)
C6—N3—H3N119.00O11—N10A—N10B72.3 (9)
O1—C5—N3124.1 (5)O11—N10B—N10A87.5 (11)
O1—C5—C1120.7 (6)O11—N10B—O1389.0 (10)
N3—C5—C1115.2 (5)O13—N10B—N10A45.8 (9)
N3—C6—C7115.7 (5)C7—C11—H11120.00
C8—C7—C11117.3 (5)C10—C11—H11120.00
Ag1i—Ag1—N4—C971.9 (5)N1—C1—C5—O1106.9 (6)
Ag1i—Ag1—N4—C10106.2 (4)N1—C1—C5—N373.3 (7)
O1ii—Ag1—N4—C9163.0 (5)C1v—C1—C5—O168.8 (8)
O1ii—Ag1—N4—C1019.0 (5)C1v—C1—C5—N3111.0 (7)
O1iii—Ag1—N4—C953.8 (5)N1—C1—C1v—N1v5.5 (11)
O1iii—Ag1—N4—C10128.1 (5)N1—C1—C1v—C5v170.1 (6)
Ag1vi—O1—C5—N389.1 (5)C5—C1—C1v—N1v170.1 (6)
Ag1vi—O1—C5—C191.1 (5)C5—C1—C1v—C5v14.4 (10)
C4—N1—C1—C5172.9 (6)N1—C4—C4v—N1v4.5 (11)
C4—N1—C1—C1v2.9 (10)N3—C6—C7—C8163.0 (6)
C1—N1—C4—C4v1.9 (10)N3—C6—C7—C1119.0 (9)
C6—N3—C5—O11.7 (8)C6—C7—C8—C9177.0 (6)
C6—N3—C5—C1178.5 (4)C11—C7—C8—C91.1 (9)
C5—N3—C6—C779.7 (7)C6—C7—C11—C10177.5 (6)
Ag1—N4—C9—C8178.2 (5)C8—C7—C11—C100.5 (9)
C10—N4—C9—C80.1 (9)C7—C8—C9—N40.9 (10)
Ag1—N4—C10—C11178.8 (5)N4—C10—C11—C70.4 (9)
C9—N4—C10—C110.7 (9)
Symmetry codes: (i) x, y+7/4, z+3/4; (ii) x1/4, y+1/4, z+1/2; (iii) x+2, y+1/4, z+1/4; (iv) x+7/4, y, z+3/4; (v) x+7/4, y+7/4, z; (vi) x+2, y1/4, z1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O11vii0.881.862.744 (14)178
N3—H3N···O13vii0.882.262.875 (13)127
C4—H4···O11viii0.952.453.378 (13)165
C4—H4···O14ix0.952.403.33 (2)168
C9—H9···O13x0.952.503.224 (14)133
C11—H11···O13vii0.952.513.154 (13)126
Symmetry codes: (vii) x, y+1, z; (viii) x+2, y+1, z; (ix) x+2, y+3/4, z1/4; (x) x+1/4, y+3/4, z+1/2.
 

Funding information

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel..

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAlvarez-Ibarra, C., Cuervo-Rodríguez, R., Fernández-Monreal, M. C. & Ruiz, M. P. (1994). J. Org. Chem. 59, 7284–7291.  CAS Google Scholar
First citationBatten, S. R., Champness, N. R., Chen, X. M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O'Keeffe, M., Suh, M. P. & Reedijk, J. (2013). Pure Appl. Chem. 5, 1715–1724.  Google Scholar
First citationBatten, S. R., Neville, S. M. & Turner, D. R. (2009). Coordination Polymers, Design, Analysis and Applications. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationBurchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2004). Inorg. Chem. 43, 5550–5557.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCati, D. (2002). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationCati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGe, C.-H., Kou, H.-Z., Wang, R.-J., Jiang, Y.-B. & Cui, A.-L. (2005). Acta Cryst. E61, o2024–o2026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHausmann, J., Jameson, G. B. & Brooker, S. (2003). Chem. Commun. pp. 2992–2993.  Web of Science CSD CrossRef Google Scholar
First citationHuo, J. Z., Su, X. M., Wu, X. X., Liu, Y. Y. & Ding, B. (2016). CrystEngComm, 18, 6640–6652.  Web of Science CSD CrossRef CAS Google Scholar
First citationKlingele (née Hausmann), J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633–645.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShu, M., Tu, C., Xu, W., Jin, H. & Sun, J. (2006). Cryst. Growth Des. 6, 1890–1896.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2004). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYue, N. L. S., Jennings, M. C. & Puddephatt, R. J. (2007). Eur. J. Inorg. Chem. pp. 1690–1697.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds