research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis{(E)-[4-(di­methyl­amino)­benzyl­­idene]amino}­propan-2-ol: chain structure formation via an O—H⋯N hydrogen bond

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by J. Simpson, University of Otago, New Zealand (Received 21 April 2017; accepted 28 April 2017; online 5 May 2017)

The asymmetric unit of the title compound, C21H28N4O, consists of two unique mol­ecules linked by an O—H⋯N hydrogen bond. The conformation of both C=N bonds is E and the azomethine functional groups lie close to the plane of their associated benzene rings in each of the independent mol­ecules. The dihedral angles between the two benzene rings are 83.14 (4) and 75.45 (4)°. The plane of the one of the N(CH3)2 units is twisted away from the benzene ring by 18.8 (2)°, indicating loss of conjugation between the lone electron pair and the benzene ring. In the crystal structure, O—H⋯N hydrogen bonds together with C—H⋯O hydrogen bonds link neighbouring supra­molecular dimers into a three-dimensional network.

1. Chemical context

Schiff bases play important roles in the development of coordination chemistry related to catalysis, enzymatic reactions, and supra­molecular architectures. Crystal structures of Schiff bases derived from substituted benzaldehydes and 1,3-di­amino­propan-2-ol have been reported earlier (Azam, Warad, Al-Resayes et al., 2012[Azam, M., Warad, I., Al-Resayes, S. I., Shakir, M., Ullah, M. F., Ahmad, A. & Sarkar, F. H. (2012). Inorg. Chem. Commun. 20, 252-258.]; Azam, Hussain et al., 2012[Azam, M., Hussain, U., Warad, I., Al-Resayes, S. I., Khan, Md. S., Shakir, Md., Trzesowska-Kruszynska, A. & Kruszynski, R. (2012). Dalton Trans. 41, 10854-10864.]; Rivera et al., 2016b[Rivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016b). Acta Cryst. E72, 1731-1733.], 2017[Rivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2017). Acta Cryst. E73, 627-629.]; Elmali, 2000[Elmali, A. (2000). J. Chem. Crystallogr. 30, 473-477.]). The title compound, (I)[link], acts as an important raw material for the synthesis of Schiff base complexes. As an extension of our work on the synthesis and structural characterization of such Schiff base compounds, the crystal structure of the title compound is reported here.

[Scheme 1]

2. Structural commentary

The title compound crystallizes with two unique mol­ecules in the asymmetric unit. The conformers, labeled A and B, are shown in Fig. 1[link]. Each mol­ecule comprises a 1,3-di­amino-2-hy­droxy­propane bridge symmetrically substituted at the 1 and 3 positions by 4-(di­methyl­amino)­phen­yl]methyl­idene units. The conformational differences between the two mol­ecules are extremely small, resulting in a superstructural motif. The two mol­ecules are related by translation along the a-axis direction. A structural overlay of the two independent mol­ecules (r.m.s. deviation for fitting all non-H atoms = 0.097 Å) is shown in Fig. 2[link]. The disposition of the residues attached to the N2A and N2 positions can be described by the torsion angles N2A—C5A—C51A—C56A [−9.9 (11) in mol­ecule A] and N2—C5—C51—C56 [−14.9 (11)° in mol­ecule B]. The two outer aromatic rings (C11–C16 and C51–C56) are inclined to one another by 83.14 (4)° in mol­ecule A and 75.45 (4)° in mol­ecule B.

[Figure 1]
Figure 1
The structure of the independent mol­ecules A and B, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.
[Figure 2]
Figure 2
The structural overlay of the independent mol­ecules A (green dashed) and B (purple) of the title compound.

Bond distances and angles in the benzene rings are not unusual and compare well, both between the two independent mol­ecules and with those observed in related systems (see for example: Rivera et al., 2016b[Rivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016b). Acta Cryst. E72, 1731-1733.]). The values for the azomethine C=N bond distances in the two mol­ecules [1.275 (8) and 1.272 (8) in mol­ecule A and 1.271 (8) and 1.269 (8) Å in mol­ecule B] and the corresponding inter­nal angles at the nitro­gen atom [C1A—N1A—C2A = 117.7 (6) and C5A—N2A—C4A = 117.7 (6) in mol­ecule A and C1—N1—C2 = 117.5 (6) and C5—N2—C4 = 117.6 (6) in mol­ecule B] also agree with those reported in the literature for similar compounds (Rivera et al., 2016b[Rivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016b). Acta Cryst. E72, 1731-1733.]) and are consistent with C=N double bonding. In both mol­ecules, the azomethine groups adopt an E,E conformation, as can be seen from the torsion angles C2A—N1A—C1A—C11A = 177.8 (6)° and C4A—N2A—C5A—C51A = 179.9 (6)° in mol­ecule A and C2—N1—C1—C11 = 178.6 (6)° and C4—N2—C5—C51 = 177.0 (6) in mol­ecule B.

The two di­methyl­amino substituents in mol­ecule B are essentially coplanar with the benzene rings to which they are bound with torsion angles C17—N3—C14—C13 = −3.1 (11)° and C57—N4—C54—C53 = −2.9 (11)° and with dihedral angles between the NMe2 plane and the benzene ring of 0.57 (2) and 4.60 (2)°, respectively, whilst in mol­ecule A the corresponding torsional angles C17A—N3A—C14A—C13A and C57A—N4A—C54A—C53A are 2.2 (11) and 8.3 (10)°, respectively. The dihedral angles between the two di­methyl­amino groups (N3A and N4A) and the benzene rings are 5.09 (22) and 18.8 (2)° respectively, indicating that the lone electron pair of the N4A atom may not be completely conjugated with the benzene ring (C51A–C56A).

3. Supra­molecular features

Through O—H⋯N hydrogen-bonding inter­actions [2.863 (7) Å] between O1A—H1A and the nitro­gen N2 (Table 1[link]), the two independent mol­ecules inter­act to form C(5) chains running along the a axis (Fig. 3[link]). The chains are linked into a three-dimensional framework by a pair of weaker inter­molecular C57—H57B⋯O1ii and C57A—H57E⋯O1Aiii hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2Ai 0.84 (8) 2.06 (8) 2.889 (7) 170 (7)
O1A—H1A⋯N2 0.84 (8) 2.04 (8) 2.863 (7) 166 (7)
C57—H57B⋯O1ii 0.98 2.53 3.171 (9) 123
C57A—H57E⋯O1Aiii 0.98 2.36 3.211 (8) 145
Symmetry codes: (i) x-1, y, z; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z].
[Figure 3]
Figure 3
Crystal packing of the title compound, indicating the O—H⋯N hydrogen bonds (dashed lines), which result in chains along the a-axis direction.

4. Database survey

A search in the Cambridge Crystallographic Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the fragment 1,3-bis­[(benzyl­idene)amino]­propan-2-ol yielded the following structures: N,N′-[(2-hy­droxy-1,3-propanedi­yl)bis­(nitrilo­methylyl­idene-2,1-phenyl­ene)]bis­(4-methyl­benzene­sulfonamide) (Popov et al., 2009[Popov, L. D., Tupolova, Yu. P., Lukov, V. V., Shcherbakov, I. N., Burlov, A. S., Levchenkov, S. I., Kogan, V. A., Lyssenko, K. A. & Ivannikova, E. V. (2009). Inorg. Chim. Acta, 362, 1673-1680.]), 2,2′-[(2-hy­droxy­propane-1,3-di­yl)bis­(nitrilo­meth­yl­yl­idene)]diphenol (Azam, Hussain et al., 2012[Azam, M., Hussain, U., Warad, I., Al-Resayes, S. I., Khan, Md. S., Shakir, Md., Trzesowska-Kruszynska, A. & Kruszynski, R. (2012). Dalton Trans. 41, 10854-10864.]), 1,3-bis­(2-hy­droxy-5-bromo­salicyl­idene­amine)­propan-2-ol (Elmali, 2000[Elmali, A. (2000). J. Chem. Crystallogr. 30, 473-477.]), 1,3-bis­[(E)-(2-chloro­benzyl­idene)amino]­propan-2-ol (Azam, Warad, Al-Resayes et al., 2012[Azam, M., Warad, I., Al-Resayes, S. I., Shakir, M., Ullah, M. F., Ahmad, A. & Sarkar, F. H. (2012). Inorg. Chem. Commun. 20, 252-258.]) and 1,3-bis­[(4-meth­oxy­benzyl­idene)amino]­propan-2-ol (Rivera et al. 2016b[Rivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016b). Acta Cryst. E72, 1731-1733.]). In each of these structures, the N=C double bonds adopt E conformations.

5. Synthesis and crystallization

The title compound was prepared as described by (Rivera et al. 2016a[Rivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016a). Int. J. Chem. 8, 62-68.]). The crude product was recrystallized from diethyl ether solution by slow evaporation of the solvent, giving colorless crystals suitable for X–ray diffraction (m.p. 396.8–398 K; yield 40%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The coordinates of the hydroxyl H atom were refined with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.95 Å for aromatic and azomethine atoms, d(C—H) = 0.98 Å for methyl, d(C—H) = 0.99 Å for methyl­ene, d(C—H) = 1.00 Å for tertiary CH. The Uiso(H) values were constrained to 1.5Ueq(Cmeth­yl) or 1.2Ueq(C) for the remaining H atoms. The structure shows signs of a superstructure. The two mol­ecules are related by a translation of 1/2 along the a axis. However, if the structure is refined in a cell with the a axis halved, the displacement parameters of one NMe2 group and some of the C atoms of the phenyl ring to which this group is attached are significantly enlarged (Fig. 4[link]). Shifting one mol­ecule by ½ in the a-axis direction, it becomes obvious how similar the two mol­ecules are. Nevertheless, there are small differences in their overall conformation (Fig. 5[link]). As a result of that, we opted to refine the structure using the larger unit cell with two mol­ecules in the asymmetric unit.

Table 2
Experimental details

Crystal data
Chemical formula C21H28N4O
Mr 352.47
Crystal system, space group Monoclinic, P21
Temperature (K) 173
a, b, c (Å) 9.1456 (10), 10.5860 (8), 19.974 (2)
β (°) 97.110 (9)
V3) 1918.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.22 × 0.03 × 0.03
 
Data collection
Diffractometer STOE IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany])
Tmin, Tmax 0.426, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16633, 6852, 3688
Rint 0.069
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.156, 0.93
No. of reflections 6852
No. of parameters 483
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.22
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 4]
Figure 4
Perspective view of the mol­ecule if the structure is refined in a cell with the a axis halved.
[Figure 5]
Figure 5
Partial packing diagram of the title compound with one mol­ecule shifted by x = ½, y = 0, z = 0, showing similarities and differences between the two mol­ecules.

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

1,3-Bis{(E)-[4-(dimethylamino)benzylidene]amino}propan-2-ol top
Crystal data top
C21H28N4OF(000) = 760
Mr = 352.47Dx = 1.220 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.1456 (10) ÅCell parameters from 8852 reflections
b = 10.5860 (8) Åθ = 3.2–25.9°
c = 19.974 (2) ŵ = 0.08 mm1
β = 97.110 (9)°T = 173 K
V = 1918.9 (3) Å3Needle, colourless
Z = 40.22 × 0.03 × 0.03 mm
Data collection top
STOE IPDS II two-circle-
diffractometer
3688 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.069
ω scansθmax = 25.7°, θmin = 3.2°
Absorption correction: multi-scan
(X-Area; Stoe & Cie, 2001)
h = 1111
Tmin = 0.426, Tmax = 1.000k = 1112
16633 measured reflectionsl = 2424
6852 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0713P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
6852 reflectionsΔρmax = 0.17 e Å3
483 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2650 (5)0.6469 (4)0.2463 (2)0.0338 (11)
H10.333 (9)0.594 (7)0.243 (4)0.051*
N10.0704 (6)0.5677 (5)0.4156 (3)0.0337 (13)
N20.0059 (6)0.4851 (5)0.2177 (3)0.0325 (13)
N30.4143 (8)0.5502 (6)0.6804 (3)0.056 (2)
N40.1885 (8)0.4185 (7)0.0846 (3)0.0525 (18)
C10.0252 (7)0.6501 (6)0.4596 (3)0.0318 (15)
H1B0.07170.73050.45780.038*
C20.1945 (7)0.6018 (7)0.3656 (3)0.0329 (15)
H2A0.23180.68620.37640.040*
H2B0.27520.54010.36720.040*
C30.1482 (7)0.6038 (6)0.2949 (3)0.0280 (14)
H30.06540.66570.29530.034*
C40.0905 (7)0.4759 (6)0.2754 (3)0.0295 (14)
H4A0.02680.44010.31450.035*
H4B0.17450.41770.26400.035*
C50.0408 (7)0.4112 (6)0.1683 (3)0.0291 (14)
H50.11630.35090.17200.035*
C110.0959 (7)0.6257 (6)0.5131 (3)0.0286 (14)
C120.1407 (8)0.7210 (6)0.5603 (3)0.0349 (16)
H120.09660.80230.55520.042*
C130.2491 (8)0.6979 (6)0.6143 (3)0.0346 (16)
H130.27910.76420.64510.041*
C140.3151 (8)0.5775 (6)0.6241 (3)0.0340 (16)
C150.2724 (7)0.4838 (6)0.5751 (3)0.0313 (15)
H150.31700.40270.57920.038*
C160.1666 (7)0.5092 (6)0.5215 (3)0.0282 (14)
H160.14080.44480.48910.034*
C170.4596 (10)0.6471 (7)0.7298 (4)0.050 (2)
H17A0.50960.71520.70840.075*
H17B0.52720.61060.76670.075*
H17C0.37280.68100.74780.075*
C180.4822 (8)0.4275 (7)0.6890 (4)0.0458 (18)
H18A0.40710.36420.69560.069*
H18B0.55740.42870.72850.069*
H18C0.52830.40610.64870.069*
C510.0284 (8)0.4128 (7)0.1056 (3)0.0330 (16)
C520.0002 (8)0.3146 (7)0.0598 (3)0.0431 (17)
H520.05830.24550.07130.052*
C530.0546 (9)0.3135 (8)0.0025 (3)0.0458 (19)
H530.03430.24390.03220.055*
C540.1384 (8)0.4140 (8)0.0211 (4)0.0390 (17)
C550.1671 (8)0.5154 (7)0.0254 (3)0.0376 (17)
H550.22270.58610.01380.045*
C560.1155 (8)0.5119 (7)0.0867 (3)0.0351 (16)
H560.13960.57920.11750.042*
C570.1555 (11)0.3106 (9)0.1292 (4)0.066 (3)
H57A0.19790.23400.10720.099*
H57B0.19800.32460.17130.099*
H57C0.04850.30080.13920.099*
C580.2838 (10)0.5179 (9)0.1020 (4)0.059 (2)
H58A0.23290.59920.10090.089*
H58B0.31030.50300.14740.089*
H58C0.37340.51930.06950.089*
O1A0.2364 (5)0.6551 (4)0.2491 (2)0.0307 (10)
H1A0.175 (9)0.598 (7)0.236 (4)0.046*
N1A0.4307 (6)0.5729 (5)0.4178 (2)0.0321 (13)
N2A0.4841 (6)0.4805 (5)0.2205 (3)0.0272 (12)
N3A0.9201 (8)0.5491 (6)0.6802 (3)0.0528 (18)
N4A0.6733 (7)0.3641 (7)0.0786 (3)0.0493 (16)
C1A0.4784 (8)0.6543 (6)0.4623 (3)0.0320 (15)
H1A10.43350.73530.46030.038*
C2A0.3069 (7)0.6088 (6)0.3686 (3)0.0301 (14)
H2A10.27270.69430.37920.036*
H2A20.22440.54900.37100.036*
C3A0.3525 (7)0.6076 (6)0.2969 (3)0.0267 (14)
H3A0.43860.66580.29670.032*
C4A0.4027 (8)0.4766 (6)0.2788 (3)0.0314 (15)
H4A10.46630.44040.31780.038*
H4A20.31560.42100.26880.038*
C5A0.4427 (8)0.4067 (6)0.1714 (3)0.0295 (15)
H5A0.36090.35340.17590.035*
C11A0.5983 (7)0.6298 (6)0.5160 (3)0.0261 (14)
C12A0.6474 (7)0.7222 (6)0.5632 (3)0.0317 (15)
H12A0.60670.80470.55820.038*
C13A0.7528 (8)0.6973 (6)0.6165 (3)0.0345 (16)
H13A0.78250.76220.64810.041*
C14A0.8175 (8)0.5775 (6)0.6252 (3)0.0336 (15)
C15A0.7757 (8)0.4861 (6)0.5758 (3)0.0355 (16)
H15A0.82120.40530.57910.043*
C16A0.6686 (7)0.5124 (6)0.5223 (3)0.0295 (14)
H16A0.64230.44920.48920.035*
C17A0.9607 (10)0.6408 (7)0.7321 (4)0.052 (2)
H17D1.00690.71350.71280.077*
H17E1.03050.60290.76760.077*
H17F0.87250.66860.75120.077*
C18A0.9840 (8)0.4245 (7)0.6888 (4)0.0457 (18)
H18D0.90810.36420.69850.069*
H18E1.06370.42550.72640.069*
H18F1.02350.39940.64740.069*
C51A0.5096 (8)0.3966 (6)0.1087 (3)0.0304 (16)
C52A0.4621 (8)0.3029 (6)0.0628 (3)0.0386 (16)
H52A0.39010.24460.07400.046*
C53A0.5148 (9)0.2908 (7)0.0017 (4)0.0457 (18)
H53A0.47940.22470.02820.055*
C54A0.6205 (9)0.3753 (8)0.0169 (3)0.0409 (19)
C55A0.6708 (8)0.4707 (8)0.0289 (3)0.0403 (17)
H55A0.74340.52880.01800.048*
C56A0.6136 (8)0.4806 (7)0.0914 (3)0.0371 (17)
H56A0.64750.54620.12190.045*
C57A0.6067 (10)0.2760 (8)0.1289 (3)0.063 (3)
H57D0.61150.19040.11000.095*
H57E0.66000.27860.16850.095*
H57F0.50340.29930.14210.095*
C58A0.7565 (10)0.4673 (10)0.1032 (4)0.065 (3)
H58D0.69430.54290.10900.097*
H58E0.78810.44370.14660.097*
H58F0.84330.48500.07060.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.038 (3)0.032 (3)0.031 (2)0.002 (2)0.002 (2)0.0081 (19)
N10.038 (3)0.036 (3)0.028 (3)0.002 (2)0.009 (3)0.001 (2)
N20.034 (3)0.034 (3)0.030 (3)0.006 (2)0.006 (2)0.001 (2)
N30.081 (5)0.032 (4)0.047 (4)0.005 (3)0.027 (4)0.001 (3)
N40.051 (4)0.078 (5)0.030 (3)0.005 (4)0.009 (3)0.013 (3)
C10.029 (4)0.032 (4)0.035 (4)0.009 (3)0.007 (3)0.000 (3)
C20.028 (4)0.041 (4)0.031 (3)0.003 (3)0.007 (3)0.001 (3)
C30.028 (3)0.026 (3)0.030 (3)0.001 (3)0.005 (3)0.000 (2)
C40.030 (3)0.032 (3)0.027 (3)0.005 (3)0.004 (3)0.006 (3)
C50.027 (3)0.028 (3)0.031 (3)0.002 (3)0.002 (3)0.002 (3)
C110.026 (3)0.032 (3)0.030 (3)0.002 (3)0.012 (3)0.001 (3)
C120.043 (4)0.025 (3)0.036 (4)0.001 (3)0.002 (3)0.002 (3)
C130.044 (4)0.026 (3)0.034 (4)0.008 (3)0.006 (3)0.008 (3)
C140.040 (4)0.033 (4)0.028 (3)0.009 (3)0.001 (3)0.008 (3)
C150.036 (4)0.024 (3)0.033 (3)0.003 (3)0.003 (3)0.001 (2)
C160.027 (3)0.027 (3)0.031 (3)0.005 (3)0.006 (3)0.004 (2)
C170.064 (5)0.046 (4)0.037 (4)0.012 (4)0.010 (4)0.002 (3)
C180.054 (5)0.043 (4)0.037 (4)0.004 (4)0.005 (3)0.009 (3)
C510.038 (4)0.035 (4)0.025 (3)0.013 (3)0.002 (3)0.005 (3)
C520.050 (4)0.044 (4)0.035 (4)0.004 (3)0.003 (3)0.001 (3)
C530.054 (4)0.052 (4)0.030 (3)0.009 (4)0.000 (3)0.018 (3)
C540.033 (4)0.052 (4)0.032 (3)0.007 (3)0.001 (3)0.004 (3)
C550.038 (4)0.047 (4)0.027 (3)0.001 (3)0.001 (3)0.004 (3)
C560.031 (4)0.044 (4)0.031 (3)0.004 (3)0.003 (3)0.008 (3)
C570.086 (6)0.073 (6)0.038 (4)0.029 (5)0.008 (4)0.017 (4)
C580.054 (5)0.088 (6)0.041 (4)0.015 (4)0.030 (4)0.012 (4)
O1A0.031 (3)0.035 (3)0.026 (2)0.000 (2)0.0010 (19)0.0069 (18)
N1A0.032 (3)0.038 (3)0.026 (3)0.002 (2)0.003 (2)0.003 (2)
N2A0.028 (3)0.025 (3)0.027 (3)0.003 (2)0.001 (2)0.002 (2)
N3A0.068 (5)0.037 (4)0.044 (3)0.004 (3)0.030 (3)0.003 (3)
N4A0.046 (4)0.074 (4)0.029 (3)0.004 (3)0.011 (3)0.012 (3)
C1A0.037 (4)0.033 (4)0.027 (4)0.002 (3)0.007 (3)0.005 (3)
C2A0.032 (4)0.033 (4)0.025 (3)0.002 (3)0.007 (3)0.001 (3)
C3A0.029 (3)0.027 (3)0.025 (3)0.003 (3)0.005 (3)0.000 (2)
C4A0.039 (4)0.029 (3)0.026 (3)0.005 (3)0.005 (3)0.003 (3)
C5A0.032 (4)0.023 (3)0.032 (3)0.006 (3)0.001 (3)0.006 (2)
C11A0.028 (3)0.027 (3)0.023 (3)0.001 (3)0.004 (3)0.000 (2)
C12A0.037 (4)0.025 (3)0.034 (3)0.003 (3)0.004 (3)0.005 (3)
C13A0.040 (4)0.035 (4)0.027 (3)0.005 (3)0.002 (3)0.002 (3)
C14A0.031 (4)0.032 (4)0.036 (4)0.002 (3)0.003 (3)0.000 (3)
C15A0.045 (4)0.024 (3)0.037 (4)0.004 (3)0.004 (3)0.003 (3)
C16A0.035 (4)0.027 (3)0.026 (3)0.008 (3)0.004 (3)0.001 (2)
C17A0.064 (5)0.044 (4)0.040 (4)0.007 (4)0.021 (4)0.003 (3)
C18A0.046 (4)0.040 (4)0.047 (4)0.002 (4)0.014 (3)0.015 (3)
C51A0.027 (3)0.033 (4)0.029 (3)0.006 (3)0.004 (3)0.003 (2)
C52A0.052 (4)0.031 (3)0.031 (3)0.005 (3)0.003 (3)0.006 (3)
C53A0.060 (5)0.042 (4)0.034 (3)0.008 (4)0.001 (3)0.008 (3)
C54A0.036 (4)0.057 (5)0.028 (3)0.024 (4)0.005 (3)0.014 (3)
C55A0.027 (3)0.065 (5)0.029 (3)0.001 (3)0.006 (3)0.007 (3)
C56A0.032 (4)0.053 (4)0.026 (3)0.002 (3)0.001 (3)0.008 (3)
C57A0.090 (6)0.074 (6)0.024 (3)0.038 (5)0.001 (4)0.017 (3)
C58A0.059 (5)0.097 (7)0.037 (4)0.021 (5)0.005 (4)0.001 (4)
Geometric parameters (Å, º) top
O1—C31.426 (7)O1A—C3A1.429 (7)
O1—H10.84 (8)O1A—H1A0.84 (8)
N1—C11.271 (8)N1A—C1A1.275 (8)
N1—C21.461 (8)N1A—C2A1.454 (8)
N2—C51.269 (8)N2A—C5A1.272 (8)
N2—C41.470 (8)N2A—C4A1.460 (8)
N3—C141.386 (9)N3A—C14A1.388 (8)
N3—C181.440 (10)N3A—C17A1.434 (9)
N3—C171.448 (9)N3A—C18A1.444 (10)
N4—C541.400 (9)N4A—C54A1.383 (9)
N4—C581.436 (11)N4A—C57A1.449 (10)
N4—C571.458 (11)N4A—C58A1.452 (12)
C1—C111.463 (9)C1A—C11A1.459 (8)
C1—H1B0.9500C1A—H1A10.9500
C2—C31.523 (9)C2A—C3A1.542 (8)
C2—H2A0.9900C2A—H2A10.9900
C2—H2B0.9900C2A—H2A20.9900
C3—C41.521 (9)C3A—C4A1.518 (8)
C3—H31.0000C3A—H3A1.0000
C4—H4A0.9900C4A—H4A10.9900
C4—H4B0.9900C4A—H4A20.9900
C5—C511.472 (10)C5A—C51A1.465 (10)
C5—H50.9500C5A—H5A0.9500
C11—C161.393 (9)C11A—C12A1.394 (9)
C11—C121.407 (9)C11A—C16A1.397 (9)
C12—C131.395 (10)C12A—C13A1.371 (9)
C12—H120.9500C12A—H12A0.9500
C13—C141.413 (10)C13A—C14A1.400 (9)
C13—H130.9500C13A—H13A0.9500
C14—C151.415 (9)C14A—C15A1.400 (9)
C15—C161.377 (9)C15A—C16A1.386 (9)
C15—H150.9500C15A—H15A0.9500
C16—H160.9500C16A—H16A0.9500
C17—H17A0.9800C17A—H17D0.9800
C17—H17B0.9800C17A—H17E0.9800
C17—H17C0.9800C17A—H17F0.9800
C18—H18A0.9800C18A—H18D0.9800
C18—H18B0.9800C18A—H18E0.9800
C18—H18C0.9800C18A—H18F0.9800
C51—C521.387 (10)C51A—C56A1.377 (10)
C51—C561.397 (10)C51A—C52A1.384 (9)
C52—C531.397 (10)C52A—C53A1.373 (10)
C52—H520.9500C52A—H52A0.9500
C53—C541.388 (11)C53A—C54A1.399 (12)
C53—H530.9500C53A—H53A0.9500
C54—C551.423 (10)C54A—C55A1.401 (10)
C55—C561.365 (10)C55A—C56A1.416 (10)
C55—H550.9500C55A—H55A0.9500
C56—H560.9500C56A—H56A0.9500
C57—H57A0.9800C57A—H57D0.9800
C57—H57B0.9800C57A—H57E0.9800
C57—H57C0.9800C57A—H57F0.9800
C58—H58A0.9800C58A—H58D0.9800
C58—H58B0.9800C58A—H58E0.9800
C58—H58C0.9800C58A—H58F0.9800
C3—O1—H1109 (5)C3A—O1A—H1A112 (5)
C1—N1—C2117.5 (6)C1A—N1A—C2A117.7 (6)
C5—N2—C4117.6 (6)C5A—N2A—C4A117.7 (6)
C14—N3—C18121.0 (6)C14A—N3A—C17A121.0 (6)
C14—N3—C17120.6 (6)C14A—N3A—C18A121.1 (6)
C18—N3—C17118.3 (6)C17A—N3A—C18A117.9 (6)
C54—N4—C58121.4 (7)C54A—N4A—C57A120.6 (7)
C54—N4—C57117.5 (7)C54A—N4A—C58A119.6 (7)
C58—N4—C57120.7 (7)C57A—N4A—C58A116.2 (6)
N1—C1—C11122.4 (6)N1A—C1A—C11A123.6 (6)
N1—C1—H1B118.8N1A—C1A—H1A1118.2
C11—C1—H1B118.8C11A—C1A—H1A1118.2
N1—C2—C3110.8 (5)N1A—C2A—C3A110.4 (5)
N1—C2—H2A109.5N1A—C2A—H2A1109.6
C3—C2—H2A109.5C3A—C2A—H2A1109.6
N1—C2—H2B109.5N1A—C2A—H2A2109.6
C3—C2—H2B109.5C3A—C2A—H2A2109.6
H2A—C2—H2B108.1H2A1—C2A—H2A2108.1
O1—C3—C4111.4 (5)O1A—C3A—C4A112.6 (5)
O1—C3—C2111.3 (5)O1A—C3A—C2A110.8 (5)
C4—C3—C2111.7 (5)C4A—C3A—C2A110.6 (5)
O1—C3—H3107.4O1A—C3A—H3A107.5
C4—C3—H3107.4C4A—C3A—H3A107.5
C2—C3—H3107.4C2A—C3A—H3A107.5
N2—C4—C3112.0 (5)N2A—C4A—C3A111.3 (5)
N2—C4—H4A109.2N2A—C4A—H4A1109.4
C3—C4—H4A109.2C3A—C4A—H4A1109.4
N2—C4—H4B109.2N2A—C4A—H4A2109.4
C3—C4—H4B109.2C3A—C4A—H4A2109.4
H4A—C4—H4B107.9H4A1—C4A—H4A2108.0
N2—C5—C51124.1 (6)N2A—C5A—C51A126.0 (7)
N2—C5—H5117.9N2A—C5A—H5A117.0
C51—C5—H5117.9C51A—C5A—H5A117.0
C16—C11—C12117.5 (6)C12A—C11A—C16A117.2 (6)
C16—C11—C1122.9 (6)C12A—C11A—C1A121.5 (6)
C12—C11—C1119.6 (6)C16A—C11A—C1A121.3 (6)
C13—C12—C11120.9 (6)C13A—C12A—C11A121.8 (6)
C13—C12—H12119.6C13A—C12A—H12A119.1
C11—C12—H12119.6C11A—C12A—H12A119.1
C12—C13—C14121.0 (6)C12A—C13A—C14A121.0 (6)
C12—C13—H13119.5C12A—C13A—H13A119.5
C14—C13—H13119.5C14A—C13A—H13A119.5
N3—C14—C13121.7 (6)N3A—C14A—C15A120.5 (6)
N3—C14—C15120.8 (6)N3A—C14A—C13A121.9 (6)
C13—C14—C15117.4 (6)C15A—C14A—C13A117.7 (6)
C16—C15—C14120.5 (6)C16A—C15A—C14A120.6 (6)
C16—C15—H15119.7C16A—C15A—H15A119.7
C14—C15—H15119.7C14A—C15A—H15A119.7
C15—C16—C11122.5 (6)C15A—C16A—C11A121.4 (6)
C15—C16—H16118.7C15A—C16A—H16A119.3
C11—C16—H16118.7C11A—C16A—H16A119.3
N3—C17—H17A109.5N3A—C17A—H17D109.5
N3—C17—H17B109.5N3A—C17A—H17E109.5
H17A—C17—H17B109.5H17D—C17A—H17E109.5
N3—C17—H17C109.5N3A—C17A—H17F109.5
H17A—C17—H17C109.5H17D—C17A—H17F109.5
H17B—C17—H17C109.5H17E—C17A—H17F109.5
N3—C18—H18A109.5N3A—C18A—H18D109.5
N3—C18—H18B109.5N3A—C18A—H18E109.5
H18A—C18—H18B109.5H18D—C18A—H18E109.5
N3—C18—H18C109.5N3A—C18A—H18F109.5
H18A—C18—H18C109.5H18D—C18A—H18F109.5
H18B—C18—H18C109.5H18E—C18A—H18F109.5
C52—C51—C56116.8 (6)C56A—C51A—C52A117.8 (7)
C52—C51—C5119.1 (7)C56A—C51A—C5A122.8 (6)
C56—C51—C5124.0 (6)C52A—C51A—C5A119.3 (7)
C51—C52—C53122.3 (8)C53A—C52A—C51A122.7 (7)
C51—C52—H52118.8C53A—C52A—H52A118.6
C53—C52—H52118.8C51A—C52A—H52A118.7
C54—C53—C52120.1 (7)C52A—C53A—C54A120.4 (7)
C54—C53—H53119.9C52A—C53A—H53A119.8
C52—C53—H53119.9C54A—C53A—H53A119.8
C53—C54—N4121.4 (7)N4A—C54A—C53A120.7 (7)
C53—C54—C55117.8 (7)N4A—C54A—C55A121.3 (8)
N4—C54—C55120.7 (7)C53A—C54A—C55A118.0 (7)
C56—C55—C54120.5 (7)C54A—C55A—C56A120.1 (7)
C56—C55—H55119.7C54A—C55A—H55A120.0
C54—C55—H55119.7C56A—C55A—H55A120.0
C55—C56—C51122.3 (7)C51A—C56A—C55A121.0 (7)
C55—C56—H56118.8C51A—C56A—H56A119.5
C51—C56—H56118.8C55A—C56A—H56A119.5
N4—C57—H57A109.5N4A—C57A—H57D109.5
N4—C57—H57B109.5N4A—C57A—H57E109.5
H57A—C57—H57B109.5H57D—C57A—H57E109.5
N4—C57—H57C109.5N4A—C57A—H57F109.5
H57A—C57—H57C109.5H57D—C57A—H57F109.5
H57B—C57—H57C109.5H57E—C57A—H57F109.5
N4—C58—H58A109.5N4A—C58A—H58D109.5
N4—C58—H58B109.5N4A—C58A—H58E109.5
H58A—C58—H58B109.5H58D—C58A—H58E109.5
N4—C58—H58C109.5N4A—C58A—H58F109.5
H58A—C58—H58C109.5H58D—C58A—H58F109.5
H58B—C58—H58C109.5H58E—C58A—H58F109.5
C2—N1—C1—C11178.6 (6)C2A—N1A—C1A—C11A177.8 (6)
C1—N1—C2—C3116.0 (7)C1A—N1A—C2A—C3A117.4 (6)
N1—C2—C3—O1175.3 (5)N1A—C2A—C3A—O1A174.1 (5)
N1—C2—C3—C459.4 (8)N1A—C2A—C3A—C4A60.4 (7)
C5—N2—C4—C3128.6 (6)C5A—N2A—C4A—C3A127.7 (6)
O1—C3—C4—N271.8 (7)O1A—C3A—C4A—N2A71.5 (7)
C2—C3—C4—N2163.0 (6)C2A—C3A—C4A—N2A163.9 (5)
C4—N2—C5—C51177.0 (6)C4A—N2A—C5A—C51A179.9 (6)
N1—C1—C11—C162.8 (10)N1A—C1A—C11A—C12A179.6 (7)
N1—C1—C11—C12180.0 (7)N1A—C1A—C11A—C16A0.6 (10)
C16—C11—C12—C131.7 (10)C16A—C11A—C12A—C13A4.5 (10)
C1—C11—C12—C13175.7 (6)C1A—C11A—C12A—C13A175.3 (6)
C11—C12—C13—C141.2 (11)C11A—C12A—C13A—C14A1.0 (11)
C18—N3—C14—C13179.0 (7)C17A—N3A—C14A—C15A178.2 (8)
C17—N3—C14—C133.1 (11)C18A—N3A—C14A—C15A1.3 (11)
C18—N3—C14—C153.1 (11)C17A—N3A—C14A—C13A2.2 (11)
C17—N3—C14—C15178.9 (7)C18A—N3A—C14A—C13A179.1 (7)
C12—C13—C14—N3174.8 (7)C12A—C13A—C14A—N3A177.5 (7)
C12—C13—C14—C153.2 (10)C12A—C13A—C14A—C15A2.9 (10)
N3—C14—C15—C16175.8 (7)N3A—C14A—C15A—C16A177.2 (7)
C13—C14—C15—C162.2 (10)C13A—C14A—C15A—C16A3.1 (10)
C14—C15—C16—C110.7 (10)C14A—C15A—C16A—C11A0.4 (10)
C12—C11—C16—C152.7 (10)C12A—C11A—C16A—C15A4.2 (10)
C1—C11—C16—C15174.6 (6)C1A—C11A—C16A—C15A175.6 (6)
N2—C5—C51—C52169.0 (7)N2A—C5A—C51A—C56A9.9 (11)
N2—C5—C51—C5614.9 (11)N2A—C5A—C51A—C52A173.4 (7)
C56—C51—C52—C530.3 (11)C56A—C51A—C52A—C53A0.3 (10)
C5—C51—C52—C53176.0 (7)C5A—C51A—C52A—C53A177.1 (7)
C51—C52—C53—C541.0 (12)C51A—C52A—C53A—C54A0.3 (11)
C52—C53—C54—N4176.9 (7)C57A—N4A—C54A—C53A8.3 (10)
C52—C53—C54—C550.7 (11)C58A—N4A—C54A—C53A166.3 (7)
C58—N4—C54—C53175.5 (7)C57A—N4A—C54A—C55A171.8 (7)
C57—N4—C54—C532.9 (11)C58A—N4A—C54A—C55A13.9 (11)
C58—N4—C54—C557.0 (12)C52A—C53A—C54A—N4A179.6 (7)
C57—N4—C54—C55179.6 (7)C52A—C53A—C54A—C55A0.6 (11)
C53—C54—C55—C561.1 (11)N4A—C54A—C55A—C56A179.4 (6)
N4—C54—C55—C56178.6 (7)C53A—C54A—C55A—C56A0.8 (11)
C54—C55—C56—C512.5 (12)C52A—C51A—C56A—C55A0.5 (10)
C52—C51—C56—C552.1 (11)C5A—C51A—C56A—C55A177.2 (6)
C5—C51—C56—C55174.0 (7)C54A—C55A—C56A—C51A0.8 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2Ai0.84 (8)2.06 (8)2.889 (7)170 (7)
O1A—H1A···N20.84 (8)2.04 (8)2.863 (7)166 (7)
C57—H57B···O1ii0.982.533.171 (9)123
C57A—H57E···O1Aiii0.982.363.211 (8)145
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z; (iii) x+1, y1/2, z.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 35816). IMC is also grateful to COLCIENCIAS for his doctoral scholarship.

References

First citationAzam, M., Hussain, U., Warad, I., Al-Resayes, S. I., Khan, Md. S., Shakir, Md., Trzesowska-Kruszynska, A. & Kruszynski, R. (2012). Dalton Trans. 41, 10854–10864.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAzam, M., Warad, I., Al-Resayes, S. I., Shakir, M., Ullah, M. F., Ahmad, A. & Sarkar, F. H. (2012). Inorg. Chem. Commun. 20, 252–258.  Web of Science CSD CrossRef CAS Google Scholar
First citationElmali, A. (2000). J. Chem. Crystallogr. 30, 473–477.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPopov, L. D., Tupolova, Yu. P., Lukov, V. V., Shcherbakov, I. N., Burlov, A. S., Levchenkov, S. I., Kogan, V. A., Lyssenko, K. A. & Ivannikova, E. V. (2009). Inorg. Chim. Acta, 362, 1673–1680.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016a). Int. J. Chem. 8, 62–68.  CrossRef Google Scholar
First citationRivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2016b). Acta Cryst. E72, 1731–1733.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Miranda-Carvajal, I., Ríos-Motta, J. & Bolte, M. (2017). Acta Cryst. E73, 627–629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds