research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,2′-(ethane-1,2-di­yl)bis­­(2,3-di­hydro-1H-naphtho­[1,2-e][1,3]oxazine): a prospective raw material for polybenzoxazines

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by J. Simpson, University of Otago, New Zealand (Received 28 April 2017; accepted 3 May 2017; online 9 May 2017)

In the title compound, C26H24N2O2, the oxazine moiety is fused to a naphthalene ring system. The asymmetric unit consists of one half of the mol­ecule, which lies about an inversion centre. The C atoms of the ethyl­ene spacer group adopt an anti­periplanar arrangement. The oxazine ring adopts a half-chair conformation. In the crystal, supra­molecular chains running along the b axis are formed via short C—H⋯π contacts. The crystal studied was a non-merohedral twin with a fractional contribution of 0.168 (2) of the minor twin component.

1. Chemical context

The oxazine moiety is well known as a building block for high-performance phenolic resins, which are of great inter­est in industry due to their superior mechanical and physical properties together with unusually high thermal resistance (Kiskan & Yagci, 2005[Kiskan, B. & Yagci, Y. (2005). Polymer, 46, 11690-11697.]). Recently, because of their high flexibility in mol­ecular design and performance-to-cost ratio, these monomers have gained attention for the preparation of cured thermosetting resins (Song et al., 2014[Song, J., Lee, J. & Kim, H. (2014). Macromol. Res. 22, 179-186.]; Yeganeh & Jangi, 2010[Yeganeh, H. & Jangi, A. (2010). Polym. Int. 59, 1375-1383.]). Benzoxazines and naphthoxazines, originally proposed by Holly & Cope (1944[Holly, F. W. & Cope, A. C. (1944). J. Am. Chem. Soc. 66, 1875-1879.]) and subsequently elaborated by Burke and co-workers (Burke et al., 1952[Burke, W. J., Kolbezen, M. J. & Stephens, C. W. (1952). J. Am. Chem. Soc. 74, 3601-3605.]), are obtained by Mannich-type condensation–cyclization reactions of phenols or naphthols with formaldehyde and primary amines in a 1:2:1 ratio (Deck et al., 2014[Deck, L. M., Paine, R. T., Bright, E. R., Ouizem, S. & Dickie, D. A. (2014). Tetrahedron Lett. 55, 2434-2437.]). Inter­est in the synthesis of polybenzoxazines and polynaphthoxazines has greatly increased during the past few years as they have a great deal of mol­ecular design flexibility compared to ordinary phenolics (Yildirim et al., 2006[Yildirim, A., Kiskan, B., Demirel, A. L. & Yagci, Y. (2006). Eur. Polym. J. 42, 3006-3014.]). The title bis­napthoxazine, 2,2′-(ethane-1,2-di­yl)bis­(2,3-di­hydro-1H-naphtho­[1,2-e][1,3]oxazine), C26H24N2O2, was prepared by condensation of 2-naphthol with ethyl­enedi­amine and formaldehyde in a 2:1:4 molar ratio at room temperature for 15 min in methanol solution. Evaporation at room temperature afforded the title compound in 73% yield after recrystallization.

[Scheme 1]

2. Structural commentary

In general terms, the structure of the title compound (Fig. 1[link]) is similar to those of other naphthoxazine derivatives that have been reported in that the oxazine moiety adopts a half-chair conformation (Yang et al., 2007[Yang, X.-H., Chen, X.-L., Diao, X.-J. & Wu, M.-H. (2007). Acta Cryst. E63, o3312.]; Rivera et al., 2015[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 1089-1092.]), with puckering parameters Q = 0.478 (3) Å, θ = 51.5 (4)°, φ = 86.6 (4)°, and the ethyl­ene spacer group adopts an anti­periplanar arrangement as observed in 3,3′-(ethane-1,2-di­yl)bis­(3,4-di­hydro-2H-1,3-benzoxazine) (Rivera et al., 2012[Rivera, A., Camacho, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o148.]), with a N1—C13—C13i—N1i torsion angle of 180.0° [symmetry code: (i) 1 − x, 1 − y, 1 − z]. However, unlike the related structures, which crystallized in monoclinic space groups with one mol­ecule in the asymmetric unit (Yang et al., 2007[Yang, X.-H., Chen, X.-L., Diao, X.-J. & Wu, M.-H. (2007). Acta Cryst. E63, o3312.]; Rivera et al., 2012[Rivera, A., Camacho, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o148.], 2015[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 1089-1092.]), the title compound (I)[link] crystallizes with just half a mol­ecule in the asymmetric unit in the space group P21/c, utilizing the crystallographic inversion centre in the mol­ecular symmetry. The other half of the mol­ecule is generated by the symmetry operation (1 − x, 1 − y, 1 − z).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Atoms labelled with the suffix A are generated using the symmetry operator (1 − x, 1 − y, 1 − z).

The aromatic C—C bonds of naphthalene ring system have a narrow range of distances [from 1.365 (5) to 1.431 (4) Å]. The central C5—C10 bond at 1.415 (4) Å is, however, shorter by 0.014 Å than those in related structures (Yang et al., 2007[Yang, X.-H., Chen, X.-L., Diao, X.-J. & Wu, M.-H. (2007). Acta Cryst. E63, o3312.]; Rivera et al., 2015[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 1089-1092.]). The N1—C1 and O1—C1 bond lengths are normal and comparable to the corresponding values observed in these related structures.

3. Supra­molecular features

In the crystal, the packing of the title compound is dominated by short contacts (Table 1[link]), as indicated by a PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) analysis. These contacts result from short C12—H12B⋯C2 and C12—H12B⋯C3 separations, which at 2.75 Å are both 0.15 Å shorter than the sum of the van der Waals radii, while the C—H⋯Cg1 contact to the mid-point of the C2–-C3 bond is even shorter at approximately 2.65 Å. These contacts are also much shorter than the C—H⋯Cg2 contact to the centroid of the C2–C4/C11/C12 ring (Fig. 2[link]). The mol­ecules are by these short C—H⋯π contacts linked into chains propagating along the b-axis direction (Fig. 3[link]).

Table 1
Selected short-contact geometry (Å, °)

Cg1 is the mid-point of the C2—C3 bond and Cg2 is the centroid of the C2–C4/C11/C12 ring.

C—H⋯C H⋯C C—H⋯C
C12—H12B⋯C2i 2.75 169
C12—H12B⋯C3i 2.75 142
C12–H12BCg1 2.654 157
C12–H12BCg2 3.073 155
Symmetry code: (i) x, −1 + y, z.
[Figure 2]
Figure 2
Possible C—H⋯π contacts, shown as dotted green lines, between mol­ecules of (I)[link]. Bond mid-points and ring centroids are shown as colored spheres.
[Figure 3]
Figure 3
Crystal packing of (I)[link], showing C—H⋯(C,C) short contacts that result in chains propagating along the b-axis direction.

4. Database survey

The title compound is the first example of two naphtho-oxazine moieties linked by an ethyl­ene bridge.

5. Synthesis and crystallization

The title compound was prepared as described by Rivera et al. (2006[Rivera, A., Ríos-Motta, J. & Angel Navarro, M. (2006). Heterocycles, 68, 531-537.]). Crystals were obtained by slow evaporation of the reaction solution at ambient temperature and were isolated from the solution before complete evaporation of the solvent mixture.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in the difference electron-density map. C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99 Å) and refined using a riding-model approximation, with Uiso(H) set to 1.2Ueq of the parent atom. The crystal was a non-merohedral twin with a fractional contribution of 0.168 (2) of the minor twin component.

Table 2
Experimental details

Crystal data
Chemical formula C26H24N2O2
Mr 396.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 9.8658 (10), 5.0979 (4), 19.551 (2)
β (°) 96.033 (8)
V3) 977.87 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.27 × 0.11 × 0.04
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.443, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9335, 9335, 5706
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.130, 0.94
No. of reflections 9335
No. of parameters 137
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.34
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b) and publCIF (Westrip, 2010).

2,2'-(Ethane-1,2-diyl)bis(2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine) top
Crystal data top
C26H24N2O2F(000) = 420
Mr = 396.47Dx = 1.347 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.8658 (10) ÅCell parameters from 9056 reflections
b = 5.0979 (4) Åθ = 2.8–26.4°
c = 19.551 (2) ŵ = 0.09 mm1
β = 96.033 (8)°T = 173 K
V = 977.87 (16) Å3Needle, colourless
Z = 20.27 × 0.11 × 0.04 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
9335 independent reflections
Radiation source: Genix 3D IµS microfocus X-ray source5706 reflections with I > 2σ(I)
ω scansθmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1212
Tmin = 0.443, Tmax = 1.000k = 66
9335 measured reflectionsl = 2424
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
9335 reflectionsΔρmax = 0.53 e Å3
137 parametersΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3328 (2)0.3467 (5)0.51587 (12)0.0291 (6)
O10.14340 (19)0.6404 (5)0.52587 (10)0.0346 (5)
C10.1935 (3)0.4104 (7)0.49256 (16)0.0351 (8)
H1A0.1350640.2585860.5011520.042*
H1B0.1855280.4409000.4422900.042*
C20.1675 (3)0.6281 (6)0.59661 (15)0.0302 (7)
C30.0926 (3)0.8089 (6)0.63272 (17)0.0350 (8)
H30.0299860.9255420.6082170.042*
C40.1107 (3)0.8150 (7)0.70288 (17)0.0370 (8)
H40.0619110.9392650.7269680.044*
C50.2015 (3)0.6382 (7)0.74028 (15)0.0319 (7)
C60.2182 (3)0.6366 (7)0.81341 (16)0.0397 (8)
H60.1692420.7591160.8379640.048*
C70.3039 (3)0.4611 (7)0.84895 (16)0.0419 (9)
H70.3135990.4601170.8978050.050*
C80.3771 (3)0.2834 (7)0.81263 (17)0.0421 (9)
H80.4368290.1624380.8374240.051*
C90.3648 (3)0.2792 (7)0.74225 (15)0.0355 (8)
H90.4157320.1559970.7189460.043*
C100.2761 (3)0.4585 (6)0.70373 (15)0.0295 (7)
C110.2593 (3)0.4567 (6)0.63016 (15)0.0276 (7)
C120.3413 (3)0.2746 (6)0.58900 (14)0.0288 (7)
H12A0.4379380.2785930.6086710.035*
H12B0.3075620.0929590.5930920.035*
C130.4289 (2)0.5552 (6)0.50126 (15)0.0290 (7)
H13A0.4309450.6914150.5374350.035*
H13B0.3976380.6384140.4566280.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0234 (11)0.0348 (16)0.0294 (13)0.0034 (11)0.0031 (9)0.0008 (11)
O10.0264 (10)0.0434 (14)0.0335 (12)0.0053 (9)0.0002 (8)0.0001 (10)
C10.0240 (14)0.047 (2)0.0339 (16)0.0011 (13)0.0013 (12)0.0078 (15)
C20.0194 (13)0.0348 (18)0.0365 (17)0.0036 (13)0.0034 (12)0.0013 (14)
C30.0233 (13)0.035 (2)0.047 (2)0.0023 (13)0.0047 (13)0.0013 (15)
C40.0284 (14)0.033 (2)0.051 (2)0.0017 (13)0.0120 (14)0.0119 (15)
C50.0270 (14)0.0336 (18)0.0358 (18)0.0090 (13)0.0070 (12)0.0041 (14)
C60.0412 (17)0.040 (2)0.0398 (19)0.0157 (16)0.0151 (14)0.0116 (16)
C70.0501 (19)0.048 (2)0.0286 (17)0.0210 (17)0.0061 (14)0.0037 (15)
C80.0444 (17)0.043 (2)0.038 (2)0.0089 (16)0.0002 (15)0.0075 (16)
C90.0355 (15)0.034 (2)0.0377 (19)0.0048 (14)0.0057 (13)0.0047 (15)
C100.0244 (13)0.0273 (17)0.0374 (17)0.0071 (12)0.0067 (12)0.0008 (13)
C110.0232 (12)0.0280 (17)0.0322 (16)0.0049 (12)0.0058 (11)0.0010 (13)
C120.0266 (13)0.0287 (17)0.0319 (16)0.0005 (12)0.0067 (12)0.0002 (13)
C130.0250 (13)0.0322 (18)0.0302 (15)0.0019 (12)0.0047 (12)0.0014 (14)
Geometric parameters (Å, º) top
N1—C11.439 (3)C6—C71.369 (5)
N1—C131.472 (4)C6—H60.9500
N1—C121.470 (4)C7—C81.398 (5)
O1—C21.380 (4)C7—H70.9500
O1—C11.453 (4)C8—C91.369 (4)
C1—H1A0.9900C8—H80.9500
C1—H1B0.9900C9—C101.425 (4)
C2—C111.375 (4)C9—H90.9500
C2—C31.415 (4)C10—C111.431 (4)
C3—C41.365 (5)C11—C121.517 (4)
C3—H30.9500C12—H12A0.9900
C4—C51.418 (4)C12—H12B0.9900
C4—H40.9500C13—C13i1.518 (5)
C5—C101.415 (4)C13—H13A0.9900
C5—C61.422 (4)C13—H13B0.9900
C1—N1—C13112.9 (2)C6—C7—H7120.3
C1—N1—C12108.6 (2)C8—C7—H7120.3
C13—N1—C12113.4 (2)C9—C8—C7121.7 (3)
C2—O1—C1112.5 (2)C9—C8—H8119.2
N1—C1—O1113.5 (2)C7—C8—H8119.2
N1—C1—H1A108.9C8—C9—C10120.4 (3)
O1—C1—H1A108.9C8—C9—H9119.8
N1—C1—H1B108.9C10—C9—H9119.8
O1—C1—H1B108.9C5—C10—C9118.1 (3)
H1A—C1—H1B107.7C5—C10—C11120.0 (3)
C11—C2—O1122.9 (3)C9—C10—C11121.8 (3)
C11—C2—C3121.9 (3)C2—C11—C10118.5 (3)
O1—C2—C3115.2 (3)C2—C11—C12119.8 (3)
C4—C3—C2119.7 (3)C10—C11—C12121.7 (3)
C4—C3—H3120.1N1—C12—C11112.6 (2)
C2—C3—H3120.1N1—C12—H12A109.1
C3—C4—C5120.8 (3)C11—C12—H12A109.1
C3—C4—H4119.6N1—C12—H12B109.1
C5—C4—H4119.6C11—C12—H12B109.1
C10—C5—C4119.0 (3)H12A—C12—H12B107.8
C10—C5—C6119.5 (3)N1—C13—C13i110.8 (3)
C4—C5—C6121.5 (3)N1—C13—H13A109.5
C7—C6—C5120.9 (3)C13i—C13—H13A109.5
C7—C6—H6119.5N1—C13—H13B109.5
C5—C6—H6119.5C13i—C13—H13B109.5
C6—C7—C8119.4 (3)H13A—C13—H13B108.1
C13—N1—C1—O162.2 (3)C6—C5—C10—C11179.5 (3)
C12—N1—C1—O164.5 (3)C8—C9—C10—C50.3 (4)
C2—O1—C1—N150.6 (3)C8—C9—C10—C11179.0 (3)
C1—O1—C2—C1116.5 (4)O1—C2—C11—C10179.6 (3)
C1—O1—C2—C3164.7 (2)C3—C2—C11—C101.6 (4)
C11—C2—C3—C40.2 (5)O1—C2—C11—C121.3 (4)
O1—C2—C3—C4179.0 (3)C3—C2—C11—C12177.5 (3)
C2—C3—C4—C51.5 (5)C5—C10—C11—C21.4 (4)
C3—C4—C5—C101.6 (4)C9—C10—C11—C2177.2 (3)
C3—C4—C5—C6178.0 (3)C5—C10—C11—C12177.6 (3)
C10—C5—C6—C71.0 (5)C9—C10—C11—C123.7 (4)
C4—C5—C6—C7178.6 (3)C1—N1—C12—C1143.2 (3)
C5—C6—C7—C80.8 (5)C13—N1—C12—C1183.2 (3)
C6—C7—C8—C90.3 (5)C2—C11—C12—N112.7 (4)
C7—C8—C9—C100.1 (5)C10—C11—C12—N1166.3 (3)
C4—C5—C10—C9178.8 (3)C1—N1—C13—C13i156.7 (3)
C6—C5—C10—C90.8 (4)C12—N1—C13—C13i79.2 (4)
C4—C5—C10—C110.1 (4)
Symmetry code: (i) x+1, y+1, z+1.
Selected short-contact geometry (Å, °) top
Cg1 is the mid-point of the C2—C3 bond and Cg2 is the centroid of the C2–C4/C11/C12 ring.
C—H···CH···CC—H···C
C12—H12B···C2i2.75169
C12—H12B···C3i2.75142
C12–H12B···Cg12.654157
C12–H12B···Cg23.073155
Symmetry code: (i) x, -1 + y, z.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 35816).

References

First citationBurke, W. J., Kolbezen, M. J. & Stephens, C. W. (1952). J. Am. Chem. Soc. 74, 3601–3605.  CrossRef CAS Web of Science Google Scholar
First citationDeck, L. M., Paine, R. T., Bright, E. R., Ouizem, S. & Dickie, D. A. (2014). Tetrahedron Lett. 55, 2434–2437.  Web of Science CSD CrossRef CAS Google Scholar
First citationHolly, F. W. & Cope, A. C. (1944). J. Am. Chem. Soc. 66, 1875–1879.  CrossRef CAS Google Scholar
First citationKiskan, B. & Yagci, Y. (2005). Polymer, 46, 11690–11697.  Web of Science CrossRef CAS Google Scholar
First citationRivera, A., Camacho, J., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 1089–1092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Ríos-Motta, J. & Angel Navarro, M. (2006). Heterocycles, 68, 531–537.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, J., Lee, J. & Kim, H. (2014). Macromol. Res. 22, 179–186.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X.-H., Chen, X.-L., Diao, X.-J. & Wu, M.-H. (2007). Acta Cryst. E63, o3312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYeganeh, H. & Jangi, A. (2010). Polym. Int. 59, 1375–1383.  Web of Science CrossRef CAS Google Scholar
First citationYildirim, A., Kiskan, B., Demirel, A. L. & Yagci, Y. (2006). Eur. Polym. J. 42, 3006–3014.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds