research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4,4′-bis­­[3-(piperidin-1-yl)prop-1-yn-1-yl]-1,1′-biphen­yl

CROSSMARK_Color_square_no_text.svg

aDept. of Pharm. Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and bDept. of Chemistry, University of Kentucky, Lexington KY 40506, USA
*Correspondence e-mail: pacrooks@uams.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 9 May 2017; accepted 17 May 2017; online 19 May 2017)

The title compound, C28H32N2, (I), is one of a second generation of compounds designed and synthesized based on a very potent and selective α9α10 nicotinic acetyl­choline receptor antagonist ZZ161C {1,1′-[[1,1′-biphen­yl]-4,4′-diylbis(prop-2-yne-3,1-di­yl)]bis­(3,4-di­methyl­pyridin-1-ium) bromide}, which has shown analgesic effects in a chemotherapy-induced neuropathy animal model. Compound (I) was synthesized by the reaction of 4,4′-bis­(3-bromo­prop-1-yn-1-yl)-1,1′-biphenyl with piperidine at room temperature in aceto­nitrile. The single-crystal used for X-ray analysis was obtained by dissolving (I) in a mixture of di­chloro­methane and methanol, followed by slow evaporation of the solvent. In the crystal of (I), the biphenyl moiety has a twisted conformation, with a dihedral angle of 25.93 (4)° between the benzene rings. Both piperidine head groups in (I) are in the chair conformation and are oriented so that the N-atom lone pairs of each piperidine group point away from the central biphenyl moiety.

1. Chemical context

The α9α10 nicotinic acetyl­choline receptor is a novel therapeutic target with potential significance for pain management. Previous studies have shown that antagonism of the α9α10 nAChR by the non-peptide small mol­ecule, ZZ161C {10-[(1,1′-biphen­yl)-4,4′-diyl bis(prop-2-yne-3,1-di­yl)]bis(3,4-di­methyl­pyridin-1-ium) bromide} produced analgesia in the vincristine-induced neuropathic pain model in rats (Zheng et al., 2011[Zheng, G., Zhang, Z., Dowell, C., Wala, E., Dwoskin, L. P., Holton, J. R., McIntosh, J. M. & Crooks, P. A. (2011). Bioorg. Med. Chem. Lett. 21, 2476-2479.]; Wala et al., 2012[Wala, E. P., Crooks, P. A., McIntosh, J. M. & Holtman, J. R. (2012). Anesth. Analg. 115, 713-720.]). In order to improve the drug-like and pharmacokinetic properties of ZZ161C, the title compound (I)[link] was designed and synthesized. Compound (I)[link] is a biphenyl system with ethynyl appendages at the 4 and 4′ positions, as in ZZ161C, but the terminal aza-aromatic rings have been replaced by piperidine moieties. Single-crystal X-ray analysis of compound (I)[link] was used to determine the structural conformation of the compound.

[Scheme 1]

2. Structural commentary

The title compound (I)[link] is shown in Fig. 1[link]. X-ray crystallographic study was conducted in order to determine the geometry of the biphenyl system as well as to obtain detailed information about the conformation of the terminal piperidine groups. In compound (I)[link], the biphenyl rings (C9-C14) and (C15-C20) are non-coplanar, with a dihedral angle of 25.93 (4)° between them. The torsion angles of the ethynyl groups between the planes of the phenyl rings and the piperidine ring N atoms are 167.49 (9) and 34.01 (12)° (defined by atoms N1/C6/C9/C10, N2/C23/C18/C19, respectively). The lone pair on each N atom is oriented away from the biphenyl core of the mol­ecule.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

Aside from weak van der Waals inter­actions, there are no noteworthy inter­molecular contacts in (I)[link]. The molecules pack into layers in the ab plane bounded top and bottom by piperidine groups, which in turn stack along c.

4. Database survey

A search of the November 2014 release of the Cambridge Structure Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), with updates through May 2015, using the program Mogul (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]) for 4,4′-substituted biphenyl fragments was conducted. The search was restricted to purely organic, solvent-free structures with R <5% and Cl as the heaviest element. There were over 1000 hits, which produced a bimodal distribution of biphenyl torsion angles with a tight peak at 0° and a broader peak centred at 30°. Therefore the biphenyl torsion angle in (I)[link] is not unusual.

5. Synthesis and crystallization

Synthetic procedure: The inter­mediate 4,4′-bis­(3-bromo­prop-1-yn-1-yl)-1,1′-biphenyl (Wan et al., 2015[Wan, A., Penthala, N. R., Fifer, E. K., Parkin, S. & Crooks, P. A. (2015). Acta Cryst. E71, 1132-1135.]) was obtained utilizing a previously reported procedure; compound (I)[link] was synthesized by reacting piperidine with this inter­mediate.

To a suspension of 4,4′-bis(3-bromo­prop-1-yn-1-yl)-1,1′-biphenyl (100.0 mg, 0.26 mmol) in aceto­nitrile (7 mL), piperidine (66.4 mg, 0.78 mmol) was added at room temperature and the mixture was stirred continuously for 2 h, resulting in the formation of compound (I)[link]. Aceto­nitrile was removed under vacuum and the mixture was partitioned between water (50 mL) and di­chloro­methane (50 mL). The di­chloro­methane layer was collected and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate containing crude (I)[link] was concentrated and purified by column chromatography (di­chloro­methane/methanol) to afford pure compound (I)[link] in 80% yield.

Crystallization: Light-yellow crystals of compound (I)[link] suitable for X-ray analysis were grown in a mixture of di­chloro­methane and methanol (2:1) by slow evaporation of the solvent at room temperature over a period of 24 h.

1H-NMR (400 Mz, CDCl3): δ 7.51 (q, 8H), 3.53 (s, 4H), 2.62 (s, 8H), 1.65–1.71 (m, 8H), 1.47 (s, 4H) ppm.

1C-NMR (100 Mz, CDCl3): δ 140.07, 132.35, 126.91, 122.54, 85.25, 53.56, 48.62, 25.93, 23.93 ppm.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were found in difference-Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.94 Å (Csp2—H) and 0.98 Å (R2—CH2). Uiso(H) values were set to 1.2Ueq of the attached carbon atom.

Table 1
Experimental details

Crystal data
Chemical formula C28H32N2
Mr 396.55
Crystal system, space group Monoclinic, C2/c
Temperature (K) 210
a, b, c (Å) 40.2728 (8), 6.9679 (1), 16.0119 (3)
β (°) 92.588 (1)
V3) 4488.63 (14)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.51
Crystal size (mm) 0.25 × 0.24 × 0.05
 
Data collection
Diffractometer Bruker X8 Proteum diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.822, 0.942
No. of measured, independent and observed [I > 2σ(I)] reflections 28464, 4089, 3656
Rint 0.040
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.120, 1.08
No. of reflections 4089
No. of parameters 272
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.14
Computer programs: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CIFFIX (Parkin, 2013[Parkin, S. (2013). CIFFIX, https://xray.uky.edu/people/parkin/programs/ciffix]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and CIFFIX (Parkin, 2013).

4,4'-Bis[3-(piperidin-1-yl)prop-1-yn-1-yl]-1,1'-biphenyl top
Crystal data top
C28H32N2F(000) = 1712
Mr = 396.55Dx = 1.174 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 40.2728 (8) ÅCell parameters from 9828 reflections
b = 6.9679 (1) Åθ = 2.2–68.5°
c = 16.0119 (3) ŵ = 0.51 mm1
β = 92.588 (1)°T = 210 K
V = 4488.63 (14) Å3Plate, light yellow
Z = 80.25 × 0.24 × 0.05 mm
Data collection top
Bruker X8 Proteum
diffractometer
4089 independent reflections
Radiation source: fine-focus rotating anode3656 reflections with I > 2σ(I)
Detector resolution: 5.6 pixels mm-1Rint = 0.040
φ and ω scansθmax = 68.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 4848
Tmin = 0.822, Tmax = 0.942k = 87
28464 measured reflectionsl = 1219
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0642P)2 + 1.3326P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4089 reflectionsΔρmax = 0.15 e Å3
272 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00034 (8)
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat (Hope, 1994; Parkin & Hope, 1998).

At 90K the diffraction pattern showed some diffuse scatter and the Bragg diffraction spots were fuzzy. Visual inspection of crystal integrity and diffraction quality vs temperature established a safe temperature for data collection of -63° C.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement progress was checked using Platon (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.09256 (2)0.51979 (13)0.25747 (5)0.0358 (2)
N20.40754 (2)0.51181 (13)0.99141 (5)0.0375 (2)
C10.08446 (3)0.34286 (16)0.30095 (7)0.0408 (3)
H1A0.09600.34110.35610.049*
H1B0.09210.23250.26920.049*
C20.04725 (3)0.32626 (19)0.31130 (8)0.0510 (3)
H2A0.03580.31570.25620.061*
H2B0.04260.20970.34290.061*
C30.03424 (3)0.4991 (2)0.35658 (8)0.0531 (3)
H3A0.04320.49960.41450.064*
H3B0.01000.49200.35760.064*
C40.04421 (3)0.6818 (2)0.31330 (8)0.0524 (3)
H4A0.03750.79290.34610.063*
H4B0.03270.68930.25810.063*
C50.08159 (3)0.68738 (16)0.30341 (7)0.0429 (3)
H5A0.08740.80430.27340.051*
H5B0.09300.69060.35870.051*
C60.12794 (3)0.52990 (17)0.24185 (7)0.0408 (3)
H6A0.13190.64580.20910.049*
H6B0.13370.41920.20770.049*
C70.15040 (3)0.53310 (16)0.31739 (7)0.0390 (3)
C80.16846 (3)0.53582 (15)0.37892 (7)0.0363 (3)
C90.19232 (3)0.53774 (13)0.44832 (6)0.0326 (2)
C100.22585 (3)0.50840 (14)0.43383 (6)0.0335 (2)
H10A0.23240.48670.37900.040*
C110.24966 (2)0.51066 (14)0.49867 (6)0.0313 (2)
H11A0.27210.48980.48730.038*
C120.24091 (2)0.54353 (13)0.58071 (6)0.0284 (2)
C130.20725 (2)0.57162 (15)0.59484 (6)0.0355 (2)
H13A0.20070.59320.64970.043*
C140.18335 (3)0.56848 (16)0.53020 (6)0.0378 (3)
H14A0.16090.58720.54160.045*
C150.26622 (2)0.54789 (13)0.65079 (6)0.0281 (2)
C160.26055 (2)0.64996 (14)0.72383 (6)0.0326 (2)
H16A0.24090.72200.72720.039*
C170.28313 (2)0.64730 (14)0.79115 (6)0.0331 (2)
H17A0.27860.71730.83950.040*
C180.31256 (2)0.54258 (14)0.78869 (6)0.0316 (2)
C190.31910 (2)0.44566 (15)0.71481 (6)0.0337 (2)
H19A0.33910.37790.71080.040*
C200.29630 (2)0.44858 (14)0.64742 (6)0.0312 (2)
H20A0.30120.38230.59830.037*
C210.33448 (2)0.53494 (15)0.86180 (6)0.0352 (2)
C220.35066 (3)0.53208 (16)0.92647 (7)0.0390 (3)
C230.37192 (3)0.52602 (18)1.00433 (7)0.0424 (3)
H23A0.36790.64221.03680.051*
H23B0.36530.41581.03770.051*
C240.41943 (3)0.68044 (16)0.94747 (7)0.0413 (3)
H24A0.41380.79650.97840.050*
H24B0.40830.68780.89190.050*
C250.45676 (3)0.67152 (19)0.93867 (7)0.0498 (3)
H25A0.46400.78300.90690.060*
H25B0.46800.67590.99420.060*
C260.46631 (3)0.48932 (19)0.89439 (8)0.0519 (3)
H26A0.49060.48000.89370.062*
H26B0.45750.49270.83640.062*
C270.45268 (3)0.3159 (2)0.93827 (8)0.0528 (3)
H27A0.46380.30290.99370.063*
H27B0.45720.20000.90610.063*
C280.41548 (3)0.33533 (17)0.94746 (7)0.0434 (3)
H28A0.40420.33570.89200.052*
H28B0.40740.22480.97840.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0341 (5)0.0429 (5)0.0297 (4)0.0006 (4)0.0047 (3)0.0028 (3)
N20.0329 (5)0.0501 (6)0.0288 (4)0.0020 (4)0.0046 (3)0.0012 (4)
C10.0456 (6)0.0379 (6)0.0388 (6)0.0012 (5)0.0003 (4)0.0013 (4)
C20.0479 (7)0.0545 (7)0.0509 (7)0.0114 (6)0.0054 (5)0.0028 (6)
C30.0438 (7)0.0675 (8)0.0488 (7)0.0022 (6)0.0096 (5)0.0003 (6)
C40.0492 (7)0.0564 (8)0.0514 (7)0.0146 (6)0.0012 (5)0.0027 (6)
C50.0485 (6)0.0378 (6)0.0418 (6)0.0030 (5)0.0050 (5)0.0029 (5)
C60.0363 (6)0.0528 (7)0.0326 (5)0.0018 (5)0.0045 (4)0.0057 (5)
C70.0356 (6)0.0426 (6)0.0382 (6)0.0008 (4)0.0042 (5)0.0025 (4)
C80.0361 (6)0.0345 (6)0.0379 (6)0.0006 (4)0.0034 (4)0.0011 (4)
C90.0348 (5)0.0269 (5)0.0356 (5)0.0001 (4)0.0053 (4)0.0016 (4)
C100.0388 (5)0.0324 (5)0.0293 (5)0.0012 (4)0.0001 (4)0.0003 (4)
C110.0299 (5)0.0302 (5)0.0338 (5)0.0006 (4)0.0016 (4)0.0001 (4)
C120.0312 (5)0.0221 (5)0.0315 (5)0.0001 (3)0.0002 (4)0.0012 (4)
C130.0335 (5)0.0411 (6)0.0319 (5)0.0060 (4)0.0009 (4)0.0022 (4)
C140.0304 (5)0.0434 (6)0.0393 (6)0.0064 (4)0.0013 (4)0.0007 (5)
C150.0293 (5)0.0249 (5)0.0300 (5)0.0009 (4)0.0008 (4)0.0020 (4)
C160.0319 (5)0.0316 (5)0.0343 (5)0.0047 (4)0.0014 (4)0.0016 (4)
C170.0351 (5)0.0330 (5)0.0310 (5)0.0002 (4)0.0005 (4)0.0033 (4)
C180.0298 (5)0.0300 (5)0.0346 (5)0.0044 (4)0.0020 (4)0.0020 (4)
C190.0276 (5)0.0342 (5)0.0391 (5)0.0032 (4)0.0006 (4)0.0011 (4)
C200.0304 (5)0.0309 (5)0.0323 (5)0.0014 (4)0.0017 (4)0.0033 (4)
C210.0312 (5)0.0365 (6)0.0375 (6)0.0030 (4)0.0015 (4)0.0005 (4)
C220.0330 (5)0.0461 (6)0.0374 (6)0.0026 (4)0.0026 (4)0.0007 (4)
C230.0344 (6)0.0607 (7)0.0317 (5)0.0029 (5)0.0031 (4)0.0023 (5)
C240.0420 (6)0.0419 (6)0.0394 (6)0.0032 (5)0.0036 (4)0.0013 (5)
C250.0415 (6)0.0599 (8)0.0479 (7)0.0104 (5)0.0007 (5)0.0020 (5)
C260.0401 (7)0.0682 (8)0.0480 (7)0.0049 (6)0.0079 (5)0.0065 (6)
C270.0494 (7)0.0566 (8)0.0523 (7)0.0125 (6)0.0025 (5)0.0084 (6)
C280.0464 (6)0.0425 (6)0.0408 (6)0.0004 (5)0.0026 (5)0.0045 (5)
Geometric parameters (Å, º) top
N1—C51.4592 (14)C13—C141.3814 (14)
N1—C61.4595 (14)C13—H13A0.9400
N1—C11.4599 (14)C14—H14A0.9400
N2—C281.4596 (15)C15—C161.3964 (13)
N2—C241.4614 (14)C15—C201.3985 (13)
N2—C231.4616 (14)C16—C171.3787 (13)
C1—C21.5194 (16)C16—H16A0.9400
C1—H1A0.9800C17—C181.3938 (14)
C1—H1B0.9800C17—H17A0.9400
C2—C31.5113 (18)C18—C191.3974 (14)
C2—H2A0.9800C18—C211.4352 (13)
C2—H2B0.9800C19—C201.3849 (13)
C3—C41.5126 (19)C19—H19A0.9400
C3—H3A0.9800C20—H20A0.9400
C3—H3B0.9800C21—C221.1984 (15)
C4—C51.5210 (16)C22—C231.4807 (14)
C4—H4A0.9800C23—H23A0.9800
C4—H4B0.9800C23—H23B0.9800
C5—H5A0.9800C24—C251.5176 (15)
C5—H5B0.9800C24—H24A0.9800
C6—C71.4776 (14)C24—H24B0.9800
C6—H6A0.9800C25—C261.5123 (18)
C6—H6B0.9800C25—H25A0.9800
C7—C81.1980 (15)C25—H25B0.9800
C8—C91.4360 (13)C26—C271.5133 (18)
C9—C141.3921 (15)C26—H26A0.9800
C9—C101.3956 (14)C26—H26B0.9800
C10—C111.3810 (14)C27—C281.5177 (16)
C10—H10A0.9400C27—H27A0.9800
C11—C121.3944 (14)C27—H27B0.9800
C11—H11A0.9400C28—H28A0.9800
C12—C131.3979 (13)C28—H28B0.9800
C12—C151.4817 (13)
C5—N1—C6111.59 (9)C13—C14—C9120.42 (9)
C5—N1—C1110.87 (8)C13—C14—H14A119.8
C6—N1—C1111.31 (8)C9—C14—H14A119.8
C28—N2—C24111.19 (8)C16—C15—C20117.33 (9)
C28—N2—C23111.30 (9)C16—C15—C12120.78 (8)
C24—N2—C23111.03 (9)C20—C15—C12121.89 (8)
N1—C1—C2111.04 (9)C17—C16—C15121.39 (9)
N1—C1—H1A109.4C17—C16—H16A119.3
C2—C1—H1A109.4C15—C16—H16A119.3
N1—C1—H1B109.4C16—C17—C18121.11 (9)
C2—C1—H1B109.4C16—C17—H17A119.4
H1A—C1—H1B108.0C18—C17—H17A119.4
C3—C2—C1110.89 (10)C17—C18—C19118.03 (9)
C3—C2—H2A109.5C17—C18—C21119.27 (9)
C1—C2—H2A109.5C19—C18—C21122.69 (9)
C3—C2—H2B109.5C20—C19—C18120.59 (9)
C1—C2—H2B109.5C20—C19—H19A119.7
H2A—C2—H2B108.0C18—C19—H19A119.7
C2—C3—C4110.24 (10)C19—C20—C15121.48 (9)
C2—C3—H3A109.6C19—C20—H20A119.3
C4—C3—H3A109.6C15—C20—H20A119.3
C2—C3—H3B109.6C22—C21—C18174.81 (11)
C4—C3—H3B109.6C21—C22—C23177.50 (11)
H3A—C3—H3B108.1N2—C23—C22114.63 (9)
C3—C4—C5110.71 (10)N2—C23—H23A108.6
C3—C4—H4A109.5C22—C23—H23A108.6
C5—C4—H4A109.5N2—C23—H23B108.6
C3—C4—H4B109.5C22—C23—H23B108.6
C5—C4—H4B109.5H23A—C23—H23B107.6
H4A—C4—H4B108.1N2—C24—C25111.07 (9)
N1—C5—C4110.83 (9)N2—C24—H24A109.4
N1—C5—H5A109.5C25—C24—H24A109.4
C4—C5—H5A109.5N2—C24—H24B109.4
N1—C5—H5B109.5C25—C24—H24B109.4
C4—C5—H5B109.5H24A—C24—H24B108.0
H5A—C5—H5B108.1C26—C25—C24110.61 (10)
N1—C6—C7115.27 (9)C26—C25—H25A109.5
N1—C6—H6A108.5C24—C25—H25A109.5
C7—C6—H6A108.5C26—C25—H25B109.5
N1—C6—H6B108.5C24—C25—H25B109.5
C7—C6—H6B108.5H25A—C25—H25B108.1
H6A—C6—H6B107.5C25—C26—C27110.31 (10)
C8—C7—C6179.62 (12)C25—C26—H26A109.6
C7—C8—C9175.36 (11)C27—C26—H26A109.6
C14—C9—C10118.25 (9)C25—C26—H26B109.6
C14—C9—C8122.49 (9)C27—C26—H26B109.6
C10—C9—C8119.26 (9)H26A—C26—H26B108.1
C11—C10—C9121.15 (9)C26—C27—C28110.76 (10)
C11—C10—H10A119.4C26—C27—H27A109.5
C9—C10—H10A119.4C28—C27—H27A109.5
C10—C11—C12120.92 (9)C26—C27—H27B109.5
C10—C11—H11A119.5C28—C27—H27B109.5
C12—C11—H11A119.5H27A—C27—H27B108.1
C11—C12—C13117.61 (9)N2—C28—C27111.13 (9)
C11—C12—C15121.50 (8)N2—C28—H28A109.4
C13—C12—C15120.90 (8)C27—C28—H28A109.4
C14—C13—C12121.63 (9)N2—C28—H28B109.4
C14—C13—H13A119.2C27—C28—H28B109.4
C12—C13—H13A119.2H28A—C28—H28B108.0
C5—N1—C1—C259.37 (11)C11—C12—C15—C2026.18 (13)
C6—N1—C1—C2175.79 (9)C13—C12—C15—C20153.55 (10)
N1—C1—C2—C356.43 (13)C20—C15—C16—C172.33 (14)
C1—C2—C3—C453.55 (14)C12—C15—C16—C17176.66 (8)
C2—C3—C4—C553.83 (14)C15—C16—C17—C180.11 (15)
C6—N1—C5—C4175.67 (9)C16—C17—C18—C192.24 (14)
C1—N1—C5—C459.65 (11)C16—C17—C18—C21176.50 (9)
C3—C4—C5—N157.03 (13)C17—C18—C19—C202.32 (14)
C5—N1—C6—C762.09 (12)C21—C18—C19—C20176.37 (9)
C1—N1—C6—C762.35 (12)C18—C19—C20—C150.08 (15)
C14—C9—C10—C110.34 (14)C16—C15—C20—C192.24 (14)
C8—C9—C10—C11179.46 (9)C12—C15—C20—C19176.74 (8)
C9—C10—C11—C120.38 (14)C28—N2—C23—C2261.65 (12)
C10—C11—C12—C130.76 (14)C24—N2—C23—C2262.79 (12)
C10—C11—C12—C15179.51 (8)C28—N2—C24—C2558.93 (11)
C11—C12—C13—C140.43 (15)C23—N2—C24—C25176.57 (9)
C15—C12—C13—C14179.83 (9)N2—C24—C25—C2656.67 (12)
C12—C13—C14—C90.29 (16)C24—C25—C26—C2754.12 (13)
C10—C9—C14—C130.67 (15)C25—C26—C27—C2853.94 (14)
C8—C9—C14—C13179.13 (9)C24—N2—C28—C2758.70 (11)
C11—C12—C15—C16154.88 (10)C23—N2—C28—C27176.96 (9)
C13—C12—C15—C1625.40 (13)C26—C27—C28—N256.26 (13)
 

Acknowledgements

This investigation was supported by the Arkansas Research Alliance (ARA).

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S. (2013). CIFFIX, https://xray.uky.edu/people/parkin/programs/ciffix  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWala, E. P., Crooks, P. A., McIntosh, J. M. & Holtman, J. R. (2012). Anesth. Analg. 115, 713–720.  Web of Science CAS PubMed Google Scholar
First citationWan, A., Penthala, N. R., Fifer, E. K., Parkin, S. & Crooks, P. A. (2015). Acta Cryst. E71, 1132–1135.  CSD CrossRef IUCr Journals Google Scholar
First citationZheng, G., Zhang, Z., Dowell, C., Wala, E., Dwoskin, L. P., Holton, J. R., McIntosh, J. M. & Crooks, P. A. (2011). Bioorg. Med. Chem. Lett. 21, 2476–2479.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds